
Verified Security of Merkle-Damgård

Michael Backes§‖, Gilles Barthe†, Matthias Berg§, Benjamin Grégoire‡,
César Kunz¶†, Malte Skoruppa§ and Santiago Zanella Béguelin∗

§Saarland University, Saarbrücken, Germany ‖Max Planck Institute for Software Systems, Germany
Email: {backes, berg, skoruppa}@cs.uni-saarland.de

¶Universidad Politécnica de Madrid, Spain †IMDEA Software Institute, Madrid, Spain
Email: {Gilles.Barthe, Cesar.Kunz}@imdea.org
‡INRIA Sophia Antipolis-Méditerranée, France

Email: Benjamin.Gregoire@inria.fr
∗Microsoft Research

Email: santiago@microsoft.com

Abstract—Cryptographic hash functions provide a basic data
authentication mechanism and are used pervasively as building
blocks to realize many cryptographic functionalities, including
block ciphers, message authentication codes, key exchange
protocols, and encryption and digital signature schemes. Since
weaknesses in hash functions may imply vulnerabilities in the
constructions that build upon them, ensuring their security
is essential. Unfortunately, many widely used hash functions,
including SHA-1 and MD5, are subject to practical attacks. The
search for a secure replacement is one of the most active topics
in the field of cryptography. In this paper we report on the
first machine-checked and independently-verifiable proofs of
collision-resistance and indifferentiability of Merkle-Damgård,
a construction that underlies many existing hash functions.
Our proofs are built and verified using an extension of
the EasyCrypt framework, which relies on state-of-the-art
verification tools such as automated theorem provers, SMT
solvers, and interactive proof assistants.

I. INTRODUCTION

Cryptographic hash functions provide a basic data authen-
tication mechanism and are routinely used as building blocks
in other cryptographic constructions. For a given input m,
a cryptographic hash function H outputs a digest H(m) of
some small fixed length. For most tasks, it is required that
finding distinct inputs with the same digest—a collision—
be difficult. However, recent research has demonstrated that
widely used hash functions, including SHA-1 and MD5, are
vulnerable to collision attacks [29], [36], [37]. In response
to these concerns, the U.S. National Institute of Standards
and Technology (NIST) started in November 2007 a public
competition to develop new cryptographic hash functions to
augment a set of standard functions that includes the SHA-1
and SHA-2 algorithms. This competition, commonly known
as the SHA-3 competition, motivated a growing interest in
developing cryptographic hash functions and in rigorously
scrutinizing their security.

Verified security [8], [10] is an emerging approach to
security proofs of cryptographic systems. It adheres to
the same principles as provable security, but revisits its

realization from a formal verification perspective. When
taking a verified security approach, proofs are mechanically
verified and built with the aid of state-of-the-art verification
tools, such as SMT solvers, automated theorem provers and
interactive proof assistants. EasyCrypt [8] is an automated
framework that aims to make verified security accessible
to cryptographers with a limited background in formal
methods; it has been successfully applied to verify exact
security bounds of several digital signature and encryption
schemes.

In this paper, we report on an extension of EasyCrypt and
its application to build and verify exact security proofs of the
Merkle-Damgård construction [23], [31], which underlies
the design of many cryptographic hash functions. In its sim-
plest formulation, Merkle-Damgård iterates a compression
function f : {0, 1}k × {0, 1}n → {0, 1}n over the blocks
of an input message padded to a block boundary. For a
fixed public initialization vector IV, the digest of a padded
message with blocks x1 ‖ · · · ‖ x� is computed as

f(x�, f(x�−1, . . . f(x1, IV) . . .))

One way of arguing that iterated constructions like
Merkle-Damgård are secure is to show that they preserve
security properties of the underlying compression function.
The seminal works of Merkle [31] and Damgård [23] show
that if messages are padded in some specific way, finding
two colliding messages for the above iterated construction
is at least as hard as finding two colliding inputs for the
compression function f ; said otherwise, that the construction
preserves the collision resistance of the compression func-
tion. We present a proof of a generalization of this result in
EasyCrypt. Our proof applies when the padding function is
suffix-free, i.e. the padding of a message m is not a suffix
of the padding of any other message m′.

An alternative method for proving the security of a hash
function is to show that it behaves as a random oracle
when the compression function, or some other lower-level

2012 IEEE 25th Computer Security Foundations Symposium

v/12 $26.00 © 2012 IEEE

DOI

336

2012 IEEE 25th Computer Security Foundations Symposium

© 2012, Michael Backes. Under license to IEEE.
DOI 10.1109/CSF.2012.14

336

2012 IEEE 25th Computer Security Foundations Symposium

354

building block, is assumed to be ideal. The indifferentia-
bility framework of Maurer et al. [30] provides a rigor-
ous simulation-based definition that captures this intuition
and implies a strong composability result. Glossing over
technical subtleties [33], a hash function H indifferentiable
from a random oracle can be plugged into a cryptosystem
proven secure in the random oracle model for H without
compromising the security of the cryptosystem. We present a
proof in EasyCrypt of the indifferentiability of the Merkle-
Damgård construction from a random oracle. Our proof,
which follows the proof of Coron et al. [22], applies when
the padding function is prefix-free, i.e. the padding of a
message m is not a prefix of the padding of any other
message m′.

Organization of the Paper: Section II overviews the
foundations and verification mechanisms implemented in our
extension to EasyCrypt; Section III describes the Merkle-
Damgård construction and its security properties; Section IV
describes a machine-checked proof that Merkle-Damgård
preserves collision resistance when used with a suffix-free
padding, while Section V describes a machine-checked proof
of its indifferentiability from a random oracle when the
padding is prefix-free; Section VI discusses the applicability
of our results to generalizations of the Merkle-Damgård
construction and the finalists of NIST SHA-3 competition.
We conclude in Section VII.

II. A PRIMER ON EASYCRYPT

Building a cryptographic proof in EasyCrypt is a process
that can be decomposed in the following steps:

• Defining a formal context, including types, constants
and operators, and giving it meaning by declaring
axioms and stating derived lemmas.

• Defining a number of games, each of them composed of
a collection of procedures (written in the probabilistic
imperative language described below) and adversaries
declared as abstract procedures with access to oracles.

• Proving logical judgments that establish equivalences
between games. This may be done fully automatically,
with the help of hints from the user in the form of
relational invariants, or interactively using basic tactics
and automated strategies.

• Deriving inequalities between probabilities of events
in games, either by using previously proven logical
judgments or by direct computation.

In the remainder of this section, we briefly overview some
key aspects of the process of building an EasyCrypt proof.
Note that the work reported in this article benefited from
several extensions of the tool with respect to [8]; these
extensions include:

1) Support for reasoning about programs with loops.
Loops were used to represent iteration in the Merkle-
Damgård construction.

2) Mechanization of the Failure Event Lemma of [11],
implemented in EasyCrypt as an extension to the
mechanism that directly computes probability bounds.
This was used to bound the success probability of
the distinguisher in the proof of indifferentiability pre-
sented in Sect. V.

3) Proof engineering mechanisms to manage the size of
proof obligations and the theories that external solvers
use. These mechanisms were essential for the success-
ful verification of the proofs presented in this paper.

A. Input Language

Probabilistic experiments are defined as programs in
pWHILE, a strongly-typed imperative probabilistic program-
ming language. The grammar of pWHILE commands is
defined as follows:

C ::= skip nop
| V ← E deterministic assignment
| V $← DE probabilistic assignment
| if E then C else C conditional
| while E do C loop
| V ← P(E , . . . , E) procedure call
| C; C sequence

The only non-standard feature of the language are proba-
bilistic assignments; an assignment x $← d evaluates the
expression d in the current state to a distribution μ on values,
samples a value according to μ and assigns it to variable x.
The key to the flexibility of EasyCrypt is that the base
language of expressions and distribution expressions can be
extended by the user to suit the needs of the verification
task. The rich base language includes expressions over
Booleans, integers, fixed-length bitstrings, lists, finite maps,
and option, product and sum types. User-defined operators
can be axiomatized or defined in terms of other operators. In
the following, we let {0, 1}� denote the uniform distribution
on bitstrings of length �.

A program (equivalently, a game) in EasyCrypt is repre-
sented as a set of global variables together with a collection
of procedures. Some of these procedures are concrete and
given a definition as a command c ∈ C, while some
others may be abstract and left undefined. Quantification
over adversaries in cryptographic proofs is achieved by
representing them as abstract procedures parametrized by
a set of oracles; these oracles must be instantiated as other
procedures in the program.

Commands operate on program memories, which map
local and global variables to values; we let M denote the
set of memories. The semantics of a command c ∈ C is
a function �c� : M → D(M) from program memories to
sub-distributions on program memories. Note that programs
that do not terminate with probability 1 generate sub-
distributions with total probability less than 1. We refer the
reader to [9] for a detailed description of the semantics

337337355

of pWHILE as it has been formalized in the Coq proof
assistant. In what follows, we denote by Pr [c,m : A] the
probability of event A w.r.t. to the distribution �c� m and
often omit the initial memory m when it is not relevant.

