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Abstract—In the last several years, micro-blogging Online
Social Networks (OSNs), such as Twitter, have taken the world
by storm, now boasting over 100 million subscribers. As an
unparalleled stage for an enormous audience, they offer fast
and reliable centralized diffusion of pithy tweets to great mul-
titudes of information-hungry and always-connected followers.
At the same time, this information gathering and dissemination
paradigm prompts some important privacy concerns about
relationships between tweeters, followers and interests of the
latter. In this paper, we assess privacy in today’s Twitter-like
OSNs and describe an architecture and a trial implementation
of a privacy-preserving service called Hummingbird. It is
essentially a variant of Twitter that protects tweet contents,
hashtags and follower interests from the (potentially) prying
eyes of the centralized server. We argue that, although in-
herently limited by Twitter’s mission of scalable information-
sharing, this degree of privacy is valuable. We demonstrate, via
a working prototype, that Hummingbird’s additional costs are
tolerably low. We also sketch out some viable enhancements
that might offer better privacy in the long term.

I. INTRODUCTION

Online Social Networks (OSNs) offer multitudes of peo-

ple a means to communicate, share interests, and update

others about their current activities. Social networking ser-

vices are progressively replacing more “traditional” one-

to-one communication systems, such as email and instant

messaging. Alas, as their proliferation increases, so do

privacy concerns with regard to the amount and sensitivity

of disseminated information.

Popular OSNs, such as Facebook, Twitter, Google+, pro-

vide users with customizable “privacy settings”, i.e., users

can specify other users (or groups) that can access their

content. Information is often classified by categories, e.g.,

personal, text post, photo or video. For each category, the

account owner can define a coarse-grained access control list

(ACL). This strategy relies on the trustworthiness of OSN

providers and on users appropriately controlling access to

their data. Therefore, users need to trust the service not

only to enforce their ACLs, but also to store and manage

all accumulated content.
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OSN providers are generally incentivized to safeguard

users’ content, since doing otherwise might tarnish their

reputation and/or result in legal actions. However, user

agreements often include clauses that let providers mine

user content, e.g., deliver targeted advertising [36] or re-sell

information to third-party services. For instance, Facebook’s

terms of use classify all user contents as “public” by default,

raising privacy concerns in the U.S. Federal Trade Commis-

sion [25]. Furthermore, content stored at an OSN provider

is subject to potential break-ins [24], insider attacks [37], or

subpoenas by law enforcement agencies [30] (e.g., during

the WikiLeaks investigation [39]). Moreover, privacy risks

are exacerbated by the common practice of caching content

and storing it off-line (e.g., on tape backups), even after users

explicitly delete it. Thus, the threat to user privacy becomes

permanent.

Therefore, it appears that a more effective (or at least

an alternative) way of addressing privacy in OSNs is by

delegating control over content to its owners, i.e., the end-

users. Towards this goal, the security research community

has already proposed several approaches [8, 31, 38] that

allow users to explicitly authorize “friends” to access their

data, while hiding content from the provider and other

unauthorized entities.

However, the meaning of relationship, or affinity, among

users differs across OSNs. In some, it is not based on

any real-life trust. For example, micro-blogging OSNs, such

as Twitter and Tumblr, are based on (short) information

exchanges among users who might have no common history,

no mutual friends and possibly do not trust each other. In

such settings, a user publishes content labeled with some

“tags” that help others search and retrieve content of interest.

Furthermore, privacy in micro-blogging OSNs is not lim-

ited to content. It also applies to potentially sensitive infor-

mation that users (subscribers or followers) disclose through

searches and interests. Specifically, tags used to label and

retrieve content might leak personal habits, political views,

or even health conditions. This is particularly worrisome

considering that authorities are increasingly monitoring and

subpoenaing social network content [20]. We therefore claim

that privacy mechanisms for micro-blogging OSNs, such

as Twitter, should be designed differently from personal

affinity-based OSNs, such as Facebook.
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A. Motivation

Twitter is clearly the most popular micro-blogging OSN

today. It lets users share short messages (tweets) with their

“followers” and enables enhanced content search based on

keywords (referred to as hashtags) embedded in tweets.

