
Secure Compilation to Modern Processors

Pieter Agten, Raoul Strackx, Bart Jacobs and Frank Piessens

IBBT-DistriNet
Katholieke Universiteit Leuven

Leuven, Belgium
firstname.lastname@cs.kuleuven.be

Abstract—We present a secure (fully abstract) compilation
scheme to compile an object-based high-level language to low-
level machine code. Full abstraction is achieved by relying on a
fine-grained program counter-based memory access protection
scheme, which is part of our low-level target language. We
discuss why standard compilers fail to provide full abstraction
and introduce enhancements needed to achieve this goal. We
prove that our enhanced compilation scheme provides full
abstraction from our high-level source language to our low-
level target language. Lastly, we show by means of a prototype
implementation that our low-level language with fine-grained
memory access control can be realized efficiently on modern
commodity platforms.
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I. INTRODUCTION

High-level programming languages such as Java, C#,

ML or Haskell offer protection facilities such as abstract

data types, the private field modifier, or module systems.

Such abstractions have long been used in programming

languages, at least since the 1970s [1], [2]. They were mainly

designed to enforce software engineering principles such as

information hiding and encapsulation, but they can also be

used as building blocks for providing security properties of

programs. For instance, declaring a field private in Java can

protect the confidentiality of that field towards less trusted

code running in the same Java Virtual Machine.

When such protection features are used for the purpose

of security, it is important to maintain the resulting security

properties when the program is compiled. The classical

way to formalize this notion of secure compilation is

full abstraction [3]. Roughly speaking, compilation from

a source language to a target language is fully abstract if

the contextual equivalence of source programs implies the

contextual equivalence of target programs and vice versa.

In other words, a source-level context can distinguish two

source programs if and only if a target-level context can

distinguish the two corresponding target programs.

Full abstraction (and more specifically the preservation of

contextual equivalence) is a good definition for secure com-

pilation, because contextual equivalence of programs can

express important security properties, such as confidentiality

and integrity properties. For instance, the fact that the value

of a static field f in a Java class C is confidential can be

expressed by saying that class C is contextually equivalent

to a class C ′ that only differs from C in its value for f . Full

abstraction entails the preservation of all security properties

that can be expressed using contextual equivalence.
Unfortunately, it is notoriously hard to securely compile

higher-level languages to lower-level languages. Even the

compilation of Java to JVM bytecode, or of C# to the .NET

intermediate language is known not to be fully abstract [4]

– even if for these cases the source and target languages

are relatively close. No state-of-the-art compiler of Java-

like or ML-like languages towards machine code on classic

Von Neumann computer architectures is even close to fully

abstract. As a consequence, security properties the source

program might have are possibly lost towards attackers

that can interact with the program at machine code level.

Unfortunately, this is a real and important issue, as attacks in

practice often rely on injecting machine code into a process’

address space [5]. Also, kernel-level malware can attack any

process in the system at the machine code level.
But recently, some important progress has been made. At

CSF 2010, Abadi and Plotkin [6] have shown how address

space layout randomization can achieve a probabilistic vari-

ant of full abstraction when compiling towards a low-level

language in which memory addresses are numbers. At CSF

2011, Jagadeesan et al. [7] have extended these results to a

more expressive programming language.
The main contribution of our paper is the proposal of

a secure compilation technique towards low-level machine

code. Instead of relying on randomization as Abadi and

Plotkin, or Jagadeesan et al., our compilation technique

builds on low-level memory access control techniques. It is

inspired by recently developed systems for the fine-grained

protection of small pieces of applications such as Flicker [8]

or TrustVisor [9]. These systems show that it is possible to

efficiently implement relatively fine-grained memory access

control on modern processors. In this paper, we show that

such fine-grained memory access control can in turn be used

to support fully abstract compilation from a simple Java-like

language to machine code.
More specifically, this paper makes the following contri-

butions:

● We formalize a simplified computer architecture that

models a modern processor with fine-grained memory
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access control.

● We show by means of a prototype implementation

that such fine-grained memory access control can be

implemented efficiently on modern Intel processors.

● We define a compilation from a simple Java-like lan-

guage to this computer architecture, and we prove that

it is fully abstract.

The remainder of this paper is structured as follows.

First we give an informal overview of our high- and low-

level languages and our compilation scheme in Section II.

Next, we formalize these languages and prove our full

abstraction theorem in Section III. We then introduce our

prototype implementation in Section IV. Next, we discuss

our approach in Section V. We compare related work in

Section VI and we conclude in Section VII.

II. INFORMAL OVERVIEW

This section presents a precise but informal overview

of our approach. We first introduce the high-level lan-

guage, and illustrate by means of examples in that language

how security properties can be expressed using contextual

equivalence. We then describe the low-level platform with

its fine-grained memory access control model. Finally, we

describe our compilation scheme. We first describe a basic,

straightforward compilation scheme and illustrate that it is

not fully abstract by means of counterexamples. We then

describe the more involved, fully abstract compilation by

discussing how it handles the counterexamples.

A. High-level language

Our high-level language is a small, single-threaded,

object-based language. It supports the basic constructs one

would expect of a modern programming language, including

branches, loops and local variables. Indirect method calls

are supported through method references (also known as

typed function pointers or delegates). The language does

not support dynamic allocation. Objects should be thought

of as compilation units that encapsulate private state. The

language is safe; one can prove progress and preservation

using standard methods [10].

Each high-level program consists of a number of objects,

each of which consists of private fields and public methods.

The supported base types are Unit, Int and the method

reference type M⟨U → T ⟩. The language formally uses an

assembly-like syntax for method bodies, but, for readability,

the code examples in this paper are written using a Java-like

syntax instead. Although this alternative syntax significantly

changes the appearance of the language, it should be con-

sidered only a cosmetic change, as it does not influence the

safety or expressivity of the high-level language. Figure 1

illustrates this syntax by showing an example object that

encapsulates a value and notifies a listener through an

indirect call whenever this value changes.

object o {
M<(Int, Int)->Unit> listener = null;
Int value = 0;

Unit setListener(M<(Int,Int)->Unit> l) {
listener = l;
return unit;

}

Int getValue() {
return value;

}

Unit setValue(Int v) {
if (listener != null && value != v) {
listener(value, v);

}
value = v
return unit;

}
}

Figure 1. Example of a high-level object

Execution of a high-level program starts in the main
method of the object named ot. The main method must

be typed ε → Int. Execution either ends with an integer

result c or gets stuck in an infinite loop. A program ends

its execution with a result c by returning c from the main

method.

B. Contextual equivalence and security properties

Like in any object-based language, the internal represen-

tation of an object is hidden from outside of that object’s

definition. This means some objects are equivalent from an

external point of view, even though they have a different

implementation. That is, two objects might have a different

internal representation, but no third object is able to differ-

entiate them. We say any two such objects are contextually
equivalent and we call a third object that tries to differentiate

them a test object, denoted OT .

We can use contextual equivalence to express important

security properties, such as the confidentiality and integrity

of private fields and the integrity of object invariants. This is

illustrated by the following examples (the first two examples

are taken from [6] but are adapted to our programming

language).