Although EasyCrypt is not tied to any particular cryp-
tographic model, it provides good support to reason about
proofs developed in the random oracle model. A random
oracle O : X → Y is modelled in EasyCrypt as a
stateful procedure that maps values in X into uniformly and
independently distributed values in Y . The state of a random
oracle can be represented as a global finite map L that is
initially empty. Queries are answered consistently so that
identical queries are given the same answer:

Oracle O(x) :
if x �∈ dom(L) then L[x] $← Y
return L[x]

B. Probabilistic Relational Hoare Logic

The foundation of EasyCrypt is a probabilistic Relational
Hoare Logic (pRHL), whose judgments are quadruples of
the form:

� c1 ∼ c2 : Ψ =⇒ Φ

where c1, c2 are programs and Ψ,Φ are first-order relational
formulae. Relational formulae are defined by the grammar:

Ψ,Φ ::= e | ¬Φ | Ψ ∧ Φ | Ψ ∨ Φ | Ψ⇒ Φ | ∀x. Φ | ∃x. Φ

where e stands for a Boolean expression over logical vari-
ables and program variables tagged with either 〈1〉 or 〈2〉
to denote their interpretation in the left or right-hand side
program; the only restriction is that logical variables must
not occur free. The special keyword res denotes the return
value of a procedure and can be used in the place of a
program variable. We write e〈i〉 for the expression e in
which all program variables are tagged with 〈i〉. A relational
formula is interpreted as a relation on program memories.
For example, the formula x〈1〉+ 1 ≤ y〈2〉 is interpreted as
the relation

R = {(m1,m2) | m1(x) + 1 ≤ m2(y)}

The validity of a pRHL judgment is defined in terms of
a lifting operator L : P(A × B) → P(D(A) × D(B)).
Concretely,

|= c1 ∼ c2 : Ψ⇒ Φ def
=

∀m1,m2. m1 Ψ m2 ⇒ (�c1� m1) L(Φ) (�c2� m2)

Formally, let μ1 be a probability distribution on a set A and
μ2 a probability distribution on a set B. We define the lifting
μ1 L(R)μ2 of a relation R ⊆ A × B to μ1 and μ2 by the
clause:

∃μ : D(A×B). π1(μ) = μ1 ∧ π2(μ) = μ2 ∧ supp(μ) ⊆ R

where π1(μ) (resp. π2(μ)) denotes the projection of μ on its
first (resp. second) component and supp(μ) is the support

of μ as a sub-probability measure—if μ is discrete, this is
just the set of pairs with positive probability.

Figure 1 shows some selected rules that can be used to
derive valid pRHL judgments. There are two kinds of rules:
two-sided rules, which require that the related programs
have the same syntactic form, and one-sided rules, which do
not impose this requirement. One-sided rules are symmetric
in nature and admit a left and a right variant. We briefly
comment on some rules. The two-sided rule [Rnd] for
random assignments requires the distributions from where
values are sampled be uniform on some set X ; to apply
the rule one must exhibit a function f : X → X that may
depend on the state and is 1-1 if the precondition holds.
The one-sided rule [Rand〈1〉] for random assignments simply
requires that the post-condition is established for all possible
outcomes; in effect, this rule treats random assignment as a
non-deterministic assignment.

Similarly to Hoare logic, the rules for while loops require
to exhibit an appropriate relational invariant Φ. The two-
sided rule [While] applies when the loops execute in lockstep
and thus requires proving that the guards are equivalent.
The one-sided rule [While〈1〉] further requires exhibiting a
decreasing variant v and a lower bound m. The premises
ensure that the loop is absolutely terminating, which is
crucial for the soundness of the rule.

The relational Hoare logic also allows capturing the well-
known cryptographic argument “x is uniformly distributed
and independent of the adversary’s view”, which is certainly
one of the most difficult to formalize. We formalize this
argument in EasyCrypt by proving that re-sampling x
preserves the semantics of the program. Suppose we want
to prove that in a program c, a variable x used in an
oracle O is uniformly distributed and independent of the
view of an adversary AO . Let O′ be the same as O except
that it re-samples x when needed. We identify a condition
used that holds whenever A obtained some information
about x (and thus, re-sampling would not preserve the
semantics). We then prove that the conditional statement
c′ def

= if ¬used then x $← X can swap with calls to O
and O′, i.e.

� c′; y ← O(�e) ∼ y ← O′(�e); c′ : Φ =⇒ Φ

where Φ implies equality over all global variables. From
this, we can conclude that c′ can also swap with calls to
AO and AO

′

, and hence that the semantics of the program
c is preserved when O is replaced by O′. The advantage
of using such kind of reasoning is that it is generally much
easier to reason about a game where x is sampled lazily,
since its distribution is locally known.

We conclude with some observations on the mechaniza-
tion of reasoning in pRHL. We implement in EasyCrypt
several variants of two-sided and one-sided rules of pRHL
in the form of tactics that can be applied in a goal-oriented
fashion to prove the validity of judgments. For instance,

338338356

� c1 ∼ c2 : Φ =⇒ Φ′ � c′1 ∼ c′2 : Φ′ =⇒ Φ′′

� c1; c
′
1 ∼ c2; c

′
2 : Φ =⇒ Φ′′

[Seq]

� x← e ∼ skip : Φ {e〈1〉/x〈1〉} =⇒ Φ [Asn〈1〉] � skip ∼ x← e : Φ {e〈2〉/x〈2〉} =⇒ Φ [Asn〈2〉]

Ψ⇒ bijective(f) Ψ⇒ ∀v ∈ X. Φ {v, f(v)/x〈1〉, y〈2〉}

� x $← X ∼ y $← X : Ψ =⇒ Φ
[Rnd]

Ψ⇒ ∀v ∈ supp(d). Φ {v/x〈1〉}

� x $← d ∼ skip : Ψ =⇒ Φ
[Rnd〈1〉]

� c1 ∼ c2 : Ψ ∧ e〈1〉 =⇒ Φ � c′1 ∼ c2 : Ψ ∧ ¬e〈1〉 =⇒ Φ

� if e then c1 else c′1 ∼ c2 : Ψ =⇒ Φ
[Cond〈1〉]

� c1 ∼ c2 : Φ ∧ b1〈1〉 =⇒ Φ Φ⇒ b1〈1〉 = b2〈2〉

� while b1 do c1 ∼ while b2 do c2 : Φ =⇒ Φ ∧ ¬b1〈1〉
[While]

� c1 ∼ skip : Φ ∧ (b1 ∧ v = n)〈1〉 =⇒ Φ ∧ v〈1〉 < n Φ ∧ v〈1〉 ≤ m⇒ ¬b〈1〉

� while b1 do c1 ∼ skip : Φ =⇒ Φ ∧ ¬b1〈1〉
[While〈1〉]

Ψ⇒ Ψ′ � c1 ∼ c2 : Ψ′ =⇒ Φ′ Φ′ ⇒ Φ

� c1 ∼ c2 : Ψ =⇒ Φ
[Sub]

� c1 ∼ c2 : Ψ ∧Ψ′ =⇒ Φ � c1 ∼ c2 : Ψ ∧ ¬Ψ′ =⇒ Φ

� c1 ∼ c2 : Ψ =⇒ Φ
[Case]

Figure 1. Selected pRHL rules

instead of implementing rule [Rnd〈1〉], we combine it with
the [Seq] rule to obtain the following more easily applicable
rule:

� c1 ∼ c2 : Ψ =⇒ ∀v ∈ supp(d). Φ {e〈1〉/x〈1〉}

� c1; x $← d ∼ c2 : Ψ =⇒ Φ

The application of a tactic may generate additional verifica-
tion subgoals, and logical side conditions that are checked
using SMT solvers, automated theorem provers and, as a
last recourse, interactive proof assistants. Depending on their
nature, application of the tactics can be fully automated or
require user input. For instance, applying the tactics that
mechanize the rules for while loops, requires the user to
provide an adequate invariant. In the case of the two-sided
rule, a new subgoal is generated to prove the correctness
of the user-provided invariant, whereas the equivalence of
the loop guards is checked automatically as a logical side-
condition.

In addition to tactics that mechanize basic rules of pRHL,
EasyCrypt implements automated strategies that combine
the application of a weakest precondition transformer wp
with heuristics to apply basic tactics. The wp transformer op-
erates on deterministic loop-free programs. These strategies
can often be used to deal automatically with large fragments
of proofs, letting the user focus in the parts that require
ingenuity.