Over time, Twitter has become more than just a popular

micro-blogging service. Its pervasiveness makes it a per-

fect means of reaching large numbers of people through

their always-on mobile devices. Twitter is also the primary

source of information for untold millions who obtain their

news, favorite blog posts or security announcements via

140-character tweets. Twitter is used by entities as varied

as individuals, news media outlets, government agencies,

NGOs, politicians, political parties/movements as well as

commercial organizations of all shapes and sizes. As such,

it is an appealing all-around source for information-addicted

and attention-deficit-afflicted segment of the population.

Users implicitly trust Twitter to store and manage their

content, including: tweets, searches, and interests. Thus,

Twitter is in possession of complex and valuable infor-

mation, such as tweeter-follower relationships and hashtag

frequencies. As mentioned above, this prompts privacy con-

cerns. User interests and trends expressed by the “Follow”

button represent sensitive information. For example, looking

for tweets with a hashtag #TeaParty, (rather than, say,

#BeerParty), might expose one’s political views. A search

for #HIVcure might reveal one’s medical condition and

could be correlated with the same user’s other activity, e.g.,

repeated appearances (obtained from a geolocation service,

such as Google Latitude) of the user’s smartphone next to a

hospital.

Based on its enormous popularity, Twitter has clearly

succeeded in its main goal of providing a ubiquitous real-

time push-based information sharing platform. However, we

believe that it is time to re-examine whether it is reasonable

to trust Twitter to store and manage content (tweets) or

search criteria, as well as enforce user ACLs.

B. Contributions

This paper proposes Hummingbird: a privacy-enhanced

variant of Twitter. Hummingbird retains key features of

Twitter while adding several privacy-sensitive ingredients.

Its goal is two-fold:

1) Private fine-grained authorization of followers: a

tweeter encrypts a tweet and chooses who can access

it, e.g., by defining an ACL based on tweet content.

2) Privacy for followers: they subscribe to arbitrary hash-

tags without leaking their interests to any entity. That

is, Alice can follow all #OccupyWS tweets from the

New York Times (NYT) such that neither Twitter nor

NYT learns her interests.

Hummingbird can be viewed as a system composed of

several cryptographic protocols that allow users to tweet

and follow others’ tweets with privacy. We acknowledge,

from the outset, that privacy features advocated in this paper

would affect today’s business model of a micro-blogging

OSN. Since, in Hummingbird, the provider does not learn

tweet contents, current revenue strategies (e.g., targeted

advertising) would become difficult to realize. Consequently,

it would be both useful and interesting to explore economical

incentives of providing privacy-friendly services (not just

in the context of micro-blogging OSNs) over the Internet.

However, this topic is beyond the scope of this paper.

To demonstrate Hummingbird’s practicality (ease of use

and performance overhead), we implemented it as a web

site on the server side. On the user side, a Firefox extension

is employed to access the server, by making cryptographic

operations transparent to the user. Hummingbird imposes

minimal overhead on users and virtually no extra overhead

on the server; the latter simply matches tweets to corre-

sponding followers.

Organization: The rest of this paper is structured as fol-

lows: Section II overviews Twitter and a few cryptographic

building blocks used to construct Hummingbird. Section

III describes our privacy model, while Section IV details

Hummingbird architecture and its protocols. Prototype im-

plementation is described in Section VI. Next, Section VII

discusses privacy features of Hummingbird and considers

several extensions. Finally, Section VIII surveys related work

and the paper concludes in Section IX.

II. PRELIMINARIES

This section provides Twitter background and describes

some cryptographic building blocks.

A. Twitter

As the most popular micro-blogging OSN, Twitter (http:

//www.twitter.com) boasts 100 million active users world-

wide, including: reporters, artists, public figures, government

agencies, NGOs and commercial entities [46]. Its users com-

municate via 140-character messages, called tweets, using a

simple web interface. Posting messages is called tweeting.