Example 1 (Confidentiality):

object o {
Int secret = 0;

Int m() {
secret = 0;
return 0;

}
}

object o {
Int secret = 0;

Int m() {
secret = 1;
return 0;

}
}

These two programs differ only in the value that they store in

the secret field. By saying these objects are contextually

equivalent, we are effectively saying that no external object

can read or deduce the value of the secret field.
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Example 2 (Integrity):
object o {
Int zero = 0;

Int m(M<ε->Unit> cb){
zero = 0;
Unit x = cb();
if (zero == 0)

return 0;
else return 1;

}
}

object o {
Int zero = 0;

Int m(M<ε->Unit> cb){
zero = 0;
Unit x = cb();

return 0;

}
}

The left object checks whether changes were done to the

zero field during the callback cb(). By saying that these

objects are equivalent, we are expressing that the external

code that is called through the callback function cannot

modify the zero field.

Example 3 (Invariants):
object o {

Int min = 0;
Int max = 0;

[...]

Int m() {
if (min ≤ max) {
return 0;

} else {
return 1;

}
}

}

object o {
Int min = 0;
Int max = 0;

[...]

Int m() {

return 0;

}
}

By saying these objects are equivalent, we are expressing

that no external object can break the invariant min ≤ max.

This is a more general kind of integrity property on the data

encapsulated by an object.

For the high-level language, these contextual equivalences

(and their corresponding security properties) clearly hold,

because the only way a high-level test object can interact

with another object is through method calls and returns. No

high-level test object OT can distinguish the left object from

the right object for any of these three examples.

To actually execute a high-level program however (with-

out relying on an interpreter), it needs to be compiled

into a lower level assembly-language program. From the

viewpoint of an attacker, this low-level language is much

more powerful than the high-level language, because there is

no type system to make it safe. For instance, an attacker that

can inject code to interact with the compiled program at the

low level can read and write arbitrary memory locations. As

a consequence, none of the contextual equivalences in these

three examples would continue to hold at the low level, and

hence also the corresponding security properties are lost.

Our objective is to define a fully abstract compilation

scheme from the high-level language to a realistic low-

level assembly language. The compiler must ensure that if

any two high-level objects are contextually equivalent, then

so are their corresponding low-level translations. We limit

ourselves to the contextual equivalence of single objects in

this paper. Hence, we define a context to be an arbitrary

test object OT , which can be linked to a single object O.

Linking1 a context OT with an object-under-test O yields a

program OT [O]. If no OT can distinguish two implementa-

tions of O then these two implementations are contextually

equivalent. The notion of contextual equivalence can be

generalized to talk about multiple objects, which can all

interact with each other as well as with the test object. We

leave this generalization for future work; many interesting

security properties can already be expressed using single

objects.

The validity of our full abstraction theorem implies that

any high-level security property that can be expressed using

contextual equivalence also holds at the low level. The power

of a low-level attacker is effectively reduced to that of a

high-level attacker, because any vulnerability that can be

exploited at the low level can also be exploited at the high

level.

C. Low-level language

The low-level language, which will be the target language

of our compiler, models a Von Neumann computer architec-

ture that offers fine-grained, program counter-based memory

access control.

The basic machine model consists of a program counter,

a register file, a flags register and a memory space. The

program counter indicates the address of the next instruction

to execute. The register file contains 12 general purpose

registers R0 to R11 and a stack pointer register SP. The

stack grows down, i.e. from high to low memory addresses.

The flags register contains a zero flag ZF and a sign flag

SF, which are set or cleared by arithmetic instructions and

are used by branching instructions. The memory space is a

function mapping addresses to words and contains all code

and data. Addresses, words, registers and instructions are

all 32 bits wide and memory is also addressed in multiples

of 32 bits. The supported machine instructions are shown in

Table I. So far, the low-level platform is effectively a simple

model of the Intel x86 platform.

In order to support fully abstract compilation, some pro-

tection mechanism is necessary at the low level. We propose

to use a fine-grained, program counter-based memory access

control scheme. The scheme is inspired by existing low-level

memory protection systems [8], [9], [11].

Memory is logically divided into protected and unpro-
tected memory. The former is further divided into a code and

a data section. Within the code section, a variable number

of memory addresses are designated as entry points. These

1In this paper the [] symbols are used as a simple syntactic operator
for constructing a program out of two objects, whereas in related work it
is used as a meta-level operator mapping a context and an expression to
another expression.
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movl rd rs Load the word from the memory address in
register rs into register rd.

movs rd rs Store the word from register rs at the address in
register rd.

movi rd i Load the constant value i into register rd.

add rd rs Write (rd + rs)mod 232 in register rd and set
the ZF flag according to the result.

sub rd rs Write (rd − rs)mod 232 in register rd and set
the ZF flag according to the result.

cmp r1 r2 Calculate r1 − r2 and set the ZF and SF flags
according to the result.

jmp ri Jump to the address located in register ri.
je ri If the ZF flag is set, jump to the address located

in register ri.
jl ri If the SF flag is set, jump to the address located

in register ri.
call ri Push the value of the program counter onto

the top of the stack and jump to the address
contained in register ri.

ret Pop a value from the top of the stack and jump
to the popped location.

halt Stop execution with the result in register R0.

Table I
LOW-LEVEL INSTRUCTIONS

from \ to
Protected Unprotected

Entry point Code Data
Protected r x r x r w r w x
Unprotected x r w x

Table II
READ-WRITE-EXECUTE MEMORY PERMISSIONS ENFORCED BY THE

LOW-LEVEL LANGUAGE

addresses are the only points through which execution of

code in protected memory can start. Table II shows the mem-

ory access control rules enforced by the low-level language.

The size and location of each of the memory sections and

the location of the entry points are specified by a memory
descriptor, which can be considered a configuration structure

for the low-level language. In Section IV we show how

this memory access control scheme can be implemented

efficiently on modern commodity hardware.

Execution of a low-level program starts at the first address

of unprotected memory. It either ends with an integer result

or gets stuck in an infinite loop. To end with a result c,
the halt instruction must be executed with register R0

containing the value c. If an invalid memory access attempt

is made, the value 0 is placed in register R0 and execution

is halted.

D. Compilation

We now get to our main result, the fully abstract com-

pilation scheme. We describe the compilation of a single

high-level object O. This is sufficient to study full ab-

straction for our definition of contextual equivalence. High-

level contextual equivalence was already defined above:

two high-level objects are equivalent if no test object can

distinguish them. At the low level, two compiled objects

are contextually equivalent if no arbitrary machine code

placed in the unprotected area of memory can distinguish

the compiled objects.

We introduce our compilation scheme in two steps. First

we describe a basic, straightforward compilation that places

the code and data of the compiled object in the protected

memory area and configures the entry points such that

control flow can only enter at the start of each method.

This scheme is sound, in the sense that two nonequivalent

high-level objects will be compiled into two nonequivalent

low-level modules. It also provides some basic protection;

for instance, the low-level context cannot just scan memory

to find the values of object fields as this is prevented by the

low-level memory access control scheme.

However the basic scheme fails to be fully abstract.

We show this by means of counterexamples. These

counterexamples then motivate the final definition of

our compilation scheme, for which we will prove full

abstraction in Section III.