C. Reasoning about Probabilities

Since cryptographic results are stated as inequalities on
probabilities rather than pRHL judgments, it is important to

derive probability claims from pRHL judgments. This can
be done mechanically by applying rules in the style of

m1 Ψm2 � c1 ∼ c2 : Ψ =⇒ Φ Φ⇒A〈1〉⇒B〈2〉

Pr [c1,m1 : A] ≤ Pr [c2,m2 : B]

Game-based proofs often argue that two programs c1 and
c2 behave identically unless a failure event F is triggered.
This is used to conclude that the difference in probability
of any event between the two programs is bounded by
the probability of F in one of them. Although a syntactic
characterization of this lemma is often used (in which failure
is represented by a Boolean flag), it can be conveniently
expressed and implemented in EasyCrypt in a more general
form using pRHL.

Lemma 1 (Fundamental Lemma). Let c1 and c2 be two
terminating commands and A,B, F events such that

� c1∼c2 : Ψ =⇒F 〈1〉⇔F 〈2〉∧(¬F 〈1〉⇒A〈1〉⇔B〈2〉)

Then, if the initial memories of both games satisfy Ψ,

|Pr [c1 : A]− Pr [c2 : B] | ≤ Pr [G1 : F] = Pr [G2 : F]

In most applications of the above lemma, the failure
event F can only be triggered in oracle queries made
by an adversary. When the adversary can only make a
known bounded number of queries, the following lemma,
which we implemented in EasyCrypt, provides a means to
bound the probability of failure. (We describe its hypotheses
informally, but note that most of them can be captured by
pRHL judgments.)

339339357

Lemma 2 (Failure event lemma). Consider a program
c1; c2, an integer expression i, an event F , and u ∈ R.
Assume the following:
• Free variables in F and i are only modified by c1 or

oracles in some set O;
• After executing c1, F does not hold and 0 ≤ i;
• Oracles O ∈ O do not decrease i and strictly increase
i when F is triggered;

• For every oracle O in O, ¬F ⇒ Pr [O : F] ≤ u
Then, Pr [c1; c2 : F ∧ i ≤ q] ≤ q · u.

Finally, EasyCrypt implements a simple mechanism to
directly compute bounds for the probability of an event
in a program. This mechanism can establish, for instance,
that the probability that a value uniformly chosen from a
set X equals an expression that does not depend on it is
exactly 1/|X |, or that the probability that the same uniformly
sampled value belongs to a list of n values that does not
depend on it is at most n/|X |.

III. THE MERKLE-DAMGÅRD CONSTRUCTION

Merkle-Damgård is a method for building a variable
input-length (VIL) hash function from a fixed input-length
(FIL) compression function. In its simplest form, the digest
of a message is computed by first padding it to a block
boundary and then iterating a compression function f over
the resulting blocks starting from an initial chaining value
IV. A compression function f maps a pair of bitstrings of
length k and n (equivalently, a bitstring of length k+ n) to
a bitstring of length n:

f : {0, 1}k × {0, 1}n → {0, 1}n

A padding function pad converts an arbitrary length message
into a list of bitstrings of block size (k is the block-size):

pad : {0, 1}∗ → ({0, 1}k)∗

Definition 3 (Merkle-Damgård). Let f be a compression
function and pad a padding function as above, and let IV ∈
{0, 1}n be a public value, known as the initialization vector.
The hash function MD is defined as follows:

MD : {0, 1}∗ → {0, 1}n

MD(m) def
= f∗(pad(m), IV)

where f∗ : ({0, 1}k)∗ × {0, 1}n → {0, 1}n is recursively
defined by the equations

f∗(nil, y) def
= y f∗(x::xs , y) def

= f∗(xs , f(x, y))

The security properties of the compression function pre-
served by the Merkle-Damgård construction greatly depend
on an adequate choice of padding to thwart certain types of
attacks. In the remainder, we consider prefix- and suffix-free
padding functions.

Definition 4 (Prefix- and suffix-free padding). A padding
function pad is prefix-free (resp. suffix-free) iff for any

distinct messages m,m′, there is no xs such that
pad(m′) = pad(m) ‖ xs (resp. pad(m′) = xs ‖ pad(m)).

Security properties of hash functions are stated as claims
about the difficulty of an attacker in achieving certain goals.
Collision resistance states that it is hard to find distinct a, b
such that H(a) = H(b). Pre-image resistance states that
given a digest h, it is hard to find a such that H(a) = h.
Second preimage resistance states that given a, it is hard
to find b �= a such that H(a) = H(b). Finally, resistance
to length-extension attacks states that it is hard to compute
H(a ‖ b) from H(a). The precise formulation of these
notions and their relationship is addressed in detail in [34].

An established method for proving the security of domain
extenders, like MD above, is to show that they are property-
preserving: for instance, the seminal works of Merkle [31]
and Damgård [23] show that if the compression function f
is collision resistant, then the hash function MD with some
specific padding function is also collision resistant. Property
preservation also applies for other notions; a representative
panorama of property preservation for collision resistance,
preimage and second preimage resistance appears in [5].
In Section IV we use EasyCrypt to reduce the collision
resistance of suffix-free MD to the collision resistance of
the underlying compression function.

An alternative method for proving the security of domain
extenders is to show that they preserve ideal functionalities,
i.e. that when applied to ideal functionalities they yield
an ideal functionality. The notion of indifferentiability of
Maurer et al. [30] provides an appropriate framework.

Definition 5 (Indifferentiability). A procedure C with oracle
access to an ideal primitive G is (tS , q, ε)-indifferentiable
from F if there exists a simulator S with oracle access
to F and executing within time tS , such that for any
distinguisher D that makes at most q oracle queries, the
following inequality holds∣∣Pr [b← DC,G() : b]− Pr

[
b← DF ,S() : b

]∣∣ ≤ ε

Intuitively, the distinguisher is either given access to CG

and G, or it is given access to F and SF (see Figure 2).
The probability that it succeeds in distinguishing the two
scenarios must be small.

C G F S

D

Figure 2. Indifferentiability of C from an ideal functionality F

In the application considered in this paper, C represents
the Merkle-Damgård construction, G represents the compres-

340340358

sion function and F represents an idealized hash function.
Thus, the role of S is to simulate the behavior of the
compression function, i.e. it should behave towards F like
G behaves towards the Merkle-Damgård construction. In
Section V, we use EasyCrypt to define a simulator S that
proves indifferentiability of MD from a VIL random oracle
when the compression function G is modeled as a FIL
random oracle—random oracles [13] are functions that map
values in the input domain into uniformly and independently
distributed values in the output domain; see Section II for a
precise definition.

We conclude this section with two observations on the
two proof methods. First, indifferentiability from random or-
acles provides weaker guarantees than initially anticipated—
see [19] and [33] respectively for discussions on the random
oracle model and on the notion of indifferentiability—but
remains nevertheless a useful heuristics to gain confidence
in the design of hash functions. Second, the two methods are
complementary. On the one hand, indifferentiability from
a VIL random oracle entails resistance against collision,
preimage, second preimage, and length-extension attacks.
On the other hand, property preservation is often estab-
lished under weaker hypotheses and moreover, exact security
bounds derived from indifferentiability proofs are sometimes
looser than bounds delivered by direct proofs of property
preservation.

IV. COLLISION RESISTANCE

We show that finding collisions for MD with a suffix-free
padding is at least as hard as finding collisions for f . A
collision for the compression function f is a pair of inputs
xy1, xy2 satisfying the predicate

coll(xy1, xy2)
def
= xy1 �= xy2 ∧ f(xy1) = f(xy2)

Theorem 6. Let MD be a Merkle-Damgård hash function
with compression function f and a suffix-free padding pad.
For any algorithm A finding collisions for MD of at most
length p, there exists an algorithm B that finds collisions
for f with the same probability and with an overhead of
O(p · tf), where tf is a bound on the time needed for one
evaluation of f .

Consider the experiment CRMD below, in which an adver-
sary A performs a collision attack against MD:

Game CRMD :
(m1,m2)← A();
h1 ← F(m1);
h2 ← F(m2);
return (m1 �= m2 ∧ h1 = h2)

Oracle F(m) :
xs ← pad(m); y ← IV;
while xs �= nil do
y ← f(hd(xs), y);
xs ← tl(xs);

return y

We prove in EasyCrypt that the algorithm B shown in Fig. 3
finds collisions for f in the experiment CRf with at least the
same probability as A finds collisions for MD in CRMD, i.e.

