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Abstract—We show that Kripke semantics of modal logic,
manifest in the syntactic proof formalism of labeled sequent
calculi, can be used to solve three central problems in access
control: Generating evidence for denial of access (countermodel
generation), finding all consequences of a policy (saturation) and
determining which additional credentials will allow an access
(abduction). At the core of our work is a single, non-trivial,
countermodel producing decision procedure for a specific access
control logic. The procedure is based on backwards search in
a labeled sequent calculus for the logic. Modifications of the
calculus yield a procedure for abduction and, surprisingly, for
saturation.

I. INTRODUCTION

The role of formal logic in the context of access control

is now well-established. Logic has been used to model and

reason about access policies starting with the work of Abadi

et al. [2]; proof theory has been used to enforce access policies

in architectures like proof-carrying authorization [3, 6, 7, 17,

24, 27], and to prove meta-properties of policies [16]; logic

programming, both top-down and bottom-up, has been used

to efficiently determine consequences of policies [9, 13, 23]

and as the basis of privacy analysis of policies [8]; logical

abduction has been used to determine credentials needed to

authorize a specific access [10]; and, logics embedded in type

systems have been used to statically enforce access policies

in programming language interfaces [4, 20, 26]. In fact,

logic has been so widely used in access control that several

specialized logics, called access control logics, have been

proposed exclusively for representing and reasoning about

access policies. Technically, all access control logics are modal

logics, containing at least one principal indexed modality

A says ϕ (principal A supports the truth of formula ϕ),

used to represent authenticated statements made by individuals

participating in the access control process.

The primary focus of study in the area of access control

logics in the past decade has been proof theory (symbolic

proofs); semantics, when studied, have been second-rate cit-

izens because it is unclear what role they could play in

practice. Unlike other applications of logic, where real-world

situations correspond to a logic’s models and the semantics

connect logical formulas to their interpretations in the real

world, there are no known interesting connections between

models of access control logics (which are specializations of

the standard Kripke models of modal logic) and actual access

control systems.

In this paper we argue that despite the fact that Kripke

semantics of access control logics are not useful to formalize

real-world access control systems, such semantics are useful

to solve the following relevant problems in the use of access

control logics:

- Countermodel generation: Producing evidence of why an

access is denied, or why it does not follow from a given

policy. (Existence of a sound countermodel producing

procedure also implies decidability.)

- Saturation or finding all consequences of an access

policy.

- Abduction or determining which additional credentials

suffice to authorize an access.

All three problems are important for enforcement of access

policies. Countermodels enable a reference monitor to justify

to a principal why it has been denied access: If a policy

represented as a formula P does not entail an authorization

represented as formula ϕ, then the reference monitor can

provide a countermodel for P → ϕ, thus justifying the denial

of authorization ϕ. Saturation is necessary to pre-compile

policies and to cache their consequences. Abduction is useful

for finding missing credentials and for justifying authorizations

on-the-fly, as in the Grey system [7].

The main contribution of this paper is in showing that all the

above problems can be solved using the single foundational

formalism of labeled sequent calculi, which are symbolic

proof systems that directly mimic Kripke semantics of the

logic in the inference rules [5]. Working with a specific

access control logic, a propositional variant of the logic

BL [17], we show how its labeled sequent calculus can be

used to obtain an easily implementable decision procedure

which produces countermodels when no proof exists, how the

generated countermodels can be used to find all consequences

of a policy, and how the labeled sequent calculus can be

adapted to find additional credentials that suffice to authorize

a given access. Throughout the paper, we combine ideas from
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Kripke semantics with those from proof theory.

It is well known that proving decidability of multi-modal

logics like ours is a challenging problem due to interactions

between modalities, which can cause decision procedures to

loop (see [21] for examples). Producing countermodels is

even harder. Our technical work is complicated further by our

decision to use an intuitionistic logic instead of a classical

logic. We make this choice because intuitionistic logics are

known to be a better fit for modeling access policies than

classical logics. However, the choice requires us to introduce

and handle an additional preorder to model implication in the

Kripke semantics, thus creating another source of interaction

in all our algorithms. Our eventual underlying decision proce-

dure is an extension of our prior, general result for modal

logics [15]. The extension is non-trivial because our logic

BLsf includes the connective A sf B (principal A speaks

for principal B) that stipulates relations between accessibility

relations in Kripke models. The connective is used to represent

unrestricted delegation in access control [2].

Saturation of access control policies to derive all conse-

quences is a well-studied technique used in many policy

engines like SecPAL [9]. Unlike the conventional, syntactic

approach of using forward chaining to find the consequence-

set of a policy, our approach uses a completely novel, and

somewhat surprising technique based on sets of countermodels

obtained from labeled sequent calculi. Abduction for access

control policies written in a small fragment of finite domain,

first-order logic, Datalog, has been studied by Becker et

al. [10]. Although we do not consider quantifiers directly

in this paper, our abduction result is more general because

quantifiers over finite domains can be trivially eliminated and

we work with an entire logic, not a fragment.
Organization: In Section II we introduce the logic we use,

BLsf. After an informal description of the logic, we present the

foundations of our work: the Kripke semantics (Section II-A)

and the labeled sequent calculus (Section II-B). In Section III,

we present our countermodel producing decision procedure,

which also forms the basis of saturation and abduction, which

are presented in Sections IV and V, respectively. Section VI

discusses related work and Section VII concludes the paper

with some directions for future work. Proofs of theorems are

presented in the appendix. To keep the presentation concise,

straightforward inference rules are deferred to an accompany-

ing technical report (TR in the sequel) [19].

II. BLsf: THE ACCESS CONTROL LOGIC

BLsf is propositional intuitionistic logic extended with two

connectives, commonly used to model access policies: A says
ϕ (principal A supports formula ϕ) and A sf B (principal A
speaks for principal B)1. The syntax of BLsf formulas is shown

below. p denotes an atomic formula, drawn from a countable

set of symbols, and A, B denote principals drawn from a

different, finite set I. The connectives � (true), ⊥ (false), ∧
(and), ∨ (or) and → (implication) have usual meanings.

1In existing literature, A sf B is often written A ⇒ B. We prefer the
notation A sf B to prevent confusion with logical implication.

Formulas ϕ, ψ ::= p | � | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 |
ϕ1 → ϕ2 | A says ϕ | A sf B

(We do not include first-order quantifiers, but those ranging

over a finite domain I of individuals can be defined in the

usual way: ∀x∈I. ϕ ≡
∧

i∈I

ϕ[i/x] and ∃x∈I. ϕ ≡
∨

i∈I

ϕ[i/x].)

Although we formally define the semantics of BLsf in

Section II-A, we present here some admissible axioms with

their common names from literature.

(All intuitionistic propositional tautologies)
� ϕ

� A says ϕ (nec)

� (A says (ϕ→ ψ))→ ((A says ϕ)→ (A says ψ)) (K)

� (A says ϕ)→ (B says A says ϕ) (I)

� (A sf B)→ ((A says ϕ)→ (B says ϕ)) (speaksfor)

� A sf A
� (A sf B)→ ((B sf C)→ (A sf C))

Rule (nec) and axiom (K) are standard in modal logic; they

are needed to treat A says ϕ as a normal necessitation modality

(with index A). Axiom (I) has been argued by Abadi [1] as one

of the weakest axioms needed to correctly model delegation

in logic using A says ϕ. Axiom (speaksfor) characterizes the

formula A sf B: If A sf B, then any statement ϕ that A
makes is echoed by B, so the formula A sf B means that A
has authority to speak on behalf of B [2].

Example 1. We illustrate our logic using an example from

prior work [14]. Consider a simple policy containing the

following 3 formulas. Here, file1 is a file, deletefile1 means

that file1 should be deleted and admin, Alice and Bob are

principals.

1) (admin says deletefile1)→ deletefile1

2) admin says ((Bob says deletefile1) →
deletefile1)

3) Alice sf Bob

The first formula means that if admin says that file1 should

be deleted, then this should be the case. The second formula

says that admin trusts Bob to decide that file1 should be

deleted. The third formula means that Alice is trusted to make

statements on Bob’s behalf. If P is the set of formulas 1–3,

then from P and the assumption Alice says deletefile1,

we can derive deletefile1 in BLsf, as may also be expected

intuitively.

A. Kripke Semantics

The meaning of BLsf’s connectives are formally defined

through semantics written in the style of Kripke, which is

standard for modal logics [12]. In the Kripke style, a model

of the logic contains several points called worlds, which

represent possible states of knowledge. To interpret modalities,

binary accessibility relations on worlds are stipulated, with

one relation SA for every modality (A says ·). Intuitively,

if wSAw
′ then principal A believes that world w′ is a

potential (knowledge) successor of the world w. Intuitionistic

implication is modeled using a binary preorder, ≤.
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We treat the formula A sf B as an atom in the Kripke

semantics and validate axioms related to it, e.g., (speaks-

for), through conditions on Kripke frames. This interpreta-

tion is very distinct from earlier interpretations of A sf B,

e.g., [2, 14], that define A sf B in terms of relations between

accessibility relations SA and SB .

Definition 2 (Kripke model). A Kripke model or, simply,

model, M is a tuple (W,≤, {SA}A∈I , h, sf) where,

• W is a set. Its elements are called worlds.

• ≤ is a preorder on W .

• For each principal A, SA is a binary relation on W , called

the accessibility relation of principal A.

• h, called the truth assignment or assignment, is a map

from the set of atoms to P(W ). Informally, for any atom

p, h(p) is the set of worlds where p holds.

• sf is a map from pairs of principals to P(W ). Informally,

for any two principals A and B, sf(A,B) is the set of

worlds where A sf B holds.