1) Basic compilation: The compilation of a high-level

object O results in a low-level module O↓, consisting of a

partial memory space and a memory descriptor. We should

prevent the low-level context from being able to distinguish

two modules just by their size. Hence, a constant amount

of memory is reserved for each translated object, indepen-

dent of the actual memory space required. The translated

object will be placed in protected memory and the memory

descriptor divides the reserved space equally over the code

and the data section. The compiler assumes the stack pointer

register is set up by the context and is pointing to free space

in unprotected memory.

The compilation process consists of translating each field

and each method of the input object. To prevent a low-level

module from being distinguished by the order of its methods

in memory, all methods are first sorted alphabetically. Fields

and methods are then given a unique index number starting

at 0, based on their order of occurrence. Parameters and

local variables are given a method-local index number. For

a field fi, one word of memory is reserved at the ith
memory address of the data section. Integer-typed constants

are translated to their corresponding numeric value. Unit-

typed constants are translated to 0 and the null method

reference is translated to the highest address 0xFFFFFFFF.

To translate a method body, the compiler processes each

high-level statement in turn, translating it into a list of

instructions that performs the corresponding operation. Reg-

isters R0 to R3 are used as general working registers and

return values are passed through R0 as well. The first eight

parameters are passed through registers R4 to R11 and

additional parameters are spilled onto the run-time stack.

A prologue is prepended to each translated method body

and an epilogue is appended to it. The prologue allocates

and initializes a new activation record on the stack, which
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contains the method’s local variables and parameters. The

epilogue deallocates this activation record when the method

is done. This code is placed in free space in the code section.

In addition to translating each method’s body, an entry

point is generated for each method as well. The entry point

for method mi is placed at address i∗128 of the code section.

The offset of 128 memory locations is chosen arbitrarily,

with the only condition that there is enough space between

entry points to perform a number of simple operations, as

will be described in section II-D3. The code at each entry

point consists of two parts: (1) a call to the method’s body

and (2) a return instruction. When the call to the body

returns, the return instruction will simply return control to

the location from which the entry point was called.

Because the low-level language allows protected memory

to be entered only through one of the entry points, an ad-

ditional return entry point is generated to support returning

from a callback (i.e. a call back to the context). To perform a

callback, first the actual return address is placed on the stack,

followed by the address of the return entry point. Control

is then transferred to the context by a jmp instruction.

When the context returns from the callback, control will

first be transferred to the return entry point, which will then

subsequently return back to the actual return address.

The compilation scheme as described above ensures that

a module is exited either through a callback, or through the

return statement at the end of an entry point. Therefore, we

name the second part of each entry point as an exit point.
2) Limitations of the basic compilation scheme: The

compilation scheme defined so far is not fully abstract, as

illustrated by the examples below:

Example 4 (Stack security):
object o {
Int secret = 0;

Int m(M<ε->Unit> cb)
{

Int x = secret;
Unit y = cb();
return 0;

}
}

object o {
Int secret = 1;

Int m(M<ε->Unit> cb)
{

Int x = secret;
Unit y = cb();
return 0;

}
}

These high-level objects are equivalent but their low-level

translations are not. Because local variables are placed on

the runtime stack (in unprotected memory) and a low-level

attacker can read unprotected memory, he can read the value

of x during the callback cb(). This variable x contains the

value of secret, which is different for both objects.

The current compilation scheme does not entail the con-

fidentiality or integrity of the run-time stack, which allows

attackers to read and write local variables. An attacker can

use this vulnerability to read secrets from the stack, similar

to a buffer-overread attack [12], or he can even tamper with

control flow by overwriting a return address, similar to a

classic return address clobbering attack [5].

Example 5 (Illegal addresses):
object o {1

Int f = 1;2

3

Int m(M<ε->Unit> cb)4

{5

Unit x = cb();6

f += 1;7

f -= 1;8

return f;9

}10

}11

object o {
Int f = 1;

Int m(M<ε->Unit> cb)
{

Unit x = cb();
f -= 1;
f += 1;
return f;

}
}

These high-level objects are equivalent, as in both objects

the method m always returns 1. A low-level attacker can

differentiate their translations however, by giving the address

of the instructions corresponding to line 8 as the callback

cb. In this case, the left object will decrement f without

first incrementing it, while the right object will increment f
without first decrementing it. This will result in f having a

value of 0 in the left object and 2 in the right. This attack

is similar to a return-oriented programming attack [13].

Example 6 (Information leakage):
object o {

Int m() {
Int x = 0;
if (x == 0) {

return 0;
} else {

return 0;
}

}
}

object o {
Int m() {

Int x = 1;
if (x == 0) {

return 0;
} else {

return 0;
}

}
}

These high-level objects are equivalent, as in both objects

the method m always returns 0. A low-level attacker can

differentiate their translations however, due to the equality

test in the condition of the if-statement. This test sets the

ZF flag in the first object and clears it in the second.

This example illustrates that the flags register can leak

information. Information can also be leaked through the

general purpose registers R0 to R11 or through the stack

pointer register SP.

Example 7 (Value of unit):

object o {
Unit m(Unit x) {

return unit;
}

}

object o {
Unit m(Unit x) {

return x;
}

}
These high-level objects are equivalent, because the only

possible value of type Unit is unit. Their low-level

translations however are not, because a low-level attacker

can use any 32-bit value for parameter x.

As there is no purpose for having Unit-typed method

parameters, this might seem to be an artificial problem.

However, this problem is similar to a full abstraction failure

for the .NET C# compiler reported by Kennedy [4], where

the boolean type is two valued in C# but is byte valued in

the .NET virtual machine.

165165175



3) Secure compilation: To counter the potential vulnera-

bilities described above, we make a number of enhancements

to the compilation scheme. We show in Section III that these

enhancements make the compilation scheme fully abstract.

Stack security: The compiler must ensure the confi-

dentiality and integrity of variables and control structures

on the run-time stack. Instead of storing the entire stack in

unprotected memory, it is split into an unprotected stack

in unprotected memory and a secure stack in the data

section of protected memory. The protected module places

its activation records exclusively on the secure stack.

At the start of each entry point, the stack is switched to

the secure stack and the spilled parameters for the method

call (if any) are moved from the unprotected to the secure

stack. At each exit point, the stack is restored to its previous

address in unprotected memory. To implement these stack

switches, the compiler introduces a shadow stack pointer
field in the data section. It is initialized to the address of

the middle of the data section, where the base of the secure

stack will be located. At each entry and exit point, code is

added to swap the value of the stack pointer register with

the value of the shadow field.

A call from the protected module to unprotected memory

is performed by first pushing the actual return address

onto the secure stack. Next, the stack is switched to the

unprotected stack and the address of the return entry point

and any spilled parameters are pushed onto it. Control is

then transferred to the context by a jump. When the callback

returns, control will first be transferred to the return entry

point, which switches back to the secure stack and subse-

quently transfers control back to the actual return address.

Because data are written to the unprotected stack during this

process, the compiler must ensure that the location of the

unprotected stack is valid before it writes to it. That is, the

address of the unprotected stack must lie out of protected

memory, for otherwise parts of protected memory might get

overwritten. Therefore, at each entry point, before swapping

the value of the stack pointer register with the value of the

shadow field, a run-time check is added to verify that the

SP register is pointing to unprotected memory. If this check

fails, the value 0 is placed into R0 and the halt instruction

is executed.