Pr
[
CRMD : res

]
≤ Pr

[
CRf : res

]
(1)

Game CRf :
(xy1, xy2)← B();
return coll(xy1, xy2)

Adversary B() :
(m1,m2)← A();
xs1 ← pad(m1); y1 ← IV;
xs2 ← pad(m2); y2 ← IV;
while |xs1| > |xs2| do
y1 ← f(hd(xs1), y1); xs1 ← tl(xs1);

while |xs1| < |xs2| do
y2 ← f(hd(xs2), y2); xs2 ← tl(xs2);

while ¬coll((hd(xs1), y1), (hd(xs2), y2)) ∧ xs1 �= nil do
y1 ← f(hd(xs1), y1); xs1 ← tl(xs1);
y2 ← f(hd(xs2), y2); xs2 ← tl(xs2);

return ((hd(xs1), y1), (hd(xs2), y2))

Figure 3. A collision-finder B for the compression function f

(Recall that res is a keyword that stands for the value
returned by the main procedure of the games.) Algorithm
B obtains from A a pair of messages m1,m2, pads them,
and iterates the compression function over the first blocks of
the longer padded message until the remaining suffix is the
same length as the other padded message. It then computes
the remaining iterations to compute MD(m1) and MD(m2)
in parallel. If both messages collide, a collision for f must
occur in one of these parallel iterations.

In order to show (1) it suffices to prove the relational
judgment:

� CRMD ∼ CRf : true =⇒ res〈1〉 ⇒ res〈2〉 (2)

Proving this judgment involves non-trivial relational reason-
ing because equivalent computations in the related games
are not performed in lockstep. We begin by inlining the call
to B in CR

f and showing that the relational post-condition

(m1,m2)〈1〉 = (m1,m2)〈2〉 ∧
(h1 = MD(m1) ∧ h2 = MD(m2))〈1〉

holds after the call to A in both programs and the two calls
to F in CRMD. To show this, we prove that oracle F cor-
rectly implements function MD using the one-sided rule for
loops—the needed invariant is simply f∗(xs , y) = MD(m).
At this point, note that if m1 = m2, judgment (2) holds
trivially (we only have to check that B terminates). We
are left with the case m1 �= m2. Assume w.l.o.g. that
|pad(m2)| ≤ |pad(m1)|, in which case B never enters its
second loop and the following invariant holds for the first:

f∗(xs1, y1) = MD(m1) ∧ f∗(xs2, y2) = MD(m2) ∧
m1 �= m2 ∧ |xs2| ≤ |xs1| ∧ xs2 = pad(m2) ∧
∃xs ′. xs ′ ‖ xs1 = pad(m1)

(3)

We prove that if the messages m1,m2 output by A collide,
the last loop necessarily exits because a collision is found.

341341359

This can be shown by means of the following loop invariant:

f∗(xs1, y1) = MD(m1) ∧ f∗(xs2, y2) = MD(m2) ∧
|xs2| = |xs1| ∧
(xs1 = xs2 ⇒ y1 �= y2)

Note that (3) and the negation of the guard of the first loop
imply that the above invariant holds initially. In particular,
the last implication holds because if xs1 and xs2 were equal,
there would exist a prefix xs ′ such that xs ′ ‖ pad(m2) =
pad(m1), contradicting the fact that pad is suffix-free.
Finally, observe that the last loop can exit either because
a collision for f is found or because xs1 = nil. In this
latter case, it must be the case that xs2 = nil and therefore
y1 = MD(m1) = MD(m2) = y2. However, from the last
implication in the invariant we also have y1 �= y2, which
leads to a contradiction that renders this case trivial.

V. INDIFFERENTIABILITY

We prove the indifferentiability of the MD construction
from a random oracle in {0, 1}∗ → {0, 1}n when its
compression function f is modeled as a random oracle in
{0, 1}k × {0, 1}n → {0, 1}n and its padding function is
prefix-free. Our proof is based on [22].

Theorem 7 (Indifferentiability of MD). The Merkle-
Damgård construction MD with an ideal compression func-
tion f , prefix-free padding pad, and initialization vector IV

is (tS , qD, ε)-indifferentiable from a variable input-length
random oracle F : {0, 1}∗ → {0, 1}n, where

ε =
3�2 q2D
2n

tS = O(� q2D)

and � is an upper bound on the block-length of pad(m) for
any message m appearing in a query of the distinguisher.

In what we call the real scenario, a distinguisherD has ac-
cess to an oracle Fq implementing the function MD and to a
random oracle fq : {0, 1}

k × {0, 1}n → {0, 1}n that models
the compression function. In contrast, in the ideal scenario,
D has access to a random oracle Fq : {0, 1}∗ → {0, 1}n and
fq is simulated. See Fig. 4 for a formulation of these two
scenarios as games. To prevent D from making more than
q oracle queries, we enforce a bound q = � qD on the
counter qf , that counts the number of evaluations of the
compression function in game Greal. Note that this is more
permissive than the proof of Coron et al. [22], since it allows
the distinguisher to trade queries to Fq for queries to fq.
Indeed, if D makes nf queries to fq and nF queries to Fq ,
we require

qf ≤ nf + � nF ≤ � (nf + nF) ≤ � qD = q

We show that the simulator fq in Gideal behaves consistently
with a random oracle. Whenever the distinguisher makes a
query (x, y) to oracle fq , the simulator looks among all
previous queries for a sequence that could be the chain

of inputs to the compression function used to compute the
hash of some message m, for which x is the last block of
pad(m). We call such a sequence a complete chain, and we
define it formally below. When such a sequence is found,
the simulator queries F for the hash of m and forwards the
answer to the distinguisher. Otherwise, the simulator answers
with a uniformly distributed random value. Figure 5 shows
how this simulator would react to a sequence of queries

y2 ← fq(x1, IV); y3 ← fq(x2, y2); y4 ← fq(x3, y3)

where x1 ‖ x2 ‖ x3 = pad(m). The first two queries will be
answered with random values, while the third completes a
chain and is answered by forwarding pad−1(x1 ‖ x2 ‖ x3)
to F ; this maintains the consistency with the real scenario.

(x1, IV)︸ ︷︷ ︸
T

′[x1,IV]←y2

incomplete chain

y2 $← {0, 1}
n

(x2, y2)︸ ︷︷ ︸
T

′[x2,y2]←y3

incomplete chain

y3 $← {0, 1}
n

(x3, y3)︸ ︷︷ ︸
T

′[x3,y3]←y4

complete chain

y4 ← F (m)

Figure 5. An example illustrating how the simulator works

Definition 8 (Complete chain). A complete chain in a
map T : {0, 1}k × {0, 1}n → {0, 1}n is a sequence
(x1, y1) . . . (xi, yi) such that y1 = IV and

1) ∀j = 1 . . . i− 1. (xj , yj) ∈ dom(T)∧T [xj, yj] = yj+1

2) x1 ‖ . . . ‖ xi is in the domain of pad−1

The function findseq((x, y),T ′) used by the simula-
tor searches in T

′ for a complete chain of the form
(x1, y1) . . . (xi, yi)(x, y) and returns x1‖ . . . ‖xi, or ⊥ if no
such chain is found.

To help SMT solvers and automated provers check logical
side-conditions arising in our proofs, we needed to derive
several auxiliary lemmas: e.g., if a finite map T is injective
and does not map any entry to the value IV, every complete
chain is determined by its last element—that is, for any
given (x, y), the value of findseq((x, y),T ′) is uniquely
determined. All of these lemmas have been mechanically
verified based solely on the axiomatization and definitions
of elementary operations. In many cases, EasyCrypt is able
to verify the validity of these lemmas automatically. The
more involved lemmas have been manually verified in the
Coq proof assistant.

The proof proceeds by stepwise transforming the game
Greal into the game Gideal, upper-bounding the probability
that the outcome of consecutive games differ. By summing
up over these probabilities, we obtain a concrete bound for
the advantage of the distinguisher in telling apart the initial
and final games. Specifically, we prove:

|Pr [Greal : b]− Pr [Gideal : b]| ≤
3q2

2n
(4)

342342360

Game Greal :
qf ← 0;
T ← ∅;
b← DFq ,fq ();
return b

Oracle Fq(m) :
xs ← pad(m); y ← IV;
if qf + |xs | ≤ q then
qf ← qf + |xs |;
while xs �= nil do
y ← f(hd(xs), y);
xs ← tl(xs)

return y

Oracle f(x, y) :
if (x, y) /∈ dom(T) then
z $← {0, 1}

n;
T [x, y]← z

return T [x, y]

Oracle fq(x, y) :
if qf + 1 ≤ q then
qf ← qf + 1
z ← f(x, y);

else z ← IV
return z

Game Gideal :
qf ← 0;
R,T ′ ← ∅;
b← DFq ,fq ();
return b

Oracle Fq(m) :
xs ← pad(m); y ← IV;
if qf + |xs | ≤ q then
qf ← qf + |xs |;
z ← F (m)

else z ← IV
return z

Oracle F (m) :
if m /∈ dom(R) then
z $← {0, 1}

n;
R[m]← z

return R[m]