Let S∗ =
⋃

A∈I SA. We require that in any model, the

following properties hold.

- ∀x.(x ≤ x) (refl)

- ∀x, y, z.(((x ≤ y) ∧ (y ≤ z))→ (x ≤ z)) (trans)

- ∀x, y, z.(((x ≤ y) ∧ (ySAz))→ (xSAz)) (mon-S)

- ∀x, y, z.(((xSBy) ∧ (ySAz))→ (xSAz)) (I)

- If w ∈ sf(A,B), then for all w′, wSBw
′ implies wSAw

′.
(basic-sf)

- For all A and w, w ∈ sf(A,A). (refl-sf)

- If w ∈ sf(A,B) ∩ sf(B,C), then w ∈ sf(A,C).
(trans-sf)

- If x ∈ h(p) and x ≤ y, then y ∈ h(p). (mon)

- If x(≤ ∪ S∗)∗y and x ∈ sf(A,B), then y ∈ sf(A,B).
(mon-sf)

Properties (refl) and (trans) make ≤ a preorder. Property

(mon-S) validates axiom (K). Other properties corresponding

to axiom (K) have also been proposed in literature [25, 28]; our

property (mon-S) is a slight simplification of a similar property

used by Wolter et al. [28]. Property (I) corresponds to ax-

iom (I). Property (basic-sf) corresponds to axiom (speaksfor).

Properties (refl-sf) and (trans-sf) make A sf B reflexive and

transitive, respectively. Property (mon) is standard in Kripke

models of intuitionistic logics and forces monotonicity of

satisfaction (Lemma 5 below). Property (mon-sf) implies that

if A sf B holds in a world, then it also holds in all future

worlds.

A model without the assignments h and sf , i.e., the tuple

(W,≤, {SA}A∈I) is also called a frame and the conditions

(refl)–(I) on relations above are called frame conditions.

Definition 3 (Satisfaction). Given a model M = (W,≤
, {SA}A∈I , h, sf) and a world w ∈ W , we define the

satisfaction relation M |= w : α, read “the world w satisfies

formula α in model M”, by induction on α as follows:

- M |= w : p iff w ∈ h(p)
- M |= w : � (unconditionally)

- M |= w : α ∧ β iff M |= w : α and M |= w : β

- M |= w : α ∨ β iff M |= w : α or M |= w : β
- M |= w : α → β iff for every w′ such that w ≤ w′ and

M |= w′ : α, we have M |= w′ : β.

- M |= w : A says α iff for every w′ such that wSAw
′,

we have M |= w′ : α.

- M |= w : A sf B iff w ∈ sf(A,B).

We say that M �|= w : α if it is not the case that M |= w : α.

In particular, for every M and every w, M �|= w : ⊥.

A formula α is true in a model M, written M |= α, if for

every world w ∈ M, M |= w : α. A formula α is valid in

BLsf, written |= α, if M |= α for every model M.

Example 4. It is easily checked that every axiom presented in

Section II is valid in BLsf in the sense of the definition above.

The following is a fundamental property of the Kripke

semantics of all intuitionistic modal logics, needed to prove

soundness of sequent calculi (Theorem 7).

Lemma 5 (Monotonicity). If M |= w : α and w ≤ w′ ∈ M,
then M |= w′ : α.

Proof: By induction on α.

B. SeqC: A Labeled Sequent Calculus
Next, we introduce a labeled sequent calculus for BLsf,

which, although a syntactic proof system, derives its inference

rules directly from the inductive definition of satisfaction in the

Kripke semantics. This labeled sequent calculus, called SeqC,

forms the basis of all the remaining work in this paper. Con-

clusions in SeqC have the form: “Formula ϕ is true in world

w”, where w is a symbolic world. Hypotheses are assumptions

of the same form, as well as symbolic relations between the

worlds. Formally, we introduce a syntactic category of labeled

formulas, written w : ϕ, to mean that formula ϕ is true in

world w. A sequent in our calculus has the form Σ;M; Γ⇒ Δ,

where

- Σ is a finite set of world symbols appearing in the rest

of the sequent. World symbols are also called labels.

- M is a finite set of relations between labels in Σ.

Relations have the forms x ≤ y and xSAy.

- Γ is a finite set of labeled formulas.

- Δ is a finite set of labeled formulas.

Semantically, Σ;M; Γ⇒ Δ is valid when every model with

a world set containing at least Σ, satisfying all relations in M

and all labeled formulas in Γ also satisfies at least one labeled

formula in Δ.

Definition 6 (Sequent satisfaction and validity). A model M
and a mapping ρ from elements of Σ to worlds of M satisfy

a (possibly non-provable) sequent Σ;M; Γ ⇒ Δ, written

M, ρ |= (Σ;M; Γ⇒ Δ), if one of the following holds:

- There is an xRy ∈ M with R ∈ {≤} ∪ {SA | A ∈ I}
such that ρ(x) R ρ(y) �∈ M.

- There is an x : α ∈ Γ such that M �|= ρ(x) : α.

- There is an x : α ∈ Δ such that M |= ρ(x) : α.

A model M satisfies a sequent Σ;M; Γ⇒ Δ, written M |=
(Σ;M; Γ ⇒ Δ), if for every mapping ρ, we have M, ρ |=
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(Σ;M; Γ ⇒ Δ). Finally, a sequent Σ;M; Γ ⇒ Δ is valid,

written |= (Σ;M; Γ ⇒ Δ) if for every model M, we have

M |= (Σ;M; Γ⇒ Δ).

Rules of SeqC: Selected rules of the labeled sequent calcu-

lus for BLsf are shown in Figure 1. (For the remaining rules,

see our TR.) Rules for each connective mimic the (Kripke)

semantic definition of the connective. For example, in the

rule (∧R), to prove x : α ∧ β in the conclusion, we prove

x : α and x : β in the premises. The conditions (refl)–(mon-

sf) in the definition of Kripke models (Definition 2), with

the exception of (mon), are modeled by the frame rules in

Figure 1. Condition (mon) is implicit in the rule (init). In the

rules (→R) and (saysR), the world y in the premise is fresh.

We say that � (Σ;M; Γ⇒ Δ) if Σ;M; Γ⇒ Δ has a proof in

the calculus. The sequent calculus is both sound and complete

with respect to the semantics.

Theorem 7 (Soundness). If � (Σ;M; Γ ⇒ Δ), then |=
(Σ;M; Γ⇒ Δ).

Proof: Fix an M. It is easily proved by induction on the

given derivation of Σ;M; Γ ⇒ Δ that for every mapping ρ,

M, ρ |= (Σ;M; Γ⇒ Δ).
The converse of Theorem 7, completeness, also holds but we

do not prove the result here because it is a consequence of the

correctness of our countermodel producing decision procedure.

The following theorem is central to the proof of termination

of our decision procedure.

Theorem 8 (Weak subformula property). If a formula ϕ
appears in any proof tree (possibly infinite) obtained by
applying the rules of Figure 1 backwards starting from a
concluding sequent Σ;M; Γ⇒ Δ, then either ϕ has the form
A sf B where A,B ∈ I, or ϕ is a subformula of some formula
in either Γ or Δ.

Proof: By induction on the distance (in the proof tree) of

the occurrence of ϕ from the conclusion Σ;M; Γ⇒ Δ.

III. DECIDABILITY AND COUNTERMODEL GENERATION

Our first application of the labeled sequent calculus SeqC is

a decision procedure that provides countermodels if a sequent

has no proof. Production of countermodels is of practical use

in access control because a countermodel can be used as ev-

idence to justify denial of authorization. Note that backwards

search in SeqC does not directly yield a decision procedure

because the rules (→R) and (saysR) can be applied indefinitely

to produce new worlds. The countermodel producing decision

procedure presented here bounds the backwards application of

these rules and is based on our prior general result for multi-

modal logics [15], which in turn generalizes earlier work on

uni-modal tableaux calculi [18]. In the following we present

the decision procedure briefly and extend it with the connective

A sf B. Readers not interested in understanding how the

procedure works may directly skip to Section III-B, which

lists the decision procedure as a sequent calculus.
The key idea of our technique is to prevent infinite ap-

plication of the rules (→R) and (saysR) in backward search

by checking for containment of formulas labeling a world in

those labeling another. In its naive form, this check results in

incompleteness because of the condition (I) and the connective

A sf B. To recover completeness, we check containment not

between sets of formulas labeling two worlds, but between

the sets obtained by applying a suitably chosen function,

called Sfor, on those sets. The selection of an appropriate

definition for Sfor is the central idea of our decision procedure.

Using this function, we define a sub-class of sequents called

saturated histories, on which backwards application of any of

the rules of Figure 1 is certainly useless. We then use this

notion of “uselessness of backwards rule application” to build

a decision procedure and use a counting argument based on

the weak subformula property (Theorem 8) to show that it ter-

minates. We further show how to extract a countermodel from

a saturated history, thus forming the basis of our countermodel

extraction.

In the following, we describe the decision procedure,

starting with the definition of Sfor and saturated history in

Section III-A, followed by the decision procedure itself in

Section III-B.