To prevent the context from tampering with control flow

by jumping to the return entry point when there is no

callback to return from, the compiler initializes the first

location of the secure stack to the address of a procedure

that writes 0 to the R0 register and then halts execution. The

return entry point will jump to this address if it is called

when there is no callback to return from.

Because the first half of the data section is now reserved

for the secure stack, the memory space for a field fi will

now be located at the ith address of the second half of the

data section. Figure 2 illustrates the memory layout used
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Figure 2. Memory layout of the secure compilation scheme

by the secure compilation scheme. Note that this memory

layout ensures that an overflow of the secure stack will result

in a memory access violation, as the code section is non-

writable.

Illegal addresses: The compiler must ensure the in-

tegrity of control flow when jumping from a protected

module to an externally supplied address. Such a jump

occurs at each indirect call and at each exit point. For an

indirect call, a valid destination address is (1) an address

outside of the module’s memory bounds, or (2) the address

of one of the module’s own methods with a correct signature.

For an exit point, only addresses outside of the module’s

memory bounds are valid. A call or return to the address

0xFFFFFFFF is also not allowed, because it corresponds to

the null method reference.

The compiler adds run-time checks for these conditions at

each indirect call and exit point. A check for the first type of

addresses is straightforward to implement, while a check for

the second type of addresses is more complicated, because

it requires run-time type information. A simpler alternative

solution would be to forbid indirect calls from an object to

the same object in the high-level language. The compiler

could then add a simple run-time check that any indirect

call must go outside the protected module’s memory bounds.

This would not be a significant restriction, as any indirect

call to a local method m can be replaced by an indirect call

to a wrapper method of the context that calls m.

Information leakage: In the high-level language, the

only way for two objects to communicate, is through method

calls and returns. The compiler must ensure that a low-level

attacker cannot use any other communication channels, as

this might leak information that should be kept private to

the module under protection.

The low-level computer model inherently provides three

ways to exchange information: (1) through unprotected

memory, (2) through the flags register and (3) through the

general purpose registers R0 to R11 and SP. The first method

is already precluded, because only spilled parameters are

written to the unprotected stack and these values are also

available at the high level. The SP register does not convey
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private information, because it is restored to the location of

the unprotected stack whenever control leaves the protected

module. The compiler constrains the other communication

methods as follows:

● The flags are cleared at each callback and exit point.

● Every general purpose register except R0 is cleared at

each exit point.

● Every general purpose register is cleared at each call-

back, except if it is used for passing a parameter.

The compiler generates code at each callback and exit point

to enforce these constraints.

Value of unit: The compiler must ensure that all mem-

ory locations corresponding to high-level fields and variables

contain only values for which there is a corresponding high-

level value. The only value of type Unit is unit and

the corresponding low-level value was chosen to be 0. The

compiler enforces this constraint by adding a run-time check

at each entry point, to verify that the value of any Unit-

typed parameter is 0. The same check is added at each

callback to a method with return type Unit. If the check

fails, the value 0 is placed into register R0 and the halt
instruction is executed.

III. FORMALIZATION

In this section, we formalize the concepts defined in the

previous section and prove that our compilation scheme

is fully abstract. We first introduce a number of basic

definitions. We then make a number of simplifications to the

high-level language, which allow us to focus on the essence

of our formalization. Next we introduce traces and finally

we discuss our full abstraction proof.

A. Definitions

Any high-level program can be written as OT [O], where

OT is an object representing the test context and O is

the test subject (i.e. the object to protect). The context is

modeled as a single object, because from the viewpoint of

the subject, the entire context is considered as a (potentially

malicious) black box. The internal structure of this black

box is irrelevant. Similarly, we write a low-level program as

MT [M], with MT the test context and M the test subject

(i.e. the module under protection).

The execution of a high-level program OT [O] is written

as OT [O] →∗ c if it ends with result c and as OT [O] →∗ ☇
if it gets stuck in an infinite loop. The same notation is

used for low-level programs. We can now formally define

what it means for two objects or modules to be contextually

equivalent:

Definition 1 (High-level equivalence): For any two high-

level objects O1 and O2, we define O1 ≃ O2 as:

∀OT ∶ OT [O1] →∗ c ⇐⇒ OT [O2] →∗ c

Definition 2 (Low-level equivalence): For any two low-

level modules M1 and M2, we define M1 ≃ M2 as:

∀MT ∶ MT [M1] →∗ c ⇐⇒ MT [M2] →∗ c

Note that these definitions of high- and low-level con-

textual equivalence are based purely on the results of

executions. We do not consider side channel attacks that

could trivially break full abstraction in practice, such as

timing attacks or attacks on platform-specific features such

as caches or I/O channels.

B. Simplifications

For our formalization, we make three simplifications to

the languages defined in the previous section. These simpli-

fications impose no fundamental limitations but allow us to

focus on the essence of our formalization.

1) The number of parameters: We limit the number of

parameters of each method to eight. This prevents any

parameter from being spilled onto the run-time stack and

allows the compiler to pass all parameters through registers.

If more than eight parameters need to be passed, their values

can be stored in fields and a reference to a method that

returns the value of each of these fields can be passed

instead.

2) Indirect method calls: We disallow indirect method

calls from the test subject to one of its own methods; only

references to methods of the test context can be created.

As explained in Section II-D3, this is not a fundamental

limitation but it avoids the compiler from having to add

run-time type information to check whether an indirect call

is valid.

3) The exit statement: We allow the test context OT to

use an exit(c) statement, to end execution abruptly with

a result c. Without this statement, the context might not be

able to signal a detected difference between two subjects to

the environment before the execution ends up in an infinite

loop. This is illustrated by the following example.

Example 8 (Use for the exit statement):

object o {
Int m(M<Int->Unit> cb)
{
Unit x = cb(1);
while(1) { };
return 0;

}
}

object o {
Int m(M<Int->Unit> cb)
{
Unit x = cb(2);
while(1) { };
return 0;

}
}

These objects are not equivalent because the left object calls

the callback cb with argument 1, while the right object

calls it with argument 2. However, the context would not

be able to signal this detected difference to the environment

without the exit statement, because both objects end up in

an infinite loop after returning from the callback.
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C. Languages and compiler

Our high- and low-level languages are formalized using

standard semantic techniques such as BNF grammars for

syntax definitions and inference rules for operational seman-

tics and typing. Our compiler has been formalized in the

form of an OCaml implementation. Due to space constraints,

we do not give these formalizations here, but they can be

found in our extended technical report [14].

D. Traces

Before proving our full abstraction theorem, we first

introduce high- and low-level traces, which let us reason

about executions at a higher level of abstraction. A formal

definition of high- and low-level traces can be found in

our technical report [14]. Proving full abstraction using

execution traces was inspired by Jeffrey and Rathke’s fully

abstract trace semantics for Java Jr [15].

1) High-level traces: The trace of a high-level program

OT [O] describes the interactions made between OT and

O during its execution. That is, a trace a consists of the

sequence of basic actions that occur during the execution of

a program. Each high-level basic action ah is either:

● a call ‘call m(v)?’ from OT to O, where m is the

method that was called and v are the values passed as

parameters

● a return ‘ret v!’ from O to OT , where v is the return

value

● a callback ‘callm(v)!’ from O to OT , where m is the

method that was called and v are the values passed as

parameters

● a returnback ‘ret v?’ from OT to O, where v is the

return value

By design of the high-level language, the only way two

objects can communicate is through method calls and re-

turns. Therefore, high-level traces capture all communication

between a test context and a test subject in a high-level

execution.