Oracle fq(x, y) :
if qf + 1 ≤ q then

if (x, y) /∈ dom(T ′) then

xs ← findseq((x, y),T ′)
if xs �= ⊥ then

T
′[x, y]← F (pad−1(xs)‖[x]))

else

T
′[x, y] $← {0, 1}

n

z ← T
′[x, y]; qf ← qf + 1

else z ← IV
return z

Figure 4. The games Greal and Gideal

Game Greal′ :
qf ← 0;
T ,T ′ ← ∅;
Y ← nil;
Z ← IV::nil;
bad1 ← false;
bad2 ← false;
bad3 ← false;
b← DFq ,fq ();
return b

Oracle Fq(m) :
xs ← pad(m); y ← IV;
if qf + |xs | ≤ q then
qf ← qf + |xs |;
while |xs | > 1 do
y ← fbad(hd(xs), y);
xs ← tl(xs)

y ← fbad(hd(xs), y)
return y

Oracle f(x, y) :
if (x, y) /∈ dom(T) then
z $← {0, 1}

n;
Z ← z::Z; Y ← y::Y ;
T [x, y]← z

return T [x, y]

Oracle fbad(x, y) :
if (x, y) /∈ dom(T) then
z $← {0, 1}

n;
bad1 ← bad1 ∨ z ∈ Z;
Z ← z::Z; Y ← y::Y ;
bad2 ← bad2 ∨ z ∈ Y ;
T [x, y]← z

return T [x, y]

Oracle fq(x, y) :
if qf + 1 ≤ q then

if (x, y) /∈ dom(T ′) then

xs ← findseq((x, y),T ′)
if xs �= ⊥ then

T
′[x, y]← fbad(x, y)

else

if set bad3(y,T ′,T) then
bad3 ← true;
T

′[x, y]← f(x, y)
else

T
′[x, y]← fbad(x, y)

z ← T
′[x, y]; qf ← qf + 1

else z ← IV
return z

Figure 6. The game Greal′

We begin by considering the game Greal′ defined in Fig. 6.
We introduce events bad1, bad2, and bad3 that will be
needed later. First, we introduce a copy of oracle f , which
we call fbad. Both use the same map T to store previously
answered queries, the difference is that fbad may trigger
events bad1 and bad2. We also introduce the lists Y and
Z that allow us to appropriately detect when these events
occur. In addition, we modify the simulator fq to maintain
a map T

′ of queries known to the distinguisher. Observe
that T ′ ⊆ T , because queries to Fq result in entries being
added only to T , whereas queries to fq result in the same
entries being added to both T and T

′. Additionally, the
simulator fq behaves in two different ways depending on
whether findseq((x, y),T ′) �= ⊥. If this condition holds,
there is a complete chain in map T

′ ending in (x, y). In this

case, in game Gideal the simulator should call oracle F to
maintain consistency with the random oracle; otherwise the
simulator could just sample a fresh random value. In this
game, oracle fq returns the same answer in both cases, but
sets bad{1,2,3} accordingly. Lastly, we also unroll the last
iteration of the loop in Fq .

Note that instrumenting the game with the additional map
T

′ and the failure events bad{1,2,3} does not change the
observable behavior. Therefore,

Pr [Greal : b] = Pr [Greal′ : b]

In game GrealRO, defined in Fig. 7, we introduce a random
oracle RO : {0, 1}∗ → {0, 1}n and replace every call
fbad(x, y) in game Greal′ where (x, y) ends a complete
chain in T with a call to RO(m, y) where m is the

343343361

unpadded message of the chain. I.e., in oracle fq we call
RO if findseq is successful and in oracle Fq we call RO
instead of the last call to fbad. We also introduce the map
I : N→ {0, 1}n×B which enumerates all sampled chaining
values and includes a tainted flag to keep track of values
known to the distinguisher. We introduce an indirection in
map T and T

′ through the use of map I . This allows us
to keep track of the order in which queries were made
and to know which answers we could re-sample without
introducing inconsistencies in the view of the distinguisher.

The failure events that were introduced in the last step
capture certain dependencies on previous queries that the
distinguisher may exploit to tell apart games Greal′ and
GrealRO. We prove that games Greal′ and GrealRO behave
the same provided these failure events do not occur.

1) bad1 is triggered whenever oracle fbad samples a
random value that is either IV or has already been
sampled for a distinct query before. The role of this
event is twofold: on the one hand, if IV is sampled
as a random value, then there could exist a complete
chain in T that is a suffix of another complete chain
in T as illustrated in the first example of Figure 8
(here T [x2, y2] = IV). The problem is that oracle Fq

in the game Greal will generate the same values for
the two messages corresponding to those two chains,
while Fq in the game Gideal most likely will not. On
the other hand, if a sampled value has been sampled
for another query before, then there could exist two
complete chains in T that collide at some point and are
identical from that point on as illustrated in the second
example of Figure 8. Again the two corresponding
messages would yield the same answer in Greal but
most likely not in Gideal on queries to Fq . By requiring
that event bad1 does not occur, we guarantee that in
game Greal′ the map T is injective and does not map
any value to IV.

2) bad2 is triggered whenever oracle fbad samples a
random value that has already been used as a chaining
value in a previous query. This means that this query
may be part of a chain of which the distinguisher has
already queried later points in the chain, which should
not be possible. The event also captures that no fixed-
points (i.e. entries of the form T [x, y] = y) should be
sampled.

3) bad3 is triggered whenever a chaining value y in a
query has already been sampled as a random value and
is in the range of T for some previous query (x′, y′),
but (x′, y′) does not appear in the domain of T

′ and
(x′, y′) is not the last element of a complete chain in
T . Intuitively, this means that y was never returned by
fq or Fq and hence the distinguisher managed to guess
a random value.

In order to relate games Greal′ and GrealRO in case that

(x1, IV) (x2, y2) (x3, IV) (x4, y4) (x5, y5)

(x3, IV) (x4, y4) (x5, y5)

(x1, IV) (x2, y2) (x3, y3)

(x′1, IV) (x′2, y
′
2) (x′3, y

′
3)

(x4, y4) (x5, y5)

Figure 8. Two examples illustrating the necessity of event bad1

findseq((x, y),T ′) in fq succeeds in both games, we need
to show that the call fbad(x, y) in Greal′ and the call
RO(m, y) in GrealRO behave similarly. For this we show
that the following invariant is preserved in both games: for
all complete chains c in the map T of game Greal′ with
last(c) ∈ dom(T), it holds that c’s associated message is in
dom(R) of game GrealRO and, vice versa, every message
in dom(R) of game GrealRO has a corresponding complete
chain c in the map T of game Greal′ with last(c) ∈ dom(T).
This invariant allows EasyCrypt to prove this case by
inferring that (x, y) ∈ dom(T) in game Greal′ if and only if
m ∈ dom(R) in game GrealRO.

Proving that the aforementioned invariant is preserved in
the games requires several other invariants. Most of them
merely relate the representation of maps in both games; we
omit these technical details. The essential invariant is that
the distinguisher queries fq for points in a chain only if it
has already queried the preceding part of the chain. This is
important as it implies that each chain will be completed by
a query for its last element, in which case findseq will detect
this query and the corresponding message will be added
to R. In game Greal′ , the predicate set bad3 enforces this
ordering by triggering event bad3. The probability of this
event is negligible, because it means that y was never output
by fq or Fq and hence is not known to the distinguisher. In
game GrealRO, we use the map I to iterate over all chaining
values in order to check for the ordering mentioned above.

In oracle Fq of game GrealRO, the computation of the
Merkle-Damgård construction is split into three stages due
to the different usage of the maps T

′, T ′

i
, and T . The first

loop computes the construction for values that were already
queried by the distinguisher and are therefore in dom(T ′).
The restriction that the distinguisher may only query chains
in order implies that such values occur only in the prefix of
a chain. The second loop handles values that were already
used before by oracle Fq , and the third loop samples fresh
chaining values. Relating the final call to fbad in game
Greal′ and the final call to RO in game GrealRO is similar
to this case in oracle fq. We prove that the advantage in
differentiating between games Greal′ and GrealRO is upper
bounded by the probability of any of bad1,bad2,bad3

occurring in game GrealRO.

|Pr [Greal′ : b]− Pr [GrealRO : b]| ≤

Pr [GrealRO : bad1 ∨ bad2 ∨ bad3]

344344362

Game GrealRO :
qf ← 0;
q′f ← 1;
T ,T ′,T ′

i ,R, I ← ∅;
I[0]← (IV, false);
Y ← nil;
Z ← IV::nil;
bad1 ← false;
bad2 ← false;
bad3 ← false;
b← DFq ,fq ();
return b

Oracle Fq(m) :
xs ← pad(m); y ← IV;
i← 0;
if qf + |xs | ≤ q then
qf ← qf + |xs |;
while |xs | > 1∧
(hd(xs), y) ∈ dom(T ′) do
i← T