Users may subscribe to other users’ tweets; this practice is

known as following. Basic Twitter terminology includes:

• A user who posts a tweet is a tweeter.

• A user who follows others’ tweets is a follower.

• The centralized entity that maintains profiles and

matches tweets to followers is simply Twitter.

Tweets are labeled and retrieved (searched) using hashtags,

i.e., strings prefixed by a “#” sign. For example, a tweet:

“I don’t care about #privacy on #Twitter” would match

any search for hashtags “#privacy” or “#Twitter”. An “@”

followed by a user-name is utilized for mentioning, or

replying to, other users. Finally, a tweet can be re-published

by other users, and shared with one’s own followers, via the

so-called re-tweet feature.
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Tweets are public by default: any registered user can see

(and search) others’ public tweets. These are also indexed by

third party services – such as Google – and can be accessed

by application developers through a dedicated streaming

API. All public tweets are also posted on a public website

(http://twitter.com/public timeline), that keeps the tweeting

“timeline” and shows twenty most recent messages.

Tweeters can restrict availability of their tweets by making

them “private” – accessible only to authorized followers

[4]. Tweeters can also revoke such authorizations, using

(and trusting) Twitter’s block feature. Nonetheless, whether

a tweet is public or private, Twitter collects all of them

and forwards them to intended recipients. Thus, Twitter

has access to all information within the system, including:

tweets, hashtags, searches, and relationships between tweet-

ers and their followers. Although this practice facilitates

dissemination, availability, and mining of tweets, it also

intensifies privacy concerns stemming from exposure of

information.

B. Cryptography Background

We now overview some cryptographic concepts and tools

used in the rest of the paper. For ease of exposition, we omit

basic notions and refer to [27, 42] for details on various

cryptographic primitives, such as hash functions, number-

theoretic assumptions as well as encryption and signature

schemes.

Basic Notation. A function F(τ) is negligible in the

security parameter τ if, for every polynomial p, F(τ) <
1/|p(t)| for large enough t. Throughout the paper, we use

semantically secure symmetric encryption and assume the

key space to be τ1-bit strings, where τ1 is a (polynomial)

function of the security parameter τ . Enck(·) and Deck(·)
denote symmetric-key encryption and decryption under key

k, respectively. Finally, a ←R A means that variable a is

chosen uniformly, at random from set A.

Oblivious PseudoRandom Functions (OPRFs). Infor-

mally, a pseudorandom function (PRF) family is a collection

of efficiently computable functions such that no efficient

algorithm, under some computational assumption, can dis-

tinguish, with non-negligible advantage, between a function

chosen randomly from this family and one with truly random

outputs. A PRF f is a function that takes two inputs: a

variable x and a secret function index s, and outputs fs(x).
An Oblivious PRF (OPRF) is a two-party protocol, between

sender and receiver, that securely computes fs(x) on secret

index s contributed by sender and input x – by the receiver,

such that the former learns nothing from the interaction, and

the latter only learns fs(x). OPRFs have been introduced by

Freedman, et al. [26], based on Naor-Reingold PRF [44].

Several OPRF constructions have been suggested since,

e.g., [9, 34] based on Boneh-Boyen PRF [12].

Blind RSA Signatures. A blind signature scheme allows

one to sign a message such that its content is disguised

(blinded) before being signed. The resulting signature can

be publicly verified against the original blinded message.

Knowledge of the blinding factor allows one to unblind a

blind signature and obtain a (message, signature) pair that

cannot be correlated to its original (blinded) counterpart.

There have been many interesting research results in the

context of blind signatures involving various constructions,

security models, assumptions, and computational settings.