2) Low-level traces: The low-level trace of a program

MT [M] describes the interactions made between MT and

M during its execution. Each low-level basic action al is

either:

● a call ‘call p(v)?’ from MT to M , where p is the

address to which the call was made and v are the values

passed as parameters

● a return ‘ret v!’ from M to MT , where v is the return

value

● a callback ‘call p(v)!’ from M to MT , where p is the

address to which the callback was made and v are the

values passed as parameters

● a returnback ‘ret v?’ from MT to M , where v is the

return value

Due to the information leakage countermeasures described

in Section II-D3, low-level traces capture all communication

between a test context and a test subject in a low-level

execution.

E. Full abstraction

1) Overview: We can now define what it means for our

compilation scheme to be fully abstract. Full abstraction

breaks down into two parts: soundness and completeness.

Theorem 1 (Soundness): For any two high-level objects

O1 and O2, we have:

O1 ↓ ≃ O2 ↓ ⇒ O1 ≃ O2

The soundness theorem can be considered as stating that the

compiler is correct. Proving this theorem is nontrivial, but

is not the main focus of this paper. Hence, we do not prove

the soundness theorem here.

Theorem 2 (Completeness): For any two high-level ob-

jects O1 and O2, we have:

O1 ≃ O2 ⇒ O1 ↓ ≃ O2 ↓

To prove the completeness theorem, we will prove the

equivalent statement O1 ↓ /≃ O2 ↓ ⇒ O1 /≃ O2. Suppose

O1 ↓ /≃ O2 ↓, then (wlog) there exists an MT such that

MT [O1 ↓] →∗ c and MT [O2 ↓] /→∗ c. For our full abstraction

proof, we will assume that MT does this without overflowing

the secure stack. Let a1 and a2 be the traces of MT [O1 ↓]
and MT [O2 ↓] respectively. As the only way for MT to

differentiate O1 ↓ and O2 ↓ is by communicating with them

through the basic actions described in the previous section,

we know a1 ≠ a2. We will describe an algorithm that, when

given O1, O2, a1 and a2 as input, will construct an OT such

that OT [O1] →∗ c and OT [O2] /→∗ c. The existence of this

algorithm proves the completeness theorem. The algorithm

relies on the following two propositions:

Proposition 1: If we number the actions of a high- or

low-level trace starting at 0, then each even-numbered action

is a call or a returnback and each odd-numbered action is a

return or a callback.

Proof: Control initially is in the test context and each

time an action is performed, control is switched from the test

context to the test subject or vice versa. When the context

is in control, it can only perform a call or a returnback and

when the subject is in control, it can only perform a return

or a callback.

Proposition 2: Any two unequal traces a1 and a2, gener-

ated by MT [O1 ↓] and MT [O2 ↓] respectively, differ for the

first time at an odd-numbered action.

Proof: By Proposition 1, all even-numbered actions are

calls or returnbacks, which originate from MT . Suppose the

first differing action originates from MT , then right before

that differing action, the program counter or the value of

some memory location of MT would have had to be different

in the two executions, which can only be caused by a prior

differing action.
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2) Interpreting low-level values as high-level values:
Before defining the algorithm, we first define a function

v↑T mapping low-level values to a corresponding high-level

construct. We assume this function is part of the main

algorithm, so it has access to the OT under construction.

When given a low-level value v and a type T , the function

v↑T returns a corresponding high-level value of the given

type and possibly extends OT with one additional method.

The function uses a method table, which maps (address,

method type) pairs to methods of OT . This table is static,

i.e., it is kept intact across different calls to this function.

The result depends on the given type T :

● if T = Unit, then v↑T = unit
● if T = Int, then v↑T = v
● if T = M⟨U → T ′⟩, then v↑T depends on whether the

method table contains an entry (v,U → T ′) → ot.mi

– if so, then v↑T = ot.mi

– if not, then OT is extended with a new

method mj , with type U → T ′ and v↑T = ot.mj .

The method table is extended with the entry

(v,U → T ′) → ot.mj .

If OT is extended with a new method of type U → T ′, that

method must contain a return statement to be syntactically

correct:

● if T ′ = Unit, then the return value is unit
● if T ′ = Int, then the return value is 0
● if T ′ = M⟨U ′ → T ′′⟩, then the return value is null

3) Algorithm: The algorithm for constructing OT uses an

integer step counter variable i, a stack of return locations
r and a current method mc. The step counter i determines

the two current basic actions a
(i)
1 and a

(i)
2 . The algorithm

uses an interpreter for the high-level language as a sub-

component.

Initialization: OT is initialized to:

object ot {
Int step = 0;

Int main() {
return 0;

}
}
The return location stack r is empty, the current method

mc is set to main and the step counter i is set to 0. A

scan is made of O1, O2 and their low-level translations,

to create a list of all method reference constants and their

corresponding type. For each method reference ot.mk with

type U → T and corresponding low-level value p, a method

mk is created in OT and an entry (p,U → T ) → ot.mk is

added to the method table of the v↑T function defined above.

After initialization, the algorithm alternates between a

construction mode and an execution mode and increments i
by 1 at each alternation. It maintains the following invariant:

∀j < i ∶ a(j)1 = a
(j)
2 .

Construction mode: Whenever the algorithm is in this

mode, i is even, so by Proposition 2 we have a
(i)
1 = a

(i)
2 ≡

a(i). The algorithm will add a block of code right before

the return statement of the current method mc. The code to

add depends on the type of a(i):

● for a call: a(i) = call p(v)?, the code to add is:
if (step == <i>) {

step += 1;
T0 x0 = <v0↑T0>;
...
Tj xj = <vj↑Tj>;
T ret = <o.mk>(x0,...,xj);

⇒

}
Where <i> is replaced with the current value of the

step counter2 i, the <vi↑Ti>’s are replaced with the

result of the function described above and the arrow

indicates the return location lr. The method o.mk is

determined by the address p: it must correspond to

one of the method entry points of O1 ↓ and O2 ↓, for

otherwise the two low-level executions that generated

a1 and a2 would both have halted with result 0 after

performing this call, which would implicate a1 = a2,

contradicting the precondition that they are differen-

tiating traces. The method index k is determined as:

k = p−b
128

, with b the base address of the protected code

section. By inspecting the method signature of o.mk

in O1 and O2, the parameter types of o.mk can be

determined, allowing the algorithm to determine the

types Ti for the calls to the v↑T function.

After generating this block of code, the algorithm

increments its internal step counter i, pushes lr onto

the return stack r and switches to the execution mode,

passing the location of o.mk in O1 and the location of

o.mk in O2 as arguments.

● for a returnback: a(i) = ret v?, the code to add is:
if (step == <i>) {

step += 1;
T x = <v↑T>;
return x;

}
Where <i> and <v↑T> are replaced as described above.

The type T to use in the call to v↑T is the return type

of the current method mc.