A. Saturated Histories

We use the term history for a tuple Σ;M; Γ;Δ or, equiv-

alently, for a sequent Σ;M; Γ ⇒ Δ. Let T (ϕ) and F (ϕ) be

two uninterpreted unary relations. Informally, we read T (ϕ)
as “ϕ should be true” and F (ϕ) as “ϕ should be false”. Given

a history Σ;M; Γ;Δ and x ∈ Σ, the signed formulas of x,

written Sfor(Σ;M; Γ;Δ, x) are defined as follows:

Sfor(Σ;M; Γ;Δ, x) =
{T (ϕ) | x : ϕ ∈ Γ}∪
{F (ϕ) | x : ϕ ∈ Δ}∪

{T (A says ϕ) | ∃y. y(≤ ∪S∗)∗x ∈ M ∧ y : A says ϕ ∈ Γ}∪
{T (ϕ→ ψ) | ∃y. y ≤ x ∈ M ∧ y : ϕ→ ψ ∈ Γ}∪

{T (p) | ∃y. y ≤ x ∈ M ∧ y : p ∈ Γ}
The key component in the definition of Sfor is the third

one, which must align with the choice of axioms for the

modality A says ·. Here, the choice corresponds to the

axiom (I). When Σ,M,Γ,Δ are clear from context, we ab-

breviate Sfor(Σ;M; Γ;Δ, x) to Sfor(x). We say that x � y iff

Sfor(x) ⊆ Sfor(y).
We call a pair M; Γ closed if they are closed under backward

application of the frame rules of Figure 1. (Note that the frame

rules of Figure 1 only add elements to M and Γ.) We write

M; Γ for the closure of M; Γ by the frame rules.

We call a frame M tree-like if it can be derived from a finite

tree of the relations ≤ and SA and (possibly partial) closure

by frame rules. This tree is called the underlying tree of M

and we say that x� y (in M) iff there is a directed path from

x to y in the tree underlying M.

The key definition in our method is that of a saturated
history. Intuitively, this definition characterizes those histories

Σ;M; Γ;Δ for which we can directly define a countermodel

for the sequent Σ;M; Γ⇒ Δ. (The definition of this counter-

model is given soon after the definition of a saturated history.)
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Axiom Rules

Σ;M, x ≤ y; Γ, x : p⇒ y : p,Δ
init

Σ;M; Γ, x : A sf B ⇒ x : A sf B,Δ
sf

Logical Rules

Σ;M; Γ⇒ x : α, x : α ∧ β,Δ Σ;M; Γ⇒ x : β, x : α ∧ β,Δ

Σ;M; Γ⇒ x : α ∧ β,Δ
∧R

Σ, y;M, x ≤ y; Γ, y : α⇒ y : β, x : α→ β,Δ

Σ;M; Γ⇒ x : α→ β,Δ
→R

Σ;M, x ≤ y; Γ, x : α→ β ⇒ y : α,Δ Σ;M, x ≤ y; Γ, x : α→ β, y : β ⇒ Δ

Σ;M, x ≤ y; Γ, x : α→ β ⇒ Δ
→L

Σ, y;M, xSAy; Γ⇒ y : α, x : A says α,Δ

Σ;M; Γ⇒ x : A says α,Δ
saysR

Σ;M, xSAy; Γ, x : A says α, y : α⇒ Δ

Σ;M, xSAy; Γ, x : A says α⇒ Δ
saysL

Frame Rules

Σ, x;M, x ≤ x; Γ⇒ Δ

Σ, x;M; Γ⇒ Δ
refl

Σ;M, x ≤ y, y ≤ z, x ≤ z; Γ⇒ Δ

Σ;M, x ≤ y, y ≤ z; Γ⇒ Δ
trans

Σ;M, x ≤ y, ySAz, xSAz; Γ⇒ Δ

Σ;M, x ≤ y, ySAz; Γ⇒ Δ
mon-S

Σ;M, xSBy, ySAz, xSAz; Γ⇒ Δ

Σ;M, xSBy, ySAz; Γ⇒ Δ
I

Σ;M, xSBy, xSAy; Γ, x : A sf B ⇒ Δ

Σ;M, xSBy; Γ, x : A sf B ⇒ Δ
basic-sf

Σ, x;M; Γ, x : A sf A⇒ Δ

Σ, x;M; Γ⇒ Δ
refl-sf

Σ;M; Γ, x : A sf B, x : B sf C, x : A sf C ⇒ Δ

Σ;M; Γ, x : A sf B, x : B sf C ⇒ Δ
trans-sf

Σ;M, x ≤ y; Γ, x : A sf B, y : A sf B ⇒ Δ

Σ;M, x ≤ y; Γ, x : A sf B ⇒ Δ
mon1-sf

Σ;M, xSCy; Γ, x : A sf B, y : A sf B ⇒ Δ

Σ;M, xSCy; Γ, x : A sf B ⇒ Δ
mon2-sf

Fig. 1. SeqC: A labeled sequent calculus for BLsf, selected rules

Definition 9 (Saturated history). A history Σ;M; Γ;Δ is

called saturated if the following hold:

1) M is tree-like and M; Γ is closed. (In particular, because

M is tree-like, it has a relation � defined on it.)

2) If x : p ∈ Γ, then there is no y such that x ≤ y ∈ M

and y : p ∈ Δ.

3) There is no x such that x : � ∈ Δ.

4) There is no x such that x : ⊥ ∈ Γ.

5) If x : α ∧ β ∈ Γ, then x : α ∈ Γ and x : β ∈ Γ.

6) If x : α ∧ β ∈ Δ, then either x : α ∈ Δ or x : β ∈ Δ.

7) If x : α ∨ β ∈ Γ, then either x : α ∈ Γ or x : β ∈ Γ.

8) If x : α ∨ β ∈ Δ, then x : α ∈ Δ and x : β ∈ Δ.

9) If x : α→ β ∈ Γ and x ≤ y ∈ M, then either y : α ∈ Δ
or y : β ∈ Γ.

10) If x : α→ β ∈ Δ, then either:

a) There is a y such that x ≤ y ∈ M, y : α ∈ Γ and

y : β ∈ Δ or

b) There is a y such that y �= x, y � x and x � y.

11) If x : A says α ∈ Γ and xSAy ∈ M, then y : α ∈ Γ.

12) If x : A says α ∈ Δ, then either:

a) There is a y such that xSAy ∈ M and y : α ∈ Δ
or

b) There is a y such that y �= x, y � x and x � y.

13) There are no x,A,B such that x : A sf B ∈ Γ and

x : A sf B ∈ Δ.

Definition 10 (Countermodel of a saturated history). For a

saturated history Σ;M; Γ;Δ, the countermodel of the history,

CM(Σ;M; Γ;Δ) is defined as follows. Let C = {x ≤ y | x �
y} and let M′; Γ′ = (M ∪ C); Γ.

- The worlds of CM(Σ;M; Γ;Δ) are those in Σ.

- The relations of CM(Σ;M; Γ;Δ) are those in M′.
- h(p) = {x | ∃y. (y ≤ x ∈ M) ∧ (y : p ∈ Γ)}.

- sf(A,B) = {x | x : A sf B ∈ Γ}.

It is not obvious that CM(Σ;M; Γ;Δ) is a model, because

it may not satisfy the monotonicity condition, (mon), for h.

It trivially satisfies all other conditions in the definition of a

model. Lemma 11 states that the monotonicity condition (mon)

must also always hold for CM(Σ;M; Γ;Δ).

Lemma 11. If Σ;M; Γ;Δ is a saturated history, then
CM(Σ;M; Γ;Δ) has a monotonic valuation h, i.e., x ∈ h(p)
and x ≤ y ∈ CM(Σ;M; Γ;Δ) imply y ∈ h(p).

Proof: See Appendix A, Lemma 23.
The next Lemma states the central property of our

method. In particular, the Lemma immediately implies that

if Σ;M; Γ;Δ is a saturated history, then CM(Σ;M; Γ;Δ) is a
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countermodel to the sequent Σ;M; Γ⇒ Δ.

Lemma 12. The following hold for any saturated history
Σ;M; Γ;Δ:

A. If T (ϕ) ∈ Sfor(Σ;M; Γ;Δ, x), then CM(Σ;M; Γ;Δ) |=
x : ϕ

B. If F (ϕ) ∈ Sfor(Σ;M; Γ;Δ, x), then CM(Σ;M; Γ;Δ) �|=
x : ϕ

Proof: See Appendix A, Lemma 24.

Corollary 13 (Existence of countermodel). If Σ;M; Γ;Δ is a
saturated history, then CM(Σ;M; Γ;Δ) �|= (Σ;M; Γ⇒ Δ).

Proof: Lemma 12 immediately implies that

CM(Σ;M; Γ;Δ), ρ �|= (Σ;M; Γ ⇒ Δ), where ρ : Σ → Σ is

the identity substitution.

B. SeqCT: Countermodel Producing Decision Procedure

We synthesize a countermodel producing decision procedure

for BLsf using the idea of saturated histories and the definition

of the countermodel CM(Σ;M; Γ;Δ). We present the decision

procedure as a sequent calculus, SeqCT, with judgments of

the form Σ;M; Γ ⇒T Δ ↘ S, where S is a possibly empty,

finite set of (counter)models. Reading the rules backwards,

the calculus is an algorithm with inputs Σ, M, Γ and Δ
and output S. The correctness properties of the algorithm are

that: (1) Given any Σ, M, Γ and Δ with tree-like M, the

algorithm terminates and produces some S. (2) If S = {},

then Σ;M; Γ ⇒ Δ has a proof in SeqC and if S �= {},

then every model M ∈ S satisfies M �|= (Σ;M; Γ ⇒ Δ).
The requirement that M be tree-like is needed to complete

the proofs. In practice, we start from an empty M, which is

trivially tree-like.

Selected rules of the calculus SeqCT are shown in Figure 2.

With the exception of the new rule (CM), each rule in the

calculus corresponds to a rule of the same name in SeqC

(Figure 1). The difference between the calculi is that there

are additional conditions on each rule in SeqCT, which are

written in boxes in the figure. These are called applicability
conditions. There are two key points to observe here. First,

by design, if the applicability conditions of all rules in the

figure fail, i.e., no rule (except CM) applies, then the tuple

Σ;M; Γ;Δ in the conclusion of the rule is a saturated history.