(See [47] for more details.) In this paper, we focus on RSA

Blind Signatures introduced in [16]. Blind RSA Signature

Scheme (Blind-RSA) involves a signer (S), a receiver, (R)

and the following algorithms:

• Key-Gen(1τ ): On input of the security parameter τ ,

S generates a safe RSA modulus N = pq, where p
and q are random distinct τ2-bit primes, (with τ2 as

a polynomial function of τ ), such that p = 2p′ + 1
and q = 2q′ + 1 for distinct primes p′, q′. Next, a

random positive integer e < φ(N) is selected such

that gcd(e, φ(N)) = 1. Also, d is generated such that

ed = 1 mod φ(N). Finally, a Full Domain Hash (FDH)

function H : {0, 1}∗ → ZN is selected. The output

consists of the RSA public/private keypair ((N, e), d)
as well as H(·).

• Blind-Sign(d, x): Given public input (H(·), N, e), S
and R interact on private input d and x, respectively.

The protocol is as follows: R sends μ = H(x) ·
re mod N (for r ←R ZN ) to S, that sends back

μ′ = μd mod N . Finally, R obtains σ = μ′/r mod N .

It is easy to see that σ is a valid RSA signature

on message x under private key d: σ = μd/r =
H(x)dredr−1 = H(x)d mod N .

• Verify(σ, x): Signature σ is publicly verified, by check-

ing that σe = H(x) mod N .

Blind-RSA based OPRFs. Blind RSA signatures can

be used, in the Random Oracle Model (ROM), to realize

an OPRF. The actual function is defined as fd(x) =
H ′(H(x)d), where H(·) and H ′(·) are modeled as random

oracles. The OPRF protocol is simply the Blind-RSA proto-

col presented above, with d contributed by sender, and x –

by receiver. Using this protocol, the function remains a PRF

under the One-More-RSA assumption [10], even if receiver

is malicious, as recently shown in [18].

Blind-DH based OPRFs. In ROM, OPRFs can also be

instantiated using a Blind Diffie-Hellman protocol. This con-

struction, presented in [35], relies on the function fs(x) =
H ′(H(x)s) where H(x) maps onto a group where the

Computational Diffie-Hellman problem is assumed to be

hard, and both H(·), H ′(·) are modeled as random oracles.

The protocol is similar to Blind-RSA, but is secure under

the One-More-DH assumption [10]. It runs on public input
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of two primes p, q (with q|p − 1). Receiver blinds its

input by sending μ = H(x)r mod p, with r ←R Zq.

Sender replies with μ′ = μs mod p and receiver obtains

fs(x) = H ′(H(x)s) by computing H ′((μ′)1/r mod p).

Blind-DH vs Blind-RSA. There are a few differences

between Blind-DH and Blind-RSA OPRFs. First, sender’s

computation in Blind-RSA is verifiable, as opposed to Blind-

DH. In the former, receiver can verify correctness of sender’s

computation by checking H(x) = (μ′/r)e mod N , assum-

ing that N is generated correctly. Whereas, to achieve the

same in Blind-DH, sender needs to attach a Zero-Knowledge

Proof of Knowledge (ZKPK) of the discrete log. Also, usage

of Chinese Remainder Theorem (CRT) in signing yields

lower computational complexity for Blind-RSA.

III. DEFINING PRIVACY IN MICRO-BLOGGING OSNS

Defining privacy in a Twitter-like system is a challenging

task. Our definition revolves around the server (i.e., Twitter

itself) that needs to match tweets to followers while learning

as little as possible about both. This would be trivial if

tweeters and followers shared secrets [52]. It becomes more

difficult when they have no common secrets and do not trust

each other.

A. Built-in Limitations

From the outset, we acknowledge that privacy attainable

in Twitter-like systems is far from perfect. Ideal privacy in

micro-blogging OSNs can be achieved only if no central

server exists: all followers receive all tweets and decide,

in real-time, which are of interest. Clearly, this would be

unscalable and impractical in many respects. Thus, a third-

party server becomes necessary.

The main reason for the server’s existence is the matching

function: it matches incoming tweets to subscriptions and

forwards them to corresponding followers. Although we

want the server to learn no more information than an ad-

versary observing a secure channel, the very same matching

function precludes it.