After generating this block of code, the algorithm in-

crements its internal step counter i, pops two locations

l1 and l2 from the the return stack r and switches to

the execution mode, passing l1 and l2 as arguments.

Execution mode: Whenever the algorithm is in this mode,

the step counter i is odd. This mode takes two arguments l1
and l2, pointing to code locations in O1 and O2 respectively.

The algorithm first checks if the current low-level actions

a
(i)
1 and a

(i)
2 exist. At least one of them must exist, for

2The step field has a limited 32-bit range, but we can simulate a field
with an arbitrarily large range using multiple fields.
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otherwise a1 = a2. If a
(i)
1 exists, the algorithm runs its

interpreter from location l1 until it encounters a callback or

a return to OT . If a
(i)
2 exists, it does the same for location l2.

If only one exists, we assume (wlog) it is a
(i)
1 . The algorithm

continues based on the type of the encountered action:

If only a
(i)
1 exists:

● for a return: ret v!
The algorithm first determines lr, which is the code

location in OT this return returns to, by popping it from

the top of the return stack. It then adds the statement

‘exit(1)’ at this location and ends.

● for a callback: call ot.mk(v)!
The algorithm adds the following code right before the

final return statement in method mk of OT :
if (step == <i>) {

exit(1);
}
Where <i> is replaced with the current value of the

step counter i. The algorithm ends after adding this

code.

If both a
(i)
1 and a

(i)
2 exist:

● for two returns: ret v1! and ret v2!
The algorithm first determines lr, which is the code

location in OT the return statements return to, by

popping it from the top of the return stack. The current

method mc is set to the method containing this location.

The algorithm then checks whether the values of v1 and

v2 are equal. If so, the algorithm adds the statement

‘step += 1’ at location lr, it then increments its

internal step counter i and returns to the construction

mode.

If the values are different, the algorithm adds the

following code at location lr:
if (ret == <v1>) {
exit(1);

} else {
exit(2);

}
Where <v1> is replaced by v1. The algorithm ends after

adding this block of code.

● for two callbacks: ot.mk1(v1) and ot.mk2(v2)
If mk1 = mk2 ≡ mk and v1 = v2, the algorithm adds the

following code right before the final return statement in

mk:
if (step == <i>) {

step += 1;
}
Where <i> is replaced with the current value of the

step counter i. It then pushes the locations in O1 and O2

right after the callbacks onto the return stack, sets mk as

the new current method and increments its internal step

counter i, before returning to the construction mode.

If mk1 = mk2 ≡ mk but v1 ≠ v2, the algorithm adds the

following code right before the final return statement

in mk:

if (step == <i>) {
if (<xj> == <v1>) {

exit(1);
} else {

exit(2);
}

}
Where <i> is replaced with the current value of the

step counter i, <xj> is replaced with the name of the

formal parameter with the differing value and <v1> is

the differing value given by O1. The algorithm ends at

this point.

If mk1 ≠ mk2, the algorithm adds the following code

to mk1 and mk2:
if (step == <i>) {

exit(<num>);
}
Where <i> is replaced with the current value of the

step counter i and <num> is 1 in mk1 and 2 in mk2.

The algorithm ends at this point.

● for two different actions: ret v! and call ot.mk(v)!
The algorithm pops the return location lr from the

return stack and adds the statement ‘exit(1)’ at that

location. It then adds the following code right before

the final return statement in ot.mk:
if (step == <i>) {

exit(2);
}
Where <i> is replaced with the current value of the

step counter i. The algorithm ends at this point.

4) Proof: We will now prove that the OT constructed

by the algorithm above can indeed differentiate between O1

and O2. Due to space constraints, we only give a sketch of

the proof in this section, but we give the full proof in our

technical report [14].

The algorithm relies on maintaining an equivalence be-

tween the states of O1 and O1 ↓ in the executions OT [O1]
and MT [O1 ↓], and similarly between the states of O2 and

O2 ↓. We first define what we mean by this equivalence.

Definition 3 (Equivalent states): We say that the state of

O at a certain point in the execution of OT [O] is equivalent

to the state of O↓ at a certain point in the execution of

MT [O↓], when:

1) If the next statement to be executed at the high-level is

part of O, then the low-level program counter points

to the first instruction corresponding to that statement

in O↓.

2) For any Int-typed field, local variable or parameter in

O with value v, the corresponding memory location

in O↓ contains the same value v.

3) For any Unit-typed field, local variable or parameter in

O, the corresponding memory location in O↓ contains

the value 0.

4) For any two fields, local variables or parameters in O
with the same method reference type M⟨U → T ⟩ with
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values ot.mk1 and ot.mk2 respectively, the values of

the two corresponding memory locations in O↓ are

equal iff ot.mk1 = ot.mk2.

We can now sketch our proof of why the algorithm

described above is correct.

Theorem 3 (Algorithm correctness): When given two

high-level objects O1 and O2 and two low-level traces

a1 and a2 belonging to the executions of MT [O1 ↓]
and MT [O2 ↓] respectively, where MT is a low-level

module that differentiates between O1 ↓ and O2 ↓ without

overflowing the secure stack, the algorithm described above

constructs an OT that differentiates between O1 and O2.

Proof sketch: Because the compiler translates each

initial high-level field value to a corresponding low-level

value, the state of O1 and O1 ↓ are equivalent at the

start of the executions of OT [O1] and MT [O1 ↓]. The

same applies to the states of O2 and O2 ↓. Because OT

mimics all the basic actions performed by MT , we argue

that OT maintains this correspondence of high- and low-

level subject states throughout the executions. Because of

this state correspondence, O1 and O2 will perform high-

level basic actions similar to their low-level counterparts

O1 ↓ and O2 ↓ respectively. Therefore, when the low-level

actions a
(2i+1)
1 and a

(2i+1)
2 differ, so will the corresponding

high-level actions b
(2i+1)
1 and b

(2i+1)
2 generated by OT [O1]

and OT [O2] respectively. By the construction of OT , any

detected difference between O1 and O2 is reported to the

environment immediately, using the exit statement. Hence,

the OT constructed using the algorithm described above

differentiates O1 from O2.

Theorem 4 (Full abstraction): For any two high-level ob-

jects O1 and O2, we have (up to the limited size of the secure

stack):

O1 ≃ O2 ⇔ O1 ↓ ≃ O2 ↓

Proof: Follows directly from our assumption of sound-

ness and from Theorem 3.

IV. IMPLEMENTATION

Our full abstraction result relies on the program counter-

based memory access control scheme of the low-level lan-

guage. This result is only useful in practice if it has an effi-

cient real-world implementation. Efficiency is important, as

the main motivation to compile a language is performance;

if one does not care about performance, one can simply

interpret the high-level program, which is safe assuming the

interpreter and underlying operating system are safe. At least

three types of implementations are possible: (1) a hardware

implementation, (2) a software implementation based on the

virtualization support offered by modern processors and (3)

a software kernel-level implementation.