′

i [hd(xs), y];
y ← T

′[hd(xs), y];
xs ← tl(xs);

while |xs | > 1∧
(hd(xs), i) ∈ dom(T) do
i← T [hd(xs), i];
y ← fst(I[i]);
xs ← tl(xs);

while |xs | > 1 do
z $← {0, 1}

n;
bad1 ← bad1 ∨ z ∈ Z;
Z ← z::Z; Y ← y::Y ;
bad2 ← bad2 ∨ z ∈ Y ;
T [hd(xs), i]← q′f ;
I[q′f]← (z, true);
i← q′f ;
y ← z;
q′f ← q′f + 1;
xs ← tl(xs)

y ← fst(RO(m, y))
return y

Oracle RO(m, y) :
if m /∈ dom(R) then
z $← {0, 1}

n;
bad1 ← bad1 ∨ z ∈ Z;
Z ← z::Z; Y ← y::Y ;
bad2 ← bad2 ∨ z ∈ Y ;
R[m]← (z,q′f)
I[q′f]← (z, false)
q′f ← q′f + 1

return R[m]

Oracle fq(x, y) :
if qf + 1 ≤ q then

if (x, y) /∈ dom(T ′) then

xs ← findseq((x, y),T ′)
if xs �= ⊥ then

m ← pad−1(xs)) ‖ [x]);
(z, j)← RO(m, y);
T

′[x, y]← z; T
′

i [x, y]← j;
else
found , found bad3 ← false;
j, k′ ← 0;
while k′ < q′f do

if snd(I[k′]) then

found bad3 ← (fst(I[k′]) = y);
else if ¬found ∧ fst(I[k′]) = y∧

(x, k′) ∈ dom(T)∧
snd(I[T [x, k′]]) then

found ← true; j ← T [x, k′];
k′ ← k′ + 1;

if found then
z ← fst(I[j]); I[j]← (z, false);
T

′[x, y]← z; T
′

i [x, y]← j;
else

if found bad3 then
bad3 ← true;
z $← {0, 1}

n;
I[q′f]← (z, false);
T

′[x, y]← z;
T

′

i [x, y]← q′f ;
q′f ← q′f + 1;

else
z $← {0, 1}

n;
bad1 ← bad1 ∨ z ∈ Z;
Z ← z::Z; Y ← y::Y ;
bad2 ← bad2 ∨ z ∈ Y ;
I[q′f]← (z, false);
T

′[x, y]← z;
T

′

i [x, y]← q′f ;
q′f ← q′f + 1

z ← T
′[x, y]; qf ← qf + 1

else z ← IV
return z

Figure 7. The game GrealRO

To finish the proof, we have to relate Pr [GrealRO : b] with
Pr [Gideal : b] and bound the probability of the failure events
in game GrealRO. We first focus on the probability of bad1

and bad2. Event bad1 (resp. bad2) is set when a freshly
sampled value z is in the list Z (resp. Y); since the size of
both lists is bounded by q, this occurs with probability at
most q 2−n, for each of the possible q queries.

Note that oracles Fq , RO , and fq in game GrealRO use
the same code to detect the failure events bad1 and bad2

when sampling a fresh value z. We can wrap this code in a
new oracle that meets the conditions of Lemma 2: we take

u = q 2−n and i = |Z| (resp. |Y |). We get

Pr [GrealRO : bad1] ≤
q2

2n
Pr [GrealRO : bad2] ≤

q2

2n

We are left to bound the probability of bad3 and relate
the game Pr [GrealRO : b] with Pr [Gideal : b]. Note that in
game GrealRO chaining values are sampled eagerly, i.e. for
a query m, oracle Fq samples chaining values z that are
independent of the distinguisher’s view (their associated flag
is set to true). These values might later on become known
to the distinguisher if it recomputes the Merkle-Damgård
construction for m using oracle fq (we identify this case
setting found = true). We want to transform the game so
that chaining values are sampled lazily (as in game Gideal).

345345363

Game GidealEager :

Game GidealLazy :

qf ← 0;
q′f ← 1;
T ,T ′,T ′

i ,R, I ← ∅;
I[0]← (IV, false);
Y ← nil;
bad4 ← false;

l ← 0;
while l < q′f do
if snd(I[l]) then
z $← {0, 1}n;
I[l]← (z, true);

l← l + 1;

b← DFq ,fq ();

l ← 0;
while l < q′f do

if snd(I[l]) then
z $← {0, 1}

n;
I[l]← (z, true);

l← l + 1;

return b

Oracle Fq(m) :
xs ← pad(m); y ← IV;
i← 0;
if (0 < q′f∧
qf + |xs | ≤ q) then
qf ← qf + |xs |;
while |xs | > 1∧
(hd(xs), y) ∈ dom(T ′) do
i← T

′

i [hd(xs), y];
y ← T

′[hd(xs), y];
xs ← tl(xs);

while |xs | > 1∧
(hd(xs), i) ∈ dom(T) do
i← T [hd(xs), i];
xs ← tl(xs);

while |xs | > 1 do
z $← {0, 1}

n;
T [hd(xs), i]← q′f ;
I[q′f]← (z, true);
i← q′f ;
q′f ← q′f + 1;
xs ← tl(xs);

y ← fst(RO(m));
return y

Oracle RO(m) :
if m /∈ dom(R) then
z $← {0, 1}

n;
R[m]← (z,q′f)
I[q′f]← (z, false)
q′f ← q′f + 1;

return R[m]

Oracle fq(x, y) :
if qf + 1 ≤ q then

if (0 < q′f∧
(x, y) /∈ dom(T ′)) then

xs ← findseq((x, y),T ′)
if xs �= ⊥ then

m ← pad−1(xs ‖ [x]);
(z, j)← RO(m);
T

′[x, y]← z; T
′

i [x, y]← j;
else

found ← false; j, k′ ← 0;
while (k′ < q′f ∧ ¬found) do

if (I[k′] = (y, false)∧
(x, k′) ∈ dom(T)∧
snd(I[T [x, k′]])∧
k′ < T [x, k′]∧
T [x, k′] < q′f) then

found ← true; j ← T [x, k′];
else

k′ ← k′ + 1;
if found then

z ← fst(I[j]); z $← {0, 1}
n;

bad4 ← bad4 ∨ z ∈ Y ;
I[j]← (z, false);
T

′[x, y]← z; T
′

i [x, y]← j;
else

z $← {0, 1}
n;

I[q′f]← (z, false);
T

′[x, y]← z;
T

′

i [x, y]← q′f ;
q′f ← q′f + 1;

Y ← y::Y ;
z ← T

′[x, y]; qf ← qf + 1;
else
z ← IV;

return z

Figure 9. The games GidealEager and GidealLazy

The same kind of argument can be used for bad3. This event
is set whenever the distinguisher makes a query (x, y) to fq
with y coinciding with a value uniformly and independently
distributed w.r.t. its view.

We modify game GrealRO in order to prepare for the
transition from eager to lazily sampled chaining values: the
body of game GidealEager (see Figure 9) contains a loop
which re-samples all chaining values that are unknown to the
adversary, i.e., the values for which the second component
in map I is set to true. Furthermore, game GidealEager drops
the failure events bad{1,2,3}, but introduces a new failure
event bad4. We show that if bad3 is triggered in game
GrealRO, then in GidealEager bad4 is set to true or there
exists an i such that I[i] = (v, true) and v ∈ Y . We get

Pr [GrealRO : b] = Pr [GidealEager : b]
Pr [GrealRO : bad3] ≤ Pr [GidealEager : bad4 ∨ I∃]

where I∃ = ∃i. 0 ≤ i ≤ q′f ∧ snd(I[i]) ∧ fst(I[i]) ∈ Y .

In game GidealLazy (see Figure 9), the loop we introduced
in the last game is swapped with the call to the distinguisher
and oracle fq samples the chaining values lazily (the branch
found re-samples the value of z). In order to prove the
equivalence with the previous game, we need to show that
the loop that resamples the values unknown to the adversary
swaps with calls to oracles Fq and fq in games GidealEager

and GidealLazy. We obtain

Pr [GidealEager : b] = Pr [GidealLazy : b]
Pr [GidealEager : bad4 ∨ I∃] = Pr [GidealLazy : bad4 ∨ I∃]

It is easy to see that games GidealLazy and Gideal are
equivalent w.r.t. b; the global variable qf and the maps R

and T
′ are equivalent in both games. The other variables in

game GidealLazy and its loops do not influence the behavior
of its oracles. We show that

Pr [GidealLazy : b] = Pr [Gideal : b] .