Similarly, the server learns whenever multiple subscrip-

tions match the same hashtag in a tweet. Preventing this is

not practical, considering that a a tweeter’s single hashtag

might have a very large number of followers. It appears that

the only way to conceal the fact that multiple followers are

interested in the same hashtag (and tweet) is for the tweeter

to generate a distinct encrypted (tweet, hashtag) pair for

each follower. This would result in a linear expansion (in

the number of followers of a hashtag) for each tweet. Also,

considering that all such pairs would have to be uploaded at

roughly the same time, even this unscalable approach would

still let the server learn that – with high probability – the

same tweet is of interest to a particular set of followers.

Note that the above is distinct from server’s ability to learn

whether a given subscription matches the same hashtag in

multiple tweets. As we discuss later in the paper (Section

VII-C), one could prevent the server from learning this infor-

mation, while incurring reasonable extra overhead. However,

it remains somewhat unclear whether the privacy gain would

be worthwhile.

B. Privacy Goals and Security Assumptions

Our privacy goals are commensurate with aforementioned

limitations.

• Server: learns minimal information beyond that ob-

tained from performing the matching function. We

allow it to learn which, and how many, subscrip-

tions match a hashtag (even if the hashtag is crypto-

graphically transformed). Also, it learns whether two

subscriptions for the same tweeter refer to the same

hashtag. Furthermore, it learns whenever two tweets

by the same tweeter carry the same hashtag. However,

as mentioned above, this can be easily remedied; see

Section VII-C.

• Tweeter: learns who subscribes to its hashtags but not

which hashtags have been subscribed to.

• Follower: learns nothing beyond its own subscriptions.

Specifically, it learns no information about any other

subscribers or any tweets that do not match its sub-

scriptions.

Our privacy goals, coupled with the key desired features

of a Twitter-like system, prompt an important assumption

that the server must adhere to the Honest-but-Curious
(HbC) adversarial model. Specifically, although the server

faithfully follows all protocol specifications, it may attempt

to passively violate our privacy goals. According to our

interpretation, the HbC model precludes the server from

creating “phantom” users. In other words, the server does

not create spurious accounts in order to obtain subscriptions

and test whether they match other followers’ interests. The

justification for this assertion is as follows:

Suppose that the server creates a phantom user

for the purpose of violating privacy of genuine

followers. The act of creation itself does not vi-

olate the HbC model. However, when a phantom

user engages a genuine tweeter in order to obtain

a subscription, a protocol transcript results. This

transcript testifies to the existence of a spurious

user (since the tweeter can keep a copy) and can

be later used to demonstrate server misbehavior.

We view this assumption as unavoidable in any Twitter-

like OSN. The server provides the most central and the

most valuable service to large numbers of users. It thus

has a valuable reputation to maintain and any evidence, or

even suspicion, of active misbehavior (i.e., anything beyond

Honest-but-Curious conduct) would result in a significant

loss of trust and a mass exodus of users.

Finally, we emphasize that side-channels (e.g., timing and

correlation) attacks are beyond the scope of this paper.

288



C. Definitions

To quantify privacy loss at the server we define a generic

function ζ(·, ·) over an arbitrary set of tweets and subscrip-

tions. We then model the probability that the server, given

access to cryptographically transformed tweets and subscrip-

tions, can compute such a function vis-a-vis probability of

computing ζ(·, ·) in an ideal world where it interacts with an

oracle doing the matching. In particular, let a tweet T be a

triple (id∗, M, ht∗) where id is the unique ID of the tweeter,

M is the message and ht is the hashtag included in the

tweet. (In real-world Twitter, a message can have multiple

hashtags; however, we assume a single hashtag in order to

simplify the discussion, with no loss of generality). Let a

subscription R be a pair (id, ht) where id is the unique ID

of the tweeter and ht is the hashtag the tweet should contain

in order for a match to occur.