Therefore, by Corollary 13, Σ;M; Γ⇒ Δ has a countermodel,

which is output into S using the rule (CM). Second, all rules of

the calculus except (CM) simply aggregate the countermodels

from their premises into a single set in the conclusion. This

is sound because all rules of the Figure 1 are invertible, so

any countermodel of any of the premises is necessarily a

countermodel of the conclusion. The following lemmas and

theorems state termination and partial correctness of SeqCT.

Theorem 14 (Termination). The following hold:
1) Any backwards derivation in SeqCT starting from a

sequent Σ;M; Γ⇒T Δ with M tree-like terminates.
2) For any Σ;M; Γ;Δ with M tree-like, there is an S such

that � (Σ;M; Γ ⇒T Δ ↘ S) and such an S can be

finitely computed.

Proof: By a counting argument using Theorem 8. See

Appendix A, Theorem 29 for details.

Note that Theorem 14(2) does not stipulate that the com-

puted S be unique. Indeed, depending on the order in which

the rules of the calculus ⇒T are applied to a given sequent, S
may be different. However, the fact that at least one such S
exists and can be computed is enough to get decidability for

BLsf.

Theorem 15 (Correctness). For a tree-like M, suppose that
S is such that � (Σ;M; Γ⇒T Δ↘ S) (such an S must exist
and can be computed using Theorem 14). Then:

1) If S = {}, then |= (Σ;M; Γ⇒ Δ).
2) If S �= {}, then every model M in S is a countermodel

to the sequent, i.e., M �|= (Σ;M; Γ⇒ Δ).

Proof: The proof of this theorem uses an intermediate

calculus. See Appendix C, Theorem 31 for details.

Corollary 16 (Decidability and finite model property). BLsf is
decidable, has the finite model property and has a constructive
decision procedure.

Proof: Immediate from Theorem 15.

Example 17. Consider the policy P containing the facts 1–

3 from Example 1. These facts do not entail deletefile1.

When we run the sequent x; ·;x : P ⇒T x :
deletefile1 ↘ . . . through the procedure of Fig-

ure 2, all branches except one close. That one branch pro-

duces a countermodel with three worlds x, y, z, relations

xSadminy, ySBobz, ySAlicez, xSBobz, xSAlicez, z ≤ y, x ≤
x, y ≤ y, z ≤ z, and the assignments h(deletefile1) = {}
and sf(Alice, Bob) = {x, y, z}. It is easily verified that

this countermodel satisfies x : P , but does not satisfy x :
deletefile1.

IV. POLICY SATURATION

Our second application of the labeled sequent calculus SeqC

is policy saturation, the problem of generating all possible

atomic consequences of a given policy. This is useful, e.g., to

pre-compile a policy to access control lists. The usual approach

to policy saturation is based in bottom-up logic programming

engines like Datalog, used in the context of access control

in systems like SecPAL [9]. We show that, surprisingly, our

construction of countermodels from Section III-B directly

yields a completely different algorithm to find all atomic

consequences of a policy.

Our algorithm works as follows. Suppose we wish to

find all atomic consequences of the policy ϕ1, . . . , ϕn. We

choose a symbolic world x and run the decision procedure of

Section III-B with Σ = x, M = ·, Γ = x : ϕ1, . . . , x : ϕn and

Δ = ·. If the algorithm ends with S = {}, then the policy

is (clearly) inconsistent and it proves any atomic formula. If,

on the other hand, the algorithm ends with S �= {}, then

as the following theorem states, x : p is provable from Γ
iff x ∈ h(p) in every model M in S. Thus, by running
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Axiom Rules

No other rule applies

Σ;M; Γ⇒T Δ↘ {CM(Σ;M; Γ;Δ)}CM
Σ;M, x ≤ y; Γ, x : p⇒T y : p,Δ↘ {} init

Σ;M; Γ, x : A sf B ⇒T x : A sf B,Δ↘ {} sf

Logical Rules

x : α �∈ Δ and x : β �∈ Δ Σ;M; Γ⇒T x : α, x : α ∧ β,Δ↘ S1 Σ;M; Γ⇒T x : β, x : α ∧ β,Δ↘ S2

Σ;M; Γ⇒T x : α ∧ β,Δ↘ S1 ∪ S2

∧R

∀y ∈ Σ.(x ≤ y ∈ M)⇒ (y : α �∈ Γ or y : β �∈ Δ)

∀y ∈ Σ.(y � x)⇒ (x = y or x �� y) Σ, y;M, x ≤ y; Γ, y : α⇒T y : β, x : α→ β,Δ↘ S

Σ;M; Γ⇒T x : α→ β,Δ↘ S
→R

y : α �∈ Δ and y : β �∈ Γ

Σ;M, x ≤ y; Γ, x : α→ β ⇒T y : α,Δ↘ S1 Σ;M, x ≤ y; Γ, x : α→ β, y : β ⇒T Δ↘ S2

Σ;M, x ≤ y; Γ, x : α→ β ⇒T Δ↘ S1 ∪ S2

→L

∀y ∈ Σ.(xSAy ∈ M)⇒ y : α �∈ Δ

∀y ∈ Σ.(y � x)⇒ (x = y or x �� y) Σ, y;M, xSAy; Γ⇒T y : α, x : A says α,Δ↘ S

Σ;M; Γ⇒T x : A says α,Δ↘ S
saysR

y : α �∈ Γ Σ;M, xSAy; Γ, x : A says α, y : α⇒T Δ↘ S

Σ;M, xSAy; Γ, x : A says α⇒T Δ↘ S
saysL

Frame Rules

xSAz �∈ M Σ;M, x ≤ y, ySAz, xSAz; Γ⇒T Δ↘ S

Σ;M, x ≤ y, ySAz; Γ⇒T Δ↘ S
mon-S

xSAz �∈ M Σ;M, xSBy, ySAz, xSAz; Γ⇒T Δ↘ S

Σ;M, xSBy, ySAz; Γ⇒T Δ↘ S
I

xSAy �∈ M Σ;M, xSBy, xSAy; Γ, x : A sf B ⇒T Δ↘ S

Σ;M, xSBy; Γ, x : A sf B ⇒T Δ↘ S
basic-sf

Fig. 2. SeqCT: Terminating, countermodel producing sequent calculus for BLsf, selected rules. Applicability conditions are written in boxes . Wherever
mentioned, the relation � is the equivalence relation of the contexts Σ;M; Γ;Δ in the conclusion of the rule. Similarly, � is the order of the underlying tree
of M.

our decision procedure on the policy with an empty goal and

intersecting the valuation of the initial worlds in the ensuing

countermodels, we obtain exactly the set of all provable atoms.

We call this property comprehensiveness.

Theorem 18 (Comprehensiveness). Suppose M is tree-like
and � (Σ;M; Γ ⇒T Δ ↘ S). Then � (Σ;M; Γ ⇒ x : p,Δ)
iff ∀M ∈ S. M |= x : p.

Proof: See Appendix D, Theorem 34.

Example 19. Let P be the set of formulas 1–3 from Ex-

ample 1 and let P ′ = P, Alice says deletefile1. We

intuitively expect that the only atomic consequence of P ′

is deletefile1. Using the saturation procedure described

above, we confirm this intuition. When we run the sequent

x; ·;x : P ′ ⇒T · ↘ . . . through the procedure of Figure 2,

it produces exactly one countermodel with one world x, the

relations x ≤ x, and the assignments h(deletefile1) = {x}
and sf(A,B) = {x}. Using Theorem 18, we conclude that
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the only atomic consequence of the policy is deletefile1,

which is also what we expected intuitively.

V. POLICY ABDUCTION

Next, we adapt the labeled sequent calculus SeqC to a

procedure for abduction over access policies written in BLsf.

Abduction is the problem of finding credentials that together

with a given policy Γ prove a given goal ϕ. These missing

credentials, the output of abduction, are represented by a

formula, often called the abducible. For example, if Γ entails ϕ
then no additional credentials are required and the abducible

is �. Similarly, for Γ = q → p, (r ∧ s) → p and ϕ = p,

the abducible is p ∨ q ∨ (r ∧ s). In practice, abducibles

are restricted to formulas of specific forms that can be easily

justified a priori (without assumptions).

In the following, we adapt the terminating calculus SeqCT

of Section III-B to obtain a general abduction method for BLsf.

Our abducibles are simple formulas containing the connectives

∧, ∨ and formulas �, ⊥, p and A says p at the leaves, as

formalized in the following definition.

Abducible Θ ::= p | A says p | � | ⊥ | Θ1 ∧ Θ2 |
Θ1 ∨ Θ2

We do not allow formulas of the forms ϕ → ψ and A sf
B in abducibles because we want that abducibles be easy to

justify a priori; this is true for formulas of the above restricted

forms, but is not the case for arbitrary formulas.

The abduction procedure is presented as a calculus SeqCA,

whose selected rules are shown in Figure 3. The calculus

is an adaptation of the terminating calculus SeqCT of Fig-

ure 2, obtained by replacing the output countermodels with

abducibles. Its sequents have the form Σ;M; Γ ⇒A Δ ↘ Θ.

The applicability conditions are the same, so backwards search

in the calculus terminates as it does for SeqCT. The main rule

is AB, which is a replacement of the earlier rule CM. In this

rule, the input contexts Σ;M; Γ;Δ are a saturated history, so

the output is an abducible, AB(Σ;M; Γ;Δ), which is defined

below. Here, root(M) is the root of the underlying tree of M.