346346364

We still have to bound the probability of bad4 ∨ I∃ in
game GidealLazy. To do this, we simply modify the while
loop in the code of the game by replacing the instruction
z $← {0, 1}n with

z $← {0, 1}
n;bad4 ← bad4 ∨ z ∈ Y

This leads to a game GidealLazy′ , for which we show

Pr [GidealLazy : bad4 ∨ I∃] ≤ Pr [GidealLazy′ : bad4]

We finally use the same technique as for bad1 to bound the
probability of bad4 in game GidealLazy′ , and obtain

Pr [GidealLazy′ : bad4] ≤
q2

2n

Putting the (in-)equalities proved above together we prove
(4), which completes the proof of Theorem 7.

VI. SECURITY PROOFS OF GENERALIZED

MERKLE-DAMGÅRD

To avoid inheriting structural weaknesses in the original
Merkle-Damgård construction, existing hash functions em-
ploy instead slight variants of it. One well-known variant
is the wide-pipe design, which uses an internal state larger
than the final output [22], [28]. Many variants are subsumed
by the following Generalized Merkle-Damgård construction.

Definition 9 (Generalized Merkle-Damgård). Let IV ∈
{0, 1}n be a public initialization vector and f, g be two
compression functions of type

f, g : {0, 1}k × {0, 1}n → {0, 1}n

Consider a function pad : {0, 1}∗ → ({0, 1}k)∗ × {0, 1}k

that converts an arbitrary length message into a non-empty
list of blocks of length k, singling out the last block. The
hash function GMD is defined as follows:

GMD : {0, 1}∗ → {0, 1}�

GMD(m) def
= let (x, y) = pad(m) in [g(y, f∗(x, IV))]�

where f∗ is defined as in Def. 3 and [x]� chops off the n− �
least significant bits from x, i.e. discards all but the leading
� bits.

The NIST SHA-3 competition started in November 2007
with the objective of selecting new cryptographic hash
functions to augment the set specified by the U.S. Federal
Information Processing Standard (FIPS) 180-3, which in-
cludes the SHA-1 and SHA-2 algorithms. After receiving
64 entries, NIST selected 51 candidates for the first round,
further narrowed down the list to just 14 candidates for
the second round, and announced 5 finalists in December
2010: BLAKE [6], Grøstl [26], JH [38], Keccak [14], and
Skein [25]. A public comment period has started after this
announcement and the winner is expected to be selected
before the end of 2012.

The security of all SHA-3 finalists, and of many second
round candidates, has been thoroughly scrutinized. Two
survey articles summarize known results [3], [4]. While
the algorithmic descriptions of the finalists and their exact
security bounds fit in one page (see [4]), the corresponding
security proofs are technically involved and need to be
cautiously adapted to account for the specificities of each
function. As a consequence, it is difficult to assess the
validity of security claims for individual candidates and
machine checking their proofs is an appealing perspective.
In the remainder of this section we discuss the applicability
of the proofs presented in Sections IV and V to SHA-3
finalists.

The five SHA-3 finalists are based on the iterated hash
function design that underlies the Merkle-Damgård con-
struction, but incorporate some variations such as round-
dependent tweaks, counters, final transformations, and chop-
ping. We observe that, in a more or less contrived way, all
the finalists can be considered as variants of the Generalized
Merkle-Damgård (Definition 9). The compression functions
of the finalists are either block-cipher based (BLAKE,
Skein) or permutation-based (Grøstl, JH, Keccak). More-
over, all finalists use suffix-free padding rules, while the
padding rules of BLAKE and Skein are additionally prefix-
free [4].

Our formalization models compression functions as func-
tions of two arguments: a message block and a chaining
value. This represents a deviation with respect to the com-
pression functions of BLAKE and Skein. The compression
function of BLAKE additionally takes a counter and a
random salt value, whereas the compression function of
Skein builds on a tweakable block cipher and takes as
additional input a round-specific tweak. The additional ar-
guments of the compression functions of BLAKE and Skein
could be formalized as an integral part of the padding rule;
the padding function can compute the appropriate round-
specific values and append them to the message blocks.
This alternative description would have the advantage of
matching the model that we use in our results about the
MD hash function. However, all finalists except BLAKE
use chopping or a final transformation, which are formalized
neither in our proof of collision resistance nor in our proof of
indifferentiability. This rules out a direct application of our
results, with the exception of BLAKE, for which Theorem 6
does apply. We leave it for future work to formalize this
instantiation in EasyCrypt.

NIST requirements for the SHA-3 competition include
collision resistance, preimage resistance and second preim-
age resistance. All the candidates selected as finalists satisfy
these properties and (in most cases) even achieve optimal
bounds for them when the underlying block-ciphers or
permutations used to build their compression functions are
assumed to be ideal [4]. Although the original NIST require-
ments did not include the property of indifferentiability from

347347365

a random oracle, this notion has also been considered in the
literature and is achieved by all five finalists [1], [2], [12],
[15], [16], [20]. These indifferentiability proofs hold in an
idealized model for some of the building blocks of the hash
function: the ideal-cipher model for block-cipher based hash
functions, or the ideal-permutation model for permutation-
based hash functions. Indifferentiability seems to be an
excellent target for security proofs because it ensures that
the high-level design of the hash function has no structural
weaknesses, but also because it implies bounds for all of
the classical properties enumerated above. Unfortunately,
the assumption that some underlying primitive is ideal is
at best unrealistic and at worst plainly wrong. Proofs of
indifferentiability should be taken only as an indication for
the security and as a palliative for the lack of security proofs
in the standard model.

Compared to our result of Theorem 7, which assumes
that the compression function is ideal, the indifferentiability
of all the finalists has been proved in an ideal model for
lower building blocks. We point out that assuming ideality
of a lower building block is weaker than assuming ideality
of the entire compression function and thus these results
are stronger. Indeed, assuming ideality of the compression
function seems to be inappropriate for all the finalists:

• The compression functions of JH and Keccak are
trivially non-random, as collisions and preimages can
be found in only one query to the underlying permuta-
tion [4], [17];

• Finding fixed-points for the compression function of
Grøstl is trivial [26];

• The compression function of BLAKE has been recently
shown to exhibit non-random behavior [1], [20];

• Non-randomness has been shown for reduced-round
versions of Threefish, the underlying block-cipher of
Skein [27].

The only two finalists that use a prefix-free padding rule,
and for which our proof of indifferentiability can apply, are
BLAKE and Skein. However, our proof of indifferentiability
of prefix-free Merkle-Damgård relies on the assumption
that the underlying compression function behaves like an
ideal primitive. Thus, it cannot be applied to BLAKE, as
this assumption has been invalidated. As for Skein, the
assumption that its compression function is ideal is seriously
weakened by the attacks on Threefish mentioned above.

Although Theorem 7 cannot be directly applied to any of
the SHA-3 finalists, it constitutes a non-trivial result about
the Merkle-Damgård construction and a good starting point
for formalizing more complex proofs. Indeed, indifferen-
tiability proofs based on weaker assumptions and general
enough to apply to SHA-3 finalists are no significantly dif-
ferent from the proof we have formalized and use essentially
the same techniques. We see no impediment to formalizing
them in EasyCrypt.

VII. CONCLUSION

Despite their widespread use, the formal verification of
hash functions has received little attention. To our best
knowledge, Toma and Borrione [35] were the first to use
theorem provers to formally verify properties of SHA-1, but
their focus is on functional properties, rather than security
properties. The first machine-checked proof of security for
a hash design appears in [7], where the authors use the
CertiCrypt framework to verify that the construction from
Brier et al. [18] yields a hash function indifferentiable
from a random oracle into ordinary elliptic curves. More
recently, Daubignard et al. [24] develop a method to permute
dependencies between oracles in a game, and apply their
method to prove indifferentiability of hash functions from
random oracles. Their method is not implemented, although
the underlying framework has been machine-checked [21].

The prevailing method for building hash functions is to
iterate a compression function on a pre-processed input
message. In this paper, we have considered the Merkle-
Damgård construction, which pioneered this design, and
proved that the resulting hash function preserves collision
resistance and is indifferentiable from a random oracle. Our
results demonstrate that state-of-the-art verification tools can
be used for proving the security of hash designs, and not only
for cryptanalysis [32]. We will further this line of research by
exploring the formalization of more general security proofs
that apply to a wider range of hash functions, including
finalists of the SHA-3 competition.

ACKNOWLEDGEMENTS

The authors want to thank Martı́n Abadi and the anony-
mous CSF reviewers for insightful feedback on the paper.

REFERENCES

[1] E. Andreeva, A. Luykx, and B. Mennink, “Provable security
of BLAKE with non-ideal compression function,” Cryptology
ePrint Archive, Report 2011/620, Nov. 2011.

[2] E. Andreeva, B. Mennink, and B. Preneel, “On the indif-
ferentiability of the Grøstl hash function,” in Security in
Communication Networks, 7th International Conference –
SCN 2010, ser. Lecture Notes in Computer Science, vol. 6280.
Springer, 2010, pp. 88–105.