We define the following functions:

match(T, R) = 1⇔T.id∗ = R.id ∧ T.ht∗ = R.ht

matchtw(T, T ′) = 1⇔T.id∗ = T ′.id∗ ∧ T.ht∗ = T ′.ht∗

matchreq(R,R′) = 1⇔R.id = R′.id ∧R.ht = R′.ht

Let T = {T1, . . . , Tn} and R = {R1, . . . , Rm} be the set

of tweets and subscriptions up to a given time and let T̂ , R̂
be their cryptographically transformed versions, respectively.

Let O be an oracle that has access to T ,R, and implements

functions match, matchtw and matchreq.

Informally, we want the view of the server (that has access

to T̂ , R̂) to be the same as that of a server that asks O to

implement aforementioned functions over T and R. That is,

the following probability:

|Pr[ζ(T ,R)← AT̂ ,R̂]− Pr[ζ(T ,R)← AO(T ,R)]|

should be negligible, for any ζ(·, ·) defined over T ,R.

We now provide some definitions that try to capture

the privacy loss that Hummingbird must bear in order to

efficiently match tweets to subscriptions. Within a tweet, we

distinguish between the message (i.e., conveyed information)

and its hashtags (i.e., the keywords that the system uses to

identify messages).

Tweeter Privacy. An encrypted tweet that includes a

hashtag ht should leak no information to any party that has

not been authorized by the tweeter to follow it on ht. In other

words, only users that have been authorized to follow the

tweeter on the hashtag can decrypt the associated message.

For its part, the server learns whenever multiple tweets from

a given tweeter contain the same hashtag.

Follower Privacy. A request to follow a tweeter on hashtag

ht should disclose no information about the hashtag to

any party other than the follower. That is, a follower can

subscribe to hashtags such that tweeters, the server or any

other party learns nothing about follower interests. However,

the server learns whenever multiple followers are subscribed

to the same hashtag of a given tweeter.

Matching Privacy. The server can compute only functions

that can be also computed by interacting with the oracle that

implements the match functions.

IV. PRIVATE TWEETING IN Hummingbird

In this section, we present the Hummingbird architecture

and protocols.

A. Architecture

Hummingbird architecture mirrors Twitter’s, involving

one central server and an arbitrary number of registered

users, that can publish and retrieve short text-based mes-

sages. Publication and retrieval is based on a set of hashtags

(i.e., arbitrary keywords) that are appended to the message

or specified in the search criteria. Similar to Twitter, Hum-
mingbird involves three types of entities:

1) Tweeters post messages accompanied by a set of hash-

tags that are used by other users to search for those

messages. For example, Bob posts a message: “I care

about #privacy” where “#privacy” is the associated

hashtag.

2) Followers issue “follow requests” to any tweeter for

any hashtag of interest, and, if a request is approved,

receive all tweets that match their interest. For instance,

Alice who wants to follow Bob’s tweets with hashtag

“#privacy” would receive the tweet: “I care about

#privacy” and all other Bob’s tweets that contain the

same hashtag.

3) Hummingbird Server (HS) handles user registration

and operates the Hummingbird web site. It is respon-

sible for matching tweets with follow requests and

delivering tweets of interest to users.

B. Design Overview

In contrast to Twitter, access to tweets in Hummingbird
is restricted to authorized followers, i.e., they are hidden

from HS and all non-followers. Also, all follow requests

should be subject to approval. Whereas, in Twitter, users

can decide to approve all requests automatically. In addition,

Hummingbird introduces the concept of follow-by-topic, i.e.,

followers decide to follow tweeters and specify hashtags

of interest. This feature is particularly geared for following

high-volume tweeters, as it filters out “background noise”

and avoids saddling users with potentially large quantities

of unwanted content. For example, a user might decide

to follow the New York Times on #politics, thus, not

receiving NYT’s tweets on, e.g., #cooking, #gossip, etc.

Furthermore, follow-by-topic might allow tweeters to charge

followers a subscription fee, in order to access premium

content. For example, Financial Times could post tweets

about stock market trends with hashtag #stockMarket and
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Figure 1: Hummingbird protocols overview.

only authorized followers who pay a subscription fee would

receive them.

Key design elements are as follows:

1) Tweeters encrypt their tweets and hashtags.