An important difference between these three types is the

size of the trusted computing base (TCB). Having a small

TCB is important because this gives better assurance that

Figure 3. The architecture of our prototype is based on two virtual
machines to minimize performance overhead

there are no vulnerabilities in the implementation that could

be exploited to bypass the access control scheme. Recent

research [11], [16] has proposed modifications to processors

for embedded systems to provide a memory access control

scheme that is very similar to the one provided by our

low-level language. Such hardware implementations have a

very small TCB, as only the hardware itself needs to be

trusted. However, a hardware implementation would make

the security measure unsuitable for commodity platforms

available today. Conversely, a virtualization-based imple-

mentation is supported by currently available commodity

hardware and, as we will show below, can also be achieved

with a small TCB. A kernel-level implementation does not

require virtualization support and hence can even run on

older hardware. However, this solution would include the

entire kernel in its TCB. Given that kernel-level malware

is a realistic threat on internet-connected computers today,

a kernel-level implementation will most likely not provide

sufficient security. This is an additional reason (besides

performance) why an interpreter would not provide a good

solution.

Given these conditions, we followed the second imple-

mentation strategy, which is inspired by implementation

techniques used in other security architectures that support

fine-grained isolation of pieces of application logic [8], [9].

The key idea is to build on the virtualization support offered

by modern-day commodity hardware. Since memory per-

missions only need to change whenever a protected module

is entered or exited, we can trap such entries and exits in

a small hypervisor, and reconfigure the standard hardware

memory access control unit (MMU) as necessary. We first

describe the overall architecture of our implementation and

then report on the size of its TCB and provide some

performance benchmarks.

A. Architecture

Our prototype implementation is based on a small hyper-

visor that runs two virtual machines, called the Legacy VM

and the Secure VM (see Figure 3). Both VM’s have the same

view of physical memory, but have different memory access

control configurations.

1) Legacy VM: The Legacy VM executes all legacy

applications and other code in unprotected memory. Using

virtualization techniques, this virtual machine is able to

execute commodity operating systems and legacy applica-
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tions without any modification. From the point of view of

the Legacy VM, the only difference compared to running

on bare hardware is that certain memory locations are

inaccessible. More specifically, two memory regions are

inaccessible to the Legacy VM: (1) the memory region

reserved for the hypervisor and (2) the protected memory

region as defined in our low-level machine model. Whenever

an access to these memory locations is attempted, execution

traps to the hypervisor.
2) Hypervisor: The hypervisor serves two simple pur-

poses. First, it offers a coarse-grained memory protection:

it prevents any code executing in the Legacy VM from

accessing the protected module or the security measure itself

(as discussed above) and it prevents the Secure VM from

accessing the hypervisor.

Second, the hypervisor implements a simple scheduling

algorithm. When the Legacy VM calls an entry point in the

protected module, control goes to the hypervisor who then

schedules the Secure VM. Execution control only returns to

the Legacy VM when the protected module either returns or

performs a callback to unprotected memory.
3) Secure VM: The Secure VM can access all memory,

with the exception of memory containing the hypervisor. The

fine-grained memory access control mechanism is imple-

mented by a security kernel running in this VM, as follows.

First, when a request is received from the hypervisor to

execute a method in the protected module, the requested

entry point is checked against a list of valid entry points

provided in the module’s memory descriptor. When this

check passes, the hardware memory management unit is set

up to allow memory accesses to the module’s memory region

and execution proceeds from the entry point that was called.

When execution tries to jump back out of the protected

module, a page fault is generated, which causes the security

kernel to return execution control to the Legacy VM.

B. Trusted Computing Base

An important factor for the security assurance provided

by our system is the size of its TCB. Table III shows the

code size of the different parts of our prototype’s TCB, as

measured by SLOCCount3. Only the hypervisor (VMM) and

the secure kernel are trusted. They contain 1,045 and 1,947

lines of C and assembly code respectively. This does not

include the 4,167 lines of code that is shared between both

parts. This totals the size of the implementation of the TCB

to only 7,159 lines of code.

C. Performance

We performed two benchmarks to quantify the perfor-

mance of our memory access control implementation. First,

we measured the impact on the overall system. Next, we

measured the cost of transitioning between unprotected and

protected memory.

3http://www.dwheeler.com/sloccount/

VMM Secure kernel Shared Total
1,045 1,947 4,167 7,159

Table III
THE TCB CONSISTS OF ONLY 7K LINES OF C AND ASSEMBLY CODE.

Figure 4. The spec2006 benchmarks show a very low overhead on legacy
applications.

All our experiments were performed on a Dell Latitude

E6510, a mid-end consumer laptop equipped with an Intel

Core i5 560M processor running at 2.67 GHz and 4 GiB

of RAM. Due to limitations of our prototype, we disabled

all but one core in the BIOS. An unmodified version of

KUbuntu 10.10 running the 2.6.35-22-generic x86 64 kernel

was used as the operating system.

1) System-wide performance cost: Our implementation

uses a small hypervisor, which effects the performance

of both the protected module as well as all legacy code.

To measure the performance impact of the hypervisor on

legacy applications, we ran the SPECint 2006 benchmarks.

Figure 4 displays the results. With the exception of the mcf
application (10.36%), all applications have an overhead of

less than 3.28%. We contribute the performance increase of

gcc to cache effects.

As our implementation does not require any computation

when the protected module is not under execution, this

performance overhead can be contributed completely to

the hardware virtualization support. We expect that as this

support matures, performance overhead will be reduced

further. Note that our hypervisor can be unloaded when it is

no longer required, reducing the overhead to 0%.

2) Microbenchmarks: To measure the impact of cross-

ing the protected/unprotected memory boundary, we im-

plemented a PingPong protected module that immediately

returns control back to the caller after being called. Using a

hardware high-frequency timestamp, we calculated both the

time to enter the module as the round trip time. Each test

was executed 100,000 times. Results (see Table IV) show

an overhead of 8,167% and 8,782% respectively compared

to a similar module implemented as a driver. So a transition

between the two protection domains in our system is about
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Module Driver Overhead
Entry 4.35 0.05 8,167%

Round trip 6.58 0.07 8,782%

Table IV
MODULE VS. DRIVER ACCESS OVERHEAD (IN μS).

80 times slower than calling a driver in the operating

system. This overhead is mainly caused by the fact that

each time the protected/unprotected memory boundary is

crossed, a different virtual machine needs to be scheduled.

This measurement is an upper bound: as the hardware

implementations of virtualization mature, the performance

cost of VM transitions will decrease further. Nevertheless,

even this upper bound seems small enough to lead to a

negligible overhead on the overall application when the

protected module is relatively large. For instance, a sensible

application design would be to put cryptographic code in the

protected module. Calls to this crypto module would cost a

few microseconds of performance overhead, which is neg-

ligible if the cryptographic operations are computationally

intensive.

3) Conclusions: Our benchmarks indicate that our fine-

grained, program counter-based memory access control

scheme can be implemented efficiently on commodity hard-

ware. At the same time, it should be clear that the main

contribution of this paper is our full abstraction result, and

a mature implementation with rigorous performance micro-

and macro-benchmarks is future work.

V. DISCUSSION

In this section, we first discuss our choice of using full

abstraction as the definition of secure compilation. We then

discuss limitations of our high- and low-level languages.

A. Security by full abstraction

As illustrated in Section II-B, full abstraction can be

used as the definition of secure compilation, because the

preservation of contextual equivalence expresses important

security properties. Full abstraction ensures that programs

that are safe at the source-code level, remain safe after

compilation. Though, one could argue that full abstraction

is too restrictive as a definition of secure compilation. For

instance, sorting methods alphabetically before compilation

to hide the order of an object’s methods in memory is

required to provide full abstraction, yet unnecessary if we

are only interested in providing confidentiality and integrity

of data and in maintaining control flow integrity.