AB(Σ;M; Γ;Δ) =
(
∨{p | y : p ∈ Δ and (root(M)) ≤ y ∈ M})∨

(
∨{A says p | y : p ∈ Δ and (root(M))SAy ∈ M})

Intuitively, for every labeled atom y : p ∈ Δ, we look

at the path between the root of the underlying tree of M

and y. Because the saturated history is closed under back-

ward application of rules (I), (mon-S) and (trans), either

(root(M)) ≤ y ∈ M or (root(M))SAy ∈ M for some

A ∈ I. In the former case, it suffices to add the credential

p to complete the proof and in the latter case it suffices

to add the credential A says p to complete the proof. If

both sets in the definition of AB(Σ;M; Γ;Δ) are empty, then

AB(Σ;M; Γ;Δ) = ⊥. This can happen only if we start from a

sequent that contains ⊥ in positive positions (i.e., as subgoals).

An abducible Θ is satisfied by extending the current policy

Γ with a set F ⊆ {p,A says p | A ∈ I}. Given such a set, we

define the satisfaction relation F |= Θ in the obvious way:

- F |= � (always)

- F |= p iff p ∈ F
- F |= A says p iff (A says p) ∈ F
- F |= Θ1 ∧ Θ2 iff F |= Θ1 and F |= Θ2

- F |= Θ1 ∨ Θ2 iff F |= Θ1 or F |= Θ2

The following theorem states that our abduction procedure

is sound in the sense that if the abducible of a sequent is

satisfied by F , then extending the hypotheses with F results

in a provable sequent.

Theorem 20 (Soundness). If � (Σ;M; Γ ⇒A Δ ↘ Θ) and
F |= Θ, then � (Σ;M; Γ, root(M) : F ⇒ Δ).

Proof: See Appendix E, Theorem 35.

Example 21. Let P be the set of formulas 1–3 from Ex-

ample 1. These facts do not entail deletefile1, so we

can try to run our abduction algorithm. When we run the

sequent x; ·;x : P ⇒A x : deletefile1 ↘ . . . through the

procedure of Figure 3, all branches except one close. That one

branch ends in a saturated history with three worlds x, y, z,

relations xSadminy, ySBobz, ySAlicez, xSBobz, xSAlicez, x ≤
x, y ≤ y, z ≤ z, and a Δ containing x : deletefile1,

y : deletefile1 and z : deletefile1. Consequently,

the abducible is the formula deletefile1 ∨ (admin says
deletefile1) ∨ (Bob says deletefile1) ∨ (Alice says
deletefile1), i.e., our goal deletefile1 can be proved if

any of admin, Bob, Alice assert it. This is exactly what we

expect from an informal analysis of the policy.

VI. RELATED WORK

We discuss closely related work on decision procedures,

saturation and abduction for access control logics.

A procedure to generate countermodels in the context of

access control is new to our work, but the importance of this

idea has been anticipated before. Regarding decision proce-

dures, there are some decidability results for access control

logics, e.g., for the logic ICL [14] and the logic programming

language SecPAL [9], but for the logic presented in this paper,

the decidability result is also new. Our specific countermodel

producing decision procedure is based on our prior work on

multi-modal logics [15], which in turn is inspired by work

for uni-modal logics, notably that of Gasquet et al. [18] and

Negri [21, 22]. In terms of presentation, our labeled sequent

calculus is presented is similar to that of Negri [21].

The idea of saturation for access policies has been investi-

gated several times, notably in access control languages like

SecPAL and Binder whose implementations or semantics are

defined by translation into Datalog [9, 13]. Our technique of

saturating policies using a comprehensive set of countermodels

is novel. Saturation by translation to Datalog is likely more

efficient than our method, but our method is more general

because it covers all connectives of the logic.

Abduction for access policies has been investigated formally

by Becker et al. [10, 11] in the context of SecPAL. Their proce-

dure is based on an adaptation of a tabled logic programming

engine. Our algorithm is more general because it handles all
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Axiom Rules

No other rule applies

Σ;M; Γ⇒A Δ↘ AB(Σ;M; Γ;Δ)
AB

Σ;M, x ≤ y; Γ, x : p⇒A y : p,Δ↘ � init

Σ;M; Γ, x : A sf B ⇒A x : A sf B,Δ↘ � sf

Logical Rules

x : α �∈ Δ and x : β �∈ Δ Σ;M; Γ⇒A x : α, x : α ∧ β,Δ↘ Θ1 Σ;M; Γ⇒A x : β, x : α ∧ β,Δ↘ Θ2

Σ;M; Γ⇒A x : α ∧ β,Δ↘ Θ1 ∧Θ2

∧R

∀y ∈ Σ.(x ≤ y ∈ M)⇒ (y : α �∈ Γ or y : β �∈ Δ)

∀y ∈ Σ.(y � x)⇒ (x = y or x �� y) Σ, y;M, x ≤ y; Γ, y : α⇒A y : β, x : α→ β,Δ↘ Θ

Σ;M; Γ⇒A x : α→ β,Δ↘ Θ
→R

y : α �∈ Δ and y : β �∈ Γ

Σ;M, x ≤ y; Γ, x : α→ β ⇒A y : α,Δ↘ Θ1 Σ;M, x ≤ y; Γ, x : α→ β, y : β ⇒A Δ↘ Θ2

Σ;M, x ≤ y; Γ, x : α→ β ⇒A Δ↘ Θ1 ∧Θ2

→L

∀y ∈ Σ.(xSAy ∈ M)⇒ y : α �∈ Δ

∀y ∈ Σ.(y � x)⇒ (x = y or x �� y) Σ, y;M, xSAy; Γ⇒A y : α, x : A says α,Δ↘ Θ

Σ;M; Γ⇒A x : A says α,Δ↘ Θ
saysR

y : α �∈ Γ Σ;M, xSAy; Γ, x : A says α, y : α⇒A Δ↘ Θ

Σ;M, xSAy; Γ, x : A says α⇒A Δ↘ Θ
saysL

Frame Rules

xSAz �∈ M Σ;M, x ≤ y, ySAz, xSAz; Γ⇒A Δ↘ Θ

Σ;M, x ≤ y, ySAz; Γ⇒A Δ↘ Θ
mon-S

xSAz �∈ M Σ;M, xSBy, ySAz, xSAz; Γ⇒A Δ↘ Θ

Σ;M, xSBy, ySAz; Γ⇒A Δ↘ Θ
I

xSAy �∈ M Σ;M, xSBy, xSAy; Γ, x : A sf B ⇒A Δ↘ Θ

Σ;M, xSBy; Γ, x : A sf B ⇒A Δ↘ Θ
basic-sf

Fig. 3. SeqCA: Abduction calculus calculus for BLsf, selected rules.

connectives of the logic, but may be less efficient. Abductive

credential gathering for access policies has been implemented

several times using heuristics, e.g., in the Grey system [7].

VII. CONCLUSION

Using a specific access control logic BLsf, we have argued

that Kripke semantics, manifest in the symbolic framework

of labeled sequent calculi, can be used to solve three practical

access control problems: Countermodel generation, policy sat-

uration, and policy abduction. The foundational underpinning

of our work is a non-trivial, countermodel producing decision

procedure for the logic BLsf. The same decision procedure

yields algorithms for policy saturation and abduction.

In future work, we plan to implement our algorithms and

evaluate them on realistic access policies. The main chal-

lenge we anticipate is that our algorithms, as presented in

this paper, have significant computational complexity, and

may be inefficient in practice. To alleviate this problem, we

plan to investigate adaptations of our techniques to goal-

directed (backchaining) search, which is usually very efficient

in practice. The adaptation is likely to be non-trivial because,

unlike the rules of the sequent calculus of Figure 1, rules
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of goal-directed search are non-invertible, which may make

construction of countermodels very difficult.
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APPENDIX

A. Proofs from Section III

Lemma 22. Let Σ;M; Γ;Δ be a saturated history, C ⊆ {x ≤
y | x � y} and M′; Γ′ = (M ∪ C); Γ. Then:

1) If x ≤ y ∈ M′, then x(≤ ∪ C)∗y ∈ M

2) If xSAy ∈ M′, then x((≤ ∪ S∗ ∪ C)∗ ◦ SA)y ∈ M.
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Proof: By induction on iteration of frame rules that leads

to the closure (M ∪ C); Γ. (1) is straightforward. For (2), we

need some Lemmas. First, we prove that for any intermediate

result Mn; Γn in the iteration that defines (M ∪ C); Γ, if x(≤∪
N∗)y ∈ Mn, then x(≤∪C∪N∗)∗y ∈ M. Using this we prove

that if x : A sf B ∈ Γn, then x : A sf B ∈ Γ. The critical rules

are (mon1-sf) and (mon2-sf). Finally, we prove the required

statement. The critical rule is (basic-sf).

Lemma 23 (Lemma 11). If Σ;M; Γ;Δ is a saturated history,
then CM(Σ;M; Γ;Δ) has a monotonic valuation h, i.e., x ∈
h(p) and x ≤ y ∈ CM(Σ;M; Γ;Δ) imply y ∈ h(p).

Proof: Suppose that x ≤ y ∈ CM(Σ;M; Γ;Δ), i.e., x ≤
y ∈ M′ and x ∈ h(p). From the latter, there is a z such that

z ≤ x ∈ M and z : p ∈ Γ. From Lemma 22(1) it follows that

x(≤ ∪ C)∗y, where all the relations ≤ are in M. Hence, we

have a chain x = x0(≤ ∪ C)x1 . . . (≤ ∪ C)xn = y where all

relations ≤ are in M. We induct on i to show that T (p) ∈
Sfor(xi).

- For i = 0, x0 = x and we know that z : p ∈ Γ and

z ≤ x ∈ M. It follows from definition of Sfor that T (p) ∈
Sfor(x), as required.