2) Followers can privately follow tweeters on one or more

hashtags.

3) HS can obliviously match tweets to follow requests.

4) Only authorized (previously subscribed) followers can

decrypt tweets of interest.

At the same time, we need to minimize overhead at HS.

Ideally, privacy-preserving matching should be as scalable

as its non-private counterpart.

Intuition. At the core of Hummingbird architecture is a

simple OPRF-based technique. Suppose Bob wants to tweet

a message M with a hashtag ht. The idea is to derive an

encryption key for a semantically secure cipher (e.g., AES)

from fs(ht) and use it to encrypt M . (Recall that s is Bob’s

secret.) That is, Bob computes k = H1(fs(ht)), encrypts

Enck(M) and sends it to HS. Here, H1 : {0, 1}∗ → {0, 1}τ1

is a cryptographic hash function modeled as a random oracle.

To follow Bob’s tweets with hashtag ht, another user

(Alice) must first engage Bob in an OPRF protocol where

she plays the role of the receiver, on input ht, and Bob is the

sender. As a result, Alice obtains fs(ht) and derives k that

allows her to decrypt all Bob’s tweets containing ht. Based

on OPRF security properties, besides guaranteeing tweets’

confidentiality, this protocol also prevents Bob from learning

Alice’s interests, i.e., he only learns that Alice is among his

followers but does not learn which hashtags are of interest to

her. As described in Section IV-C (protocol Follow) below,

Alice and Bob do not run the OPRF protocol directly or

in real time. Instead, they use HS as a conduit for OPRF

protocol messages.

Once Alice establishes a follower relationship with Bob,

HS must also efficiently and obliviously match Bob’s tweets

to Alice’s interests. For this reason, we need a secure tweet

labeling mechanism.
To label a tweet, Bob uses a PRF, on input an arbitrary

hashtag ht, to compute a cryptographic token t, i.e., t =
H2(fs(ht)) where H2 is another cryptographic hash func-

tion, modeled as a random oracle: H2 : {0, 1}∗ → {0, 1}τ3 ,

with τ3 polynomial function of the security parameter τ .

This token is communicated to HS along with the encrypted

tweet.
As discussed above, on the follower side, Alice must

obtain fs(ht) beforehand, as a result of an OPRF proto-

col with Bob. She then computes the same token t, and

uploads it to HS. Due to OPRF security properties, t reveals

no information about the corresponding hashtag. HS only

learns that Alice is one of Bob’s followers. From this point

on, HS obviously and efficiently matches Bob’s tweets to

Alice’s interests. Upon receiving an encrypted tweet and an

accompanying token from Bob, HS searches for the latter

among all tokens previously deposited by Bob’s followers.

As a result, HS only learns that a tweet by Bob matches a

follow request by Alice.

OPRF choice. Although Hummingbird does not restrict

the underlying OPRF instantiation, we selected the OPRF

construct based on Blind-RSA signatures (in ROM) since it

offers lowest computation and communication complexities.

One side-benefit of using the Blind-RSA-based OPRF is that

it allows us to use standard RSA public key certificates.

At the same time, the Hummingbird architecture is not

dependent on Blind-RSA based OPRF; it can be seamlessly

replaced with any other OPRF construction, e.g., see Sec-

tion VII-H.

C. Protocols
Figure 1 overviews protocols involved in a simple scenario

with only two users (tweeter Bob and follower Alice). The

actual protocols are described below.

User Registration. To join Hummingbird, a user registers,

and creates an account, with HS. This involves obtaining

username/password credentials and creating a public Hum-
mingbird profile. Also, at this phase, each user creates an

RSA keypair, e.g., [(Nb, eb), (db)] for Bob. The public key

becomes part of the user’s profile.

Follow. This is a three-step protocol that authorizes a user

(Alice) to follow another user (Bob). For simplicity’s sake,

we assume that Alice is interested only in one hashtag ht
and later describe how to support multiple hashtags. The

protocol is shown in Figure 2. As mentioned above, it builds

on Blind-RSA based OPRFs and includes the following three

steps:

1) Issue Request: Alice sends Bob a request to follow his

tweets on an arbitrary hashtag ht. This corresponds to
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the first round of Blind-Sign protocol in Section II-B.