There are two ways to deal with this problem: (1) we can

use a different definition for secure compilation that is not

based on full abstraction or contextual equivalences or (2)

we can adjust our source and/or target language to better

match our desired definition of security. As an example of

the latter, consider again the issue described above, where

we unnecessarily hide the order of methods in memory.

We could add an operation to the high-level language that,

when given two methods of an object, returns whether or

not the first one is defined before the second one. This

would make the high-level language more powerful, without

compromising its safety, and it would do away with the need

to hide the order of the methods at the low level in order to

provide full abstraction.

B. Language limitations

The high-level language as described in this paper has a

number of limitations as compared to modern programming

languages. Most noticeably, it does not have support for

multiple interacting objects or dynamic memory allocation.

We shortly discuss both of these extensions below. Other

extensions, such as support for dynamic dispatch, are also

worth discussing, but we leave them for future work.

1) Multiple objects: Extending our languages to support

multiple interacting objects that are part of a single trust

domain is straightforward. As these objects trust each other,

they can be placed together in protected memory and can

share a single secure stack and return entry point.

However, in a more realistic situation, each object is in

its own trust domain, i.e., each object only trusts itself.

This situation is more complicated, as each object would

require its own protected memory area, including its own

secure stack. The memory access protection scheme would

have to take this into account. A number of changes to the

compilation scheme would have to be performed as well.

For instance, the stack switch on entry and exit of a module

would have to be modified, because spilled parameters and

return addresses of calls between two protected modules

cannot be written on either of their stacks, as neither stack

is accessible by both modules. Furthermore, new attack

vectors might exist due to the increased complexity of

multiple interacting modules. For instance, an attacker could

try to make two low-level modules interact in ways that

could never occur at the high level, leading to undefined

behavior that is dependent on the specific implementation

of a module. New compiler measures would have to be

installed, to protect against these new attacks.

Nevertheless, we believe a memory access protection

scheme very similar to the one presented in Section II-C

is powerful enough to support a fully abstract compilation

scheme from a high-level language with multiple interacting

objects to an assembly-like low-level language. The details

of these extensions, however, are left for future work.

2) Dynamic memory allocation: For simplicity, our high-

level language does not support dynamic memory allocation.

However, adding a simple form of dynamic memory alloca-

tion would not pose any fundamental problems.

To support dynamic memory allocation, a predetermined

amount of protected data memory can be reserved as heap

space in each module, similar to the memory reserved for
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the secure stack. An object could use this space to safely

store internal, private data, for instance in the form of

structured records. Similar to statically allocated fields, the

high-level language should prevent an attacker from having

direct access to these heap-allocated records, as this would

violate the encapsulation of an object.

Supporting the dynamic allocation of full-fledged pro-

tected objects is more difficult. For this strategy, the heap

could be placed in (initially) unprotected memory. To create

a new protected object, first a sufficiently large amount

of space must be allocated on the heap and loaded with

the desired code and initial data values. Next, the newly

allocated space must be marked as a protected memory

area. This would allow the new object to be accessed in the

same way as other protected objects. Note that this requires

the memory protection scheme to support multiple protected

memory areas and the dynamic creation of such areas. As

explained above, supporting multiple protected objects is

possible but nontrivial. Furthermore, if objects are created

dynamically, references to these objects will need to be

passed around for other objects to access them. Supporting

such references without breaking full abstraction is also

nontrivial, for one because they leak information about the

order in which objects are allocated and possibly about their

size. Hence, this extension is also left for future work.

VI. RELATED WORK

There is a huge amount of research on secure compilation

to machine code, but in most works the emphasis is on

hardening the compilation of unsafe languages such as C

to protect against exploitation of the compiled program

by feeding it malicious input. Younan et al. [17] give an

extensive survey. Some notable examples that can provide

formal guarantees include control-flow integrity (CFI) [18],

and obfuscation [19].

In our work, attackers can do more than just supply

input; attackers can execute arbitrary code in the low-

level language. The idea to formalize secure compilation

to lower level languages as full abstraction (and thus protect

against this more powerful type of attacker) was pioneered

by Abadi [3]. In that paper, Abadi illustrates this idea

in two settings: the compilation of Java to bytecode, and

the implementation of secure channels in the π-calculus

by means of cryptographic protocols. The second setting,

proving the soundness of cryptographic implementations,

has received a lot of attention but it is less related to

the work reported in this paper. The first setting, secure

compilation to lower level languages, was studied in the

context of compilation to .NET bytecode by Kennedy [4].

But for compilation to low-level code with natural number

addressing for memory, only very recently Abadi and Plotkin

[6] have shown that Address Space Layout Randomization

(ASLR) is a sufficiently strong software protection technique

to achieve fully abstract compilation in a probabilistic sense.

Jagadeesan et al. [7] extend the results of Abadi and Plotkin

to a richer programming language with dynamic memory

allocation, first class and higher order references and un-

structured control flow. Instead of relying on randomization

as the fundamental protection mechanism, our work shows

that program counter-dependent low-level memory access

control is also a sufficiently strong protection mechanism to

achieve fully abstract compilation. Our proof technique of

showing full abstraction via traces was strongly inspired by

the work of Jeffrey and Rathke on Java Jr [15]. They show

that traces are a fully abstract semantic model for a Java-like

language similar to the one we study in this paper.

The fact that such fine-grained memory isolation could

be achieved with reasonable performance was shown by a

second line of related research that influenced our work.

Several authors have proposed security architectures with a

closely related low-level isolation mechanism. While there

are significant differences between these security architec-

tures and our own prototype (in for instance the implemen-

tation techniques used), their access control mechanisms are

comparable. For example, Nizza [20], Flicker [8], TrustVisor

[9] and SICE [21] also provide isolation of small pieces of

application logic. The memory access control mechanisms

enforced by these architectures are a special case of our

model, where accesses to unprotected memory from modules

is not allowed. P-MAPS [22], like our approach, does allow

access to unprotected memory. All these papers are systems-

papers: they report on working systems without providing

formal security guarantees. It is likely that several of these

proposed security architectures could be low-level target

platforms for a secure compilation process as we developed

in this paper. In addition, these papers provide evidence that

the low-level memory access control we need in our model

is efficiently implementable on today’s computer platforms.

VII. CONCLUSION

Protection facilities in high-level programming languages

can be used to enforce confidentiality and integrity properties

for the data managed by one component towards other

(potentially malicious) components that it interacts with.

Maintaining such security properties after compilation to

a low-level language requires some protection features in

the low-level language as well. Randomization is one such

protection feature that is known to be strong enough to

support secure compilation. We have shown in this paper

that program counter-based memory access control is also

suitable as a low-level protection feature. We developed a

model of such a low-level platform, and have proven that

a Java-like high-level language can be securely compiled

to this platform. We have also shown that the low-level

platform is realistic, in the sense that it can be implemented

on today’s computers with acceptable performance. We

believe our secure compilation technique can help address

the pervasive threat of kernel-level malware.
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