[3] E. Andreeva, B. Mennink, and B. Preneel, “Security re-
ductions of the second round SHA-3 candidates,” in 13th
International Conference on Information Security – ISC 2010,
ser. Lecture Notes in Computer Science, vol. 6531. Springer,
2011, pp. 39–53.

[4] E. Andreeva, B. Mennink, B. Preneel, and M. Škrobot,
“Security analysis and comparison of the SHA-3 finalists
BLAKE, Grøstl, JH, Keccak, and Skein,” in SHA-3 NIST
Conference, 2012.

[5] E. Andreeva, G. Neven, B. Preneel, and T. Shrimpton, “Seven-
property-preserving iterated hashing: ROX,” in Advances in
Cryptology – ASIACRYPT 2007, ser. Lecture Notes in Com-
puter Science, vol. 4833. Springer, 2007, pp. 130–146.

348348366

[6] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan,
“SHA-3 proposal BLAKE,” Dec. 2010.

[7] G. Barthe, B. Grégoire, S. Heraud, F. Olmedo, and S. Zanella
Béguelin, “Verified indifferentiable hashing into elliptic
curves,” in 1st Conference on Principles of Security and Trust
– POST 2012, ser. Lecture Notes in Computer Science, vol.
7215. Springer, 2012, pp. 209–228.

[8] G. Barthe, B. Grégoire, S. Heraud, and S. Zanella Béguelin,
“Computer-aided security proofs for the working cryptog-
rapher,” in Advances in Cryptology – CRYPTO 2011, ser.
Lecture Notes in Computer Science, vol. 6841. Springer,
2011, pp. 71–90.

[9] G. Barthe, B. Grégoire, Y. Lakhnech, and S. Zanella Béguelin,
“Beyond provable security. Verifiable IND-CCA security of
OAEP,” in Topics in Cryptology – CT-RSA 2011, ser. Lecture
Notes in Computer Science, vol. 6558. Springer, 2011, pp.
180–196.

[10] G. Barthe, B. Grégoire, and S. Zanella Béguelin, “Formal cer-
tification of code-based cryptographic proofs,” in 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages – POPL 2009. ACM, 2009, pp. 90–101.

[11] G. Barthe, B. Grégoire, and S. Zanella Béguelin, “Program-
ming language techniques for cryptographic proofs,” in 1st
International Conference on Interactive Theorem Proving –
ITP 2010, ser. Lecture Notes in Computer Science, vol. 6172.
Springer, 2010, pp. 115–130.

[12] M. Bellare, T. Kohno, S. Lucks, N. Ferguson, B. Schneier,
D. Whiting, J. Callas, and J. Walker, “Provable security
support for the Skein hash family,” Apr. 2009.

[13] M. Bellare and P. Rogaway, “Random oracles are practical:
a paradigm for designing efficient protocols,” in 1st ACM
Conference on Computer and Communications Security –
CCS 1993. ACM, 1993, pp. 62–73.

[14] G. Bertoni, J. Daemen, M. Peeters, Assche, and G. Van, “The
KECCAK reference,” Jan. 2011.

[15] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche,
“On the indifferentiability of the sponge construction,” in
Advances in Cryptology – EUROCRYPT 2008, ser. Lecture
Notes in Computer Science, vol. 4965. Springer, 2008, pp.
181–197.

[16] R. Bhattacharyya, A. Mandal, and M. Nandi, “Security anal-
ysis of the mode of JH hash function,” in 17th International
Workshop on Fast Software Encryption – FSE 2010, ser.
Lecture Notes in Computer Science, vol. 6147. Springer,
2010, pp. 168–191.

[17] J. Black, M. Cochran, and T. Shrimpton, “On the impossi-
bility of highly-efficient blockcipher-based hash functions,”
Journal of Cryptology, vol. 22, pp. 311–329, 2009.

[18] E. Brier, J.-S. Coron, T. Icart, D. Madore, H. Randriam, and
M. Tibouchi, “Efficient indifferentiable hashing into ordinary
elliptic curves,” in Advances in Cryptology – CRYPTO 2010,
ser. Lecture Notes in Computer Science, vol. 6223. Springer,
2010, pp. 237–254.

[19] R. Canetti, O. Goldreich, and S. Halevi, “The random oracle
methodology, revisited,” J. ACM, vol. 51, no. 4, pp. 557–594,
2004.

[20] D. Chang, M. Nandi, and M. Yung, “Indifferentiability of the
hash algorithm BLAKE,” Cryptology ePrint Archive, Report
2011/623, Nov. 2011.

[21] P. Corbineau, M. Duclos, and Y. Lakhnech, “Certified security
proofs of cryptographic protocols in the computational model:
An application to intrusion resilience,” in First International
Conference on Certified Programs and Proofs – CPP 2011,
ser. Lecture Notes in Computer Science, vol. 7086. Springer,
2011, pp. 378–393.

[22] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya, “Merkle-
Damgård revisited: How to construct a hash function,” in
Advances in Cryptology – CRYPTO 2005, ser. Lecture Notes
in Computer Science, vol. 3621. Springer, 2005, pp. 430–
448.

[23] I. Damgård, “A design principle for hash functions,” in
Advances in Cryptology – CRYPTO 1989, ser. Lecture Notes
in Computer Science, vol. 435. Springer, 1990, pp. 416–427.

[24] M. Daubignard, P.-A. Fouque, and Y. Lakhnech, “Generic
indifferentiability proofs of hash designs,” in 25th IEEE
Computer Security Foundations Symposium – CSF 2012,
2012, to appear.

[25] N. Ferguson, S. Lucks, B. Schneier, D. Whithing, M. Bellare,
T. Kohno, J. Callas, and J. Walker, “The Skein hash function
family,” Nov. 2008.

[26] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel,
C. Rechberger, M. Schläffer, and S. S. Thomsen, “Grøstl
– a SHA-3 candidate,” Mar. 2011.

[27] D. Khovratovich, I. Nikolić, and C. Rechberger, “Rotational
rebound attacks on reduced Skein,” in Advances in Cryptology
– ASIACRYPT 2010, ser. Lecture Notes in Computer Science,
vol. 6477. Springer, 2010, pp. 1–19.

[28] S. Lucks, “A failure-friendly design principle for hash func-
tions,” in Advances in Cryptology – ASIACRYPT 2005, ser.
Lecture Notes in Computer Science, vol. 3788. Springer,
2005, pp. 474–494.

[29] S. Manuel, “Classification and generation of disturbance
vectors for collision attacks against SHA-1,” Designs, Codes
and Cryptography, vol. 59, pp. 247–263, 2011.

[30] U. Maurer, R. Renner, and C. Holenstein, “Indifferentiability,
impossibility results on reductions, and applications to the
random oracle methodology,” in 1st Theory of Cryptography
Conference – TCC 2004, ser. Lecture Notes in Computer
Science, vol. 2951. Springer, 2004, pp. 21–39.

[31] R. Merkle, “One way hash functions and DES,” in Advances
in Cryptology – CRYPTO 1989, ser. Lecture Notes in Com-
puter Science, vol. 435. Springer, 1990, pp. 428–446.

[32] I. Mironov and L. Zhang, “Applications of SAT solvers to
cryptanalysis of hash functions,” in Theory and Applications
of Satisfiability Testing – SAT 2006, ser. Lecture Notes in
Computer Science, vol. 4121. Springer, 2006, pp. 102–115.

349349367

[33] T. Ristenpart, H. Shacham, and T. Shrimpton, “Careful with
composition: Limitations of the indifferentiability frame-
work,” in Advances in Cryptology – EUROCRYPT 2011, ser.
Lecture Notes in Computer Science, vol. 6632. Springer,
2011, pp. 487–506.

[34] P. Rogaway and T. Shrimpton, “Cryptographic hash-function
basics: Definitions, implications, and separations for preimage
resistance, second-preimage resistance, and collision resis-
tance,” in 11th International Workshop on Fast Software
Encryption – FSE 2004, ser. Lecture Notes in Computer
Science, vol. 3017. Springer, 2004, pp. 371–388.

[35] D. Toma and D. Borrione, “Formal verification of a SHA-1
circuit core using ACL2,” in 18th International Conference
on Theorem Proving in Higher Order Logics – TPHOLs 2005,

ser. Lecture Notes in Computer Science, vol. 3603. Springer,
2005, pp. 326–341.

[36] X. Wang, Y. Yin, and H. Yu, “Finding collisions in the full
SHA-1,” in Advances in Cryptology – CRYPTO 2005, ser.
Lecture Notes in Computer Science, vol. 3621. Springer,
2005, pp. 17–36.

[37] X. Wang and H. Yu, “How to break MD5 and other hash
functions,” in Advances in Cryptology – EUROCRYPT 2005,
ser. Lecture Notes in Computer Science, vol. 3494. Springer,
2005, pp. 561–561.

[38] H. Wu, “The hash function JH,” Jan. 2011.

350350368