- For the induction step, assume that T (p) ∈ Sfor(xi). We

prove that T (p) ∈ Sfor(xi+1). We consider two possible

cases on the relation xi(≤ ∪ C)xi+1.

– xi ≤ xi+1 ∈ M. Because T (p) ∈ Sfor(xi), there is

a z′ such that z′ ≤ xi ∈ M and z′ : p ∈ Γ. Hence,

also z′ ≤ xi+1 ∈ M. So T (p) ∈ Sfor(xi+1).
– (xi, xi+1) ∈ C. Because of the definition of C,

Sfor(xi) ⊆ Sfor(xi+1), so T (p) ∈ Sfor(xi) immedi-

ately implies T (p) ∈ Sfor(xi+1).

This completes the inductive proof that T (p) ∈ Sfor(xi). In

particular, T (p) ∈ Sfor(xn). By definition of Sfor, there is a

z′ such that z′ ≤ xn ∈ M and z′ : p ∈ Γ. This immediately

implies xn ∈ h(p), i.e., y ∈ h(p), as required.

Lemma 24 (Lemma 12). The following hold for any saturated
history Σ;M; Γ;Δ:

A. If T (ϕ) ∈ Sfor(Σ;M; Γ;Δ, x), then CM(Σ;M; Γ;Δ) |=
x : ϕ

B. If F (ϕ) ∈ Sfor(Σ;M; Γ;Δ, x), then CM(Σ;M; Γ;Δ) �|=
x : ϕ

Proof: We prove both properties simultaneously by

lexicographic induction, first on ϕ, and then on the partial

(tree-like) order � of M. (Note that we cannot induct on

either M or the relation in CM(Σ;M; Γ;Δ), because both of

these may potentially be cyclic.) Since the context Σ;M; Γ;Δ
is fixed here, we abbreviate Sfor(Σ;M; Γ;Δ, x) to Sfor(x).
Let C be the set {(x, y) | x � y}.

Proof of A.

Case. ϕ = p. We are given that T (p) ∈ Sfor(x) and want to

prove that CM(Σ;M; Γ;Δ) |= x : p. Since T (p) ∈ Sfor(x),
we know from definition of the function Sfor that there is a y

with y ≤ x ∈ M and y : p ∈ Γ. Since y ≤ x ∈ M, we know

from definition of CM(Σ;M; Γ;Δ) that x ∈ h(p). Hence, by

definition of |=, we have CM(Σ;M; Γ;Δ) |= x : p.

Case. ϕ = �. Here, CM(Σ;M; Γ;Δ) |= x : � is trivial by

the definition of |=.

Case. ϕ = ⊥. Then the pre-condition T (⊥) ∈ Sfor(x) or,

equivalently, x : ⊥ ∈ Δ is impossible by clause (3) of the

definition of saturated history. So this case is vacuous.

Case. ϕ = α ∧ β. We are given that T (α ∧ β) ∈ Sfor(x)
or, equivalently, that x : α ∧ β ∈ Γ. By clause (5) of the

definition of saturated history, x : α ∈ Γ and x : β ∈ Γ.

Hence, T (α) ∈ Sfor(x) and T (β) ∈ Sfor(x). By the i.h.,

CM(Σ;M; Γ;Δ) |= x : α and CM(Σ;M; Γ;Δ) |= x : β.

Hence, CM(Σ;M; Γ;Δ) |= x : α ∧ β, as required.

Case. ϕ = α ∨ β. We are given that T (α ∨ β) ∈ Sfor(x)
or, equivalently, that x : α ∨ β ∈ Γ. By clause (7) of the

definition of saturated history, either x : α ∈ Γ or x : β ∈ Γ.

Hence, either T (α) ∈ Sfor(x) or T (β) ∈ Sfor(x). By the i.h.,

either CM(Σ;M; Γ;Δ) |= x : α or CM(Σ;M; Γ;Δ) |= x : β.

In either case, CM(Σ;M; Γ;Δ) |= x : α ∧ β, as required.

Case. ϕ = α → β. We are given that T (α → β) ∈ Sfor(x).
We need to show that for any y such that x ≤ y in the model

and CM(Σ;M; Γ;Δ) |= y : α, we have CM(Σ;M; Γ;Δ) |=
y : β. Pick any y such that x ≤ y in the model and

CM(Σ;M; Γ;Δ) |= y : α. From Lemma 22(1), it follows

that x(≤ ∪ C)∗y, where the ≤ relations are in M. Hence,

there is a chain x = x0(≤ ∪ C)x1 . . . (≤ ∪ C)xn = y,

where the ≤ relations are in M. We induct on i to prove

that T (α→ β) ∈ Sfor(xi) for each i.

• For i = 0, x0 = x and we are given that T (α → β) ∈
Sfor(x), so we are done.

• For the inductive case, assume that T (α→ β) ∈ Sfor(xi)
for some i. We show that T (α → β) ∈ Sfor(xi+1).
We consider two possible cases on the relation xi(≤ ∪
C)xi+1:

– xi ≤ xi+1 ∈ M: From the i.h., we know that T (α→
β) ∈ Sfor(xi). Hence, there is a z′ such that z′ ≤
xi ∈ M and z′ : α → β ∈ Γ. Clearly, z′ ≤ xi+1 ∈
M, so T (α→ β) ∈ Sfor(xi+1).

– (xi, xi+1) ∈ C: Because of the definition of C,

Sfor(xi) ⊆ Sfor(xi+1), so T (α → β) ∈ Sfor(xi)
immediately implies T (α→ β) ∈ Sfor(xi+1).

This completes the inductive proof. It follows, in particular,

that T (α → β) ∈ Sfor(xn). Consequently, there is some z′

such that z′ ≤ xn = y ∈ M and z′ : α → β ∈ Γ. Hence,

by clause (9) of the definition of saturated history, we must

have either y : α ∈ Δ or y : β ∈ Γ. The former implies, by

the i.h., that CM(Σ;M; Γ;Δ) �|= y : α, which contradicts our

assumption that CM(Σ;M; Γ;Δ) |= y : α. So, we must have

y : β ∈ Γ. This implies T (β) ∈ Sfor(y) and hence, by the

142142149



i.h., that CM(Σ;M; Γ;Δ) |= y : β.

Case. ϕ = A says α. We are given that T (A says α) ∈
Sfor(x). We need to show that CM(Σ;M; Γ;Δ) |= x : A says
α, i.e., for any y such that xSAy in the model, we have

CM(Σ;M; Γ;Δ) |= y : α. Pick any y such that xSAy in the

model. By Lemma 22(2), we have x((≤ ∪ S∗ ∪ C)∗ ◦ SA)y,

where the relations ≤ and SA are in M. So there are x0, . . . , xn
such that x = x0(≤∪ S∗ ∪C)x1 . . . (≤∪ S∗ ∪C)xnSAy. We

now prove, by induction on i, that T (A says α) ∈ Sfor(xi)
for each i.

• For i = 0, x0 = x and we are given that T (A says α) ∈
Sfor(x).

• For the inductive case, assume that T (A says α) ∈
Sfor(xi) for some i. We show that T (A says α) ∈
Sfor(xi+1) by case analyzing the relation xi(≤ ∪ S∗ ∪
C)xi+1.

– xi(≤ ∪ S∗)xi+1 ∈ M: By the i.h., T (A says α) ∈
Sfor(xi) so there is some z such that z(≤∪S∗)∗xi ∈
M and z : A says α ∈ Γ. Clearly, we have z(≤ ∪
S∗)∗xi+1 ∈ M, so T (A says α) ∈ Sfor(xi+1).

– (xi, xi+1) ∈ C: Because of the definition of C,

Sfor(xi+1) ⊇ Sfor(xi). Thus, T (A says α) ∈
Sfor(xi) immediately implies T (A says α) ∈
Sfor(xi+1).

Since we just proved that T (A says α) ∈ Sfor(xi), it follows,

in particular, that T (A says α) ∈ Sfor(xn). Consequently,

there is some z′ such that z′(≤ ∪ S∗)∗xn ∈ M and

z′ : A says α ∈ Γ. Then, we also have (within M) that:

z′(≤ ∪ S∗)∗x′nSAy. So, due to conditions (I) and (mon-S),

z′SAy ∈ M. Hence, by clause (11) of the definition of

saturated history, we must have y : α ∈ Γ. Therefore,

T (α) ∈ Sfor(y) and by the i.h., CM(Σ;M; Γ;Δ) |= y : α.

Case. ϕ = A sf B. We are given that T (A sf B) ∈ Sfor(x)
and want to show that CM(Σ;M; Γ;Δ) |= x : A sf B.

From the assumption T (A sf B) ∈ Sfor(x) we know that

x : A sf B ∈ Γ, so by the definition of CM(Σ;M; Γ;Δ), we

have x ∈ sf(A,B). Hence, by definition of |=, we get that

CM(Σ;M; Γ;Δ) |= x : A sf B.

Proof of B.

Case. ϕ = p. We are given that F (p) ∈ Sfor(x) or,

equivalently, that x : p ∈ Δ. Suppose, for the sake of

contradiction, that CM(Σ;M; Γ;Δ) |= x : p. Then, x ∈ h(p)
and hence, from the construction of the countermodel,

there is a z such that z ≤ x ∈ M and z : p ∈ Γ. This

immediately contradicts clause (2) of the definition of

saturated history because we have z ≤ x ∈ M, z : p ∈ Γ
and x : p ∈ Δ. Hence we must have CM(Σ;M; Γ;Δ) �|= x : p.

Case. ϕ = �. Then the pre-condition F (�) ∈ Sfor(x) or,

equivalently, x : � ∈ Δ is impossible by clause (3) of the

definition of saturated history. So this case is vacuous.

Case. ϕ = ⊥. Here, CM(Σ;M; Γ;Δ) �|= x : ⊥ is trivial by

the definition of |=.

Case. ϕ = α ∧ β. Suppose F (α ∧ β) ∈ Sfor(x). Then,

x : α ∧ β ∈ Δ. Hence, by clause (6) of the definition of

saturated history, either x : α ∈ Δ or x : β ∈ Δ. Therefore,

either F (α) ∈ Sfor(x) or F (β) ∈ Sfor(x). By i.h., either

CM(Σ;M; Γ;Δ) �|= x : α or CM(Σ;M; Γ;Δ) �|= x : β. In

either case, CM(Σ;M; Γ;Δ) �|= x : α ∧ β.

Case. ϕ = α ∨ β. Suppose F (α ∨ β) ∈ Sfor(x).
Then, x : α ∨ β ∈ Δ. Hence, by clause (8) of the

definition of saturated history, x : α ∈ Δ and x : β ∈ Δ.

Therefore, F (α) ∈ Sfor(x) and F (β) ∈ Sfor(x). By i.h.,

CM(Σ;M; Γ;Δ) �|= x : α and CM(Σ;M; Γ;Δ) �|= x : β. By

definition of |=, we have CM(Σ;M; Γ;Δ) �|= x : α ∨ β.

Case. ϕ = α → β. Suppose F (α → β) ∈ Sfor(x). This

implies, by definition of Sfor, that x : α→ β ∈ Δ. By clause

(10) of the definition of saturated history, we have that either:

1) There is a y such that x ≤ y ∈ M, y : α ∈ Γ and

y : β ∈ Δ or

2) There is a y such that y �= x, y � x and x � y.

If (a) holds, then by the i.h., CM(Σ;M; Γ;Δ) |= y :
α and CM(Σ;M; Γ;Δ) �|= y : β. Further, x ≤ y, so

CM(Σ;M; Γ;Δ) �|= x : α→ β.

If (b) holds, then since x � y, F (α → β) ∈ Sfor(y).
By the i.h. on the world y, which is strictly smaller

than x in the relation � (since y �= x), it follows that

CM(Σ;M; Γ;Δ) �|= y : α→ β. Note that in CM(Σ;M; Γ;Δ),
x ≤ y. So, by Lemma 5, CM(Σ;M; Γ;Δ) �|= x : α → β, as

required.

Case. ϕ = A says α. Suppose F (A says α) ∈ Sfor(x). This

implies, by definition of Sfor that x : A says α ∈ Δ. By clause

(12) of the definition of saturated history, we have that either:

(a) There is a y such that xSAy ∈ M and y : α ∈ Δ or

(b) There is a y such that y �= x, y � x and x � y.

If (a) holds, then by the i.h., CM(Σ;M; Γ;Δ) �|= y : α.

Since xSAy, it immediately follows that CM(Σ;M; Γ;Δ) �|=
x : A says α.

If (b) holds, then since x � y, F (A says α) ∈ Sfor(y). By

the i.h. on the world y, which is strictly smaller in the order �
(since x �= y), it follows that CM(Σ;M; Γ;Δ) �|= y : A says α.

Since in CM(Σ;M; Γ;Δ) we have x ≤ y, Lemma 5

immediately implies CM(Σ;M; Γ;Δ) �|= x : A says α, as

required.

Case. ϕ = A sf B. Suppose F (A sf B) ∈ Sfor(x). Hence,

x : A sf B ∈ Δ. By clause (13) of definition of saturated

history, x : A sf B �∈ Γ. Hence, from the definition of

CM(Σ;M; Γ;Δ), x �∈ sf(A,B). So, by definition of |=, we

get that CM(Σ;M; Γ;Δ) �|= x : A sf B, as required.
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B. SeqCCM: Countermodels for BLsf

We define an intermediate sequent calculus SeqCCM, written

⇒CM, which uses the notion of saturated histories to emit

countermodels from unprovable sequents. Although this cal-

culus is not a decision procedure, we find it a useful step

in proving several results, including the correctness of the

terminating calculus SeqCT as well as the results on saturation.

Sequents of SeqCCM have the form Σ;M; Γ ⇒CM Δ ↘
S, where S is a finite set of finite models. We write �
(Σ;M; Γ ⇒CM Δ ↘ S) if Σ;M; Γ ⇒CM Δ ↘ S has a

proof. The meaning of Σ;M; Γ ⇒CM Δ ↘ S depends on S.

If � (Σ;M; Γ ⇒CM Δ ↘ {}), then � (Σ;M; Γ ⇒ Δ) and if

� (Σ;M; Γ ⇒CM Δ ↘ S) with S �= {}, then every model

M ∈ S is a countermodel to Σ;M; Γ ⇒ Δ in the sense of

(the converse of) Definition 6.

Selected rules of the sequent calculus SeqCCM are shown

in Figure 4. First, every rule in the ordinary sequent calculus

(Figure 1) is modified to have in the conclusion the union of

the (counter)models in the premises. This is sound because the

rules of the sequent calculus are invertible (i.e., the conclusion

of each rule holds iff the premises hold). Second, there is a new

rule (CM) that produces the countermodel CM(Σ;M; Γ;Δ)
when Σ;M; Γ;Δ is a saturated history.

We emphasize again that this calculus is not necessarily

a decision procedure because it includes all rules of ⇒ and

hence admits all of the latter’s infinite backwards derivations

as well.

Theorem 25 (Soundness 1). If � (Σ;M; Γ ⇒CM Δ ↘ {}),
then � (Σ;M; Γ⇒ Δ).

Proof: By induction on the given derivation of

Σ;M; Γ ⇒CM Δ ↘ {}. Note that the case of rule (CM) does

not apply because the set of countermodels in it is non-empty.

The proof is straightforward because the rules of ⇒CM mimic

those of ⇒.

Theorem 26 (Soundness 2). If � (Σ;M; Γ ⇒CM Δ ↘ S),
then for every model M ∈ S, M �|= (Σ;M; Γ⇒ Δ).

Proof: By induction on the given derivation of

Σ;M; Γ⇒CM Δ↘ S and case analysis of its last rule. For all

other rules, except (CM), we simply observe that contexts in all

major premises are a superset of corresponding contexts in the

conclusion and hence we can trivially conclude by induction

on one of the premises. The case of rule (CM) is immediate

from Corollary 13.

C. Proofs from Section III-B

Lemma 27 (Correctness of CM). Let Σ, M, Γ and Δ be such
that M is tree-like and no rule except (CM) applies backwards
to Σ;M; Γ ⇒T Δ ↘ . . .. Then, Σ;M; Γ;Δ is a saturated
history.

Proof: We verify all conditions in the definition of a

saturated history. Each condition corresponds to the negation

of premises of one of the rules of SeqCT.

Lemma 28 (Tree-like M). Let M be tree-like. Then, the M′

in any sequent Σ′;M′; Γ′ ⇒T Δ′ ↘ . . . appearing in a
backwards search starting from Σ;M; Γ⇒T Δ↘ . . . is tree-
like.

Proof: By backwards analysis of each rule observing that

the M in the premises of each rule is tree-like if that in the

conclusion is.

Note that the underlying tree of M in any sequent of a

backward proof search starting from a single formula consists

of exactly those edges that are introduced in one of the rules

(→R) and (saysR).

Theorem 29 (Termination, Theorem 14). The following hold:

1) Any backwards derivation in SeqCT starting from a
sequent Σ;M; Γ⇒T Δ with M tree-like terminates.

2) For any Σ;M; Γ;Δ with M tree-like, there is an S such
that � (Σ;M; Γ ⇒T Δ ↘ S) and such an S can be
finitely computed.

Proof: Proof of (1): Suppose, for the sake of contradic-

tion, that there is an infinite backward proof starting from

Σ;M; Γ ⇒T Δ ↘ . . .. Since the proof is finitely branching

(every rule has a bounded number of premises), it must have an

infinite path. Observe that M,Γ,Δ are monotonic backwards,

so the applicability conditions in the rules prevent application

of the same rule on the same principal labeled formula more

than once in any branch. Since there are only a finite number

of formulas that can appear in any search (weak subformula

property, Theorem 8), it follows that in the infinite path there

must be an infinite number of labels. Let T be the underlying

tree of this entire path (i.e., the underlying tree of the union

of M for each sequent on this path). Since the tree is finitely

branching (because we cannot apply rules (→R) and (saysR)

to the same label infinitely often), it must have an infinite

path. Let this path be x0 � x1 � . . .. Let Si be the

value of Sfor(xi) when either of the rules (→R) and (saysR)

is applied to create xi+1. Note that for i < j, Si �⊇ Sj ,

because if Si ⊇ Sj , then at the time that xj+1 is created,

Sfor(xi) ⊇ Si ⊇ Sj = Sfor(xj), so the application of the

rules (→R) and (saysR) on xj would be blocked, so xj+1

could not have been created. Hence, for i < j, Si �⊇ Sj .

Call this fact (A). (The reader may note that the deduction

Sfor(xi) ⊇ Si two sentences ago relies on the fact that

Sfor(x) increases monotonically as we move backwards in

a derivation.)

If Φ is the set of all subformulas of the original sequent

we start from, together with formulas of the form A sf B
where A,B are in the sequent, then by Theorem 8, each

Si ⊆ {T (α) | α ∈ Φ} ∪ {F (α) | α ∈ Φ}. Note that the right

hand side is a finite set, so its subsets form a finite partial

order under set inclusion. Call this partial order P . Since P is

finite, it has a finite number of chains and since the sequence

S1, S2, . . . is infinite, at least one infinite subsequence R of

S1, S2, . . . must contain elements from only a single chain

in P . Consider any two elements Si, Sj ∈ P with i < j.
Since P is a chain, we must have either Si ⊇ Sj or Si � Sj .
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Axiom Rules

Σ;M; Γ;Δ is a saturated history

Σ;M; Γ⇒CM Δ↘ {CM(Σ;M; Γ;Δ)}CM
Σ;M, x ≤ y; Γ, x : p⇒CM y : p,Δ↘ {} init

Σ;M; Γ, x : A sf B ⇒CM x : A sf B,Δ↘ {} sf

Logical Rules

Σ;M; Γ⇒CM x : α, x : α ∧ β,Δ↘ S1 Σ;M; Γ⇒CM x : β, x : α ∧ β,Δ↘ S2

Σ;M; Γ⇒CM x : α ∧ β,Δ↘ S1 ∪ S2

∧R

Σ, y;M, x ≤ y; Γ, y : α⇒CM y : β, x : α→ β,Δ↘ S

Σ;M; Γ⇒CM x : α→ β,Δ↘ S
→R

Σ;M, x ≤ y; Γ, x : α→ β ⇒CM y : α,Δ↘ S1 Σ;M, x ≤ y; Γ, x : α→ β, y : β ⇒CM Δ↘ S2

Σ;M, x ≤ y; Γ, x : α→ β ⇒CM Δ↘ S1 ∪ S2

→L

Σ, y;M, xSAy; Γ⇒CM y : α, x : A says α,Δ↘ S

Σ;M; Γ⇒CM x : A says α,Δ↘ S
saysR

Σ;M, xSAy; Γ, x : A says α, y : α⇒CM Δ↘ S

Σ;M, xSAy; Γ, x : A says α⇒CM Δ↘ S
saysL

Frame Rules

Σ;M, x ≤ y, ySAz, xSAz; Γ⇒CM Δ↘ S

Σ;M, x ≤ y, ySAz; Γ⇒CM Δ↘ S
mon-S

Σ;M, xSBy, ySAz, xSAz; Γ⇒CM Δ↘ S

Σ;M, xSBy, ySAz; Γ⇒CM Δ↘ S
I

Σ;M, xSBy, xSAy; Γ, x : A sf B ⇒CM Δ↘ S

Σ;M, xSBy; Γ, x : A sf B ⇒CM Δ↘ S
basic-sf

Fig. 4. SeqCCM: Countermodel producing sequent calculus for BLsf, selected rules

The former is ruled out fact (A). So Si � Sj . Hence, we

have S1 � S2 � S3 . . ., so the chain P contains an infinite

ascending sequence, which is a contradiction because P is

finite.

Proof of (2): Follows immediately from (1), Lemma 28, and

the observation that all applicability conditions are finitely

computable.

Lemma 30 (Simulation). If M is tree-like and � (Σ;M; Γ⇒T
Δ↘ S), then � (Σ;M; Γ⇒CM Δ↘ S).

Proof: By induction on the given derivation of

Σ;M; Γ ⇒T Δ ↘ S. The case of rule (CM) follows from

Lemma 27. The rest of the cases are immediate from the i.h.

The only fact to take care of is that the tree-like property holds

for each i.h. application. This follows from Lemma 28.

Theorem 31 (Correctness, Theorem 15). For a tree-like M,
suppose that S is such that � (Σ;M; Γ⇒T Δ↘ S) (such an
S must exist and can be computed using Theorem 29). Then:

1) If S = {}, then |= (Σ;M; Γ⇒ Δ).
2) If S �= {}, then every model M in S is a countermodel

to the sequent, i.e., M �|= (Σ;M; Γ⇒ Δ).

Proof: By Lemma 30, we have that � (Σ;M; Γ ⇒CM

Δ ↘ S). Now, (1) follows from Theorems 25 and 7 and (2)

follows from Theorem 26.

D. Proofs from Section IV

Lemma 32 (Comprehensiveness 1). Suppose � (Σ;M; Γ⇒CM
Δ↘ S). Suppose x and p are such that ∀M ∈ S.M |= x : p.
Then, � (Σ;M; Γ⇒CM x : p,Δ↘ {}).

Proof: By induction on the given derivation of

Σ;M; Γ ⇒CM Δ ↘ S and case analysis of its last rule (the

rules are listed in Figure 4). Representative cases are shown

below:

Case.
Σ;M; Γ;Δ is a saturated history

Σ;M; Γ⇒CM Δ↘ {CM(Σ;M; Γ;Δ)}CM

Here S = {CM(Σ;M; Γ;Δ)}. The given condition

∀M ∈ S. M |= x : p implies (by definition of CM) that

there is a z such that z ≤ x and z : p ∈ Γ. Therefore, by rule

(init), � (Σ;M; Γ⇒CM x : p,Δ↘ {}), as required.

Case.
Σ;M, y′ ≤ y; Γ, y′ : q ⇒CM y : q,Δ↘ {} init

By rule (init), we have � (Σ;M, y′ ≤ y; Γ, y′ : q ⇒CM x :
p, y : q,Δ↘ {}), which is what we need to prove.
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Case.

Σ;M; Γ⇒CM y : α, y : α ∧ β,Δ↘ S1

Σ;M; Γ⇒CM y : β, y : α ∧ β,Δ↘ S2

Σ;M; Γ⇒CM y : α ∧ β,Δ↘ S1 ∪ S2

∧R

Here, S = S1 ∪ S2. We are given that ∀M ∈ (S1 ∪
S2). M |= x : p.

1) ∀M ∈ S1. M |= x : p (From assumption

∀M ∈ (S1 ∪ S2). M |= x : p)

2) � (Σ;M; Γ⇒CM x : p, y : α, y : α ∧ β,Δ↘ {}) (i.h.

on 1st premise and (1))

3) ∀M ∈ S2. M |= x : p (From assumption

∀M ∈ (S1 ∪ S2). M |= x : p)

4) � (Σ;M; Γ⇒CM x : p, y : β, y : α ∧ β,Δ↘ {}) (i.h.

on 2nd premise and (2))

5) � (Σ;M; Γ⇒CM x : p, y : α ∧ β,Δ↘ {}) (Rule (∧R)

on 2,4)

Lemma 33 (Comprehensiveness 2). Suppose � (Σ;M; Γ⇒CM
Δ↘ S). Suppose x and p are such that � (Σ;M; Γ⇒CM x :
p,Δ↘ {}). Then, ∀M ∈ S. M |= x : p.

Proof: Suppose M ∈ S. From Theorem 26, we know that

(1) ∀w,w′ ∈ Σ. (wRw′ ∈ M) ⇒ (wRw′ ∈ M), (2) ∀(w :
ϕ) ∈ Γ. M |= w : ϕ and (3) ∀(w : ϕ) ∈ Δ. M �|= w : ϕ. By

Theorem 25 applied to the assumption � (Σ;M; Γ ⇒CM x :
p,Δ↘ {}), we know that � (Σ;M; Γ⇒ x : p,Δ). Applying

Theorem 7, we get that M, ρ |= (Σ;M; Γ ⇒ x : p,Δ) for

every ρ and, in particular, for ρ(x) = x. Using (1)–(3) and the

definition of |= on sequents, we immediately get M |= x : p,

as required.

Theorem 34 (Comprehensiveness, Theorem 18). Suppose M

is tree-like and � (Σ;M; Γ ⇒T Δ ↘ S). Then � (Σ;M; Γ ⇒
x : p,Δ) iff ∀M ∈ S. M |= x : p.

Proof: If � (Σ;M; Γ ⇒T Δ ↘ S), then by Lemma 30,

� (Σ;M; Γ⇒CM Δ↘ S).
Suppose � (Σ;M; Γ ⇒ x : p,Δ). Then, by Theorems 29

and 31, � (Σ;M; Γ ⇒T x : p,Δ ↘ {}). By Lemma 30,

� (Σ;M; Γ ⇒CM x : p,Δ ↘ {}). By Lemma 33, ∀M ∈
S. M |= x : p.

Conversely, suppose that ∀M ∈ S. M |= x : p. By

Lemma 32, � (Σ;M; Γ⇒CM x : p,Δ↘ {}). By Theorem 25,

� (Σ;M; Γ⇒ x : p,Δ).

E. Proofs from Section V
Theorem 35 (Soundness, Theorem 20). If � (Σ;M; Γ ⇒A
Δ↘ Θ) and F |= Θ, then � (Σ;M; Γ, root(M) : F ⇒ Δ).

Proof: By induction on the given derivation of

Σ;M; Γ ⇒A Δ ↘ Θ and case analysis of its last rule. There

is only one interesting case, that of the rule (AB).

Case.
No other rule applies

Σ;M; Γ⇒A Δ↘ AB(Σ;M; Γ;Δ)
AB

By definition, we know that

AB(Σ;M; Γ;Δ) =
(
∨{p | y : p ∈ Δ and (root(M)) ≤ y ∈ M})∨

(
∨{A says p | y : p ∈ Δ and (root(M))SAy ∈ M})

We are given that F |= AB(Σ;M; Γ;Δ), so one of the

following must be true:

1) There is a y : p ∈ Δ, (root(M)) ≤ y ∈ M and p ∈ F :

Then, Σ;M; Γ, root(M) : F ⇒ Δ by rule (init).

2) There is a y : p ∈ Δ, (root(M))SAy ∈ M and

(A says p) ∈ F : Then, we have can complete a proof

of Σ;M; Γ, root(M) : F ⇒ Δ as follows:

a) Σ;M; Γ, root(M) : F, y : p⇒ Δ (Rule (init))

b) Σ;M; Γ, root(M) : F ⇒ Δ (Rule (saysL))

The rule (saysL) in step (b) is correct because (A says
p) ∈ F and (root(M))SAy ∈ M.
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