The request is routed through HS; thus, Bob does not

need to be on-line.

2) Approve Request: Whenever Bob logs in to Hum-
mingbird, HS prompts him with Alice’s request. If

Bob approves the request, he blindly signs it and the

resulting signature is stored by HS for later delivery to

Alice. (Note that Alice might not be on-line at this

time.) This corresponds to the second round of the

Blind-Sign protocol in Section II-B.

3) Finalize Request: Upon next login, Alice receives

Bob’s approved request. She then finalizes it as the last

round of Blind-Sign protocol (i.e., by unblinding Bob’s

signature) and computing the outer hash to obtain the

final OPRF value, i.e., a token, corresponding to Bob’s

hashtag ht. Finally, Alice deposits the resulting token

with HS.

After successful completion of the above protocol, Alice is

authorized to obtain all Bob’s tweets (labeled with hashtag

ht). Our present architecture does not handle revocation of

follow requests: although it is not difficult to incorporate it,

there does not seem to be an elegant way to do it without

relying on HS. To withdraw Alice’s authorization, Bob could

either generate a new set of RSA parameters, or replace hash

function H(·). Unfortunately, either way, all outstanding

subscriptions would have to be renewed, i.e., Bob needs to

re-run the Follow protocol with all non-revoked followers.

This is possible since Bob knows their identities.

Tweet/Read. We now discuss how to privately send/read

tweets in Hummingbird. For now, we assume that Bob

attaches only a single hashtag to his tweet, and later show

how to support multiple hashtags. The protocol is illustrated

in Figure 3.

1) Tweet: Assume that Bob tweets a message M , asso-

ciated with hashtag ht∗. He derives an encryption key

from a PRF evaluation of ht∗, encrypts M , and uploads

it to HS. PRF evaluation of ht∗ is also used by Bob to

compute a cryptographic token that is attached to the

encrypted message. This token is later used by HS to

match tweets with followers. Once again, we use the

OPRF construction based on Blind-RSA signatures.

2) Oblivious Matching: Suppose Alice follows Bob on

ht and ht = ht∗. This means that she has deposited at

HS, a cryptographic token matching the one uploaded

by Bob upon tweeting (derived by the OPRF execution

as per protocol in Figure 2). As a result, HS adds Bob’s

encrypted tweet to Alice’s profile.

3) Read: Upon login, Alice receives Bob’s encrypted

tweet; she reconstructs the decryption key (again, de-

rived by the OPRF execution) and reads the tweet upon

decryption.

(1) Issue Request
HS Alice (ht)

Follow Bob��
(Nb, eb)

��
r ←R ZNb

μ = H(ht) · reb

(Alice, Bob, μ)
��

Store (Alice, Bob, μ) Store (Bob, ht, r)

(2) Approve Request
Bob (db) HS

(Alice, μ)
��

μ′ = μdb

(Alice, Bob, μ′)
��

Store (Alice, Bob, μ′)

(3) Finalize Request
HS Alice (ht)

(Bob, μ′)
��

δ = μ′/r

t = H2(δ)

(Alice, Bob, t)
��

Store (Alice, Bob, t) Store (Bob, ht, δ, t)

Figure 2: The three-step protocol corresponding to follow a user
in Hummingbird. It executes on common input H , H2. All
computation is assumed mod Nb.

V. SECURITY

In this section, we discuss security properties of Hum-
mingbird.

Tweeters/Followers Privacy. We start by noting that

the OPRF-based protocol implementing following-by-topic
hides the content of hashtags requested by Alice from

Bob, HS, or any eavesdropper. Similarly, Bob’s tweets (and

hashtags) reveal no information about tweet content to any

party but authorized followers. Indeed, this follows directly

from the security of our OPRF instantiation, based on Blind-

RSA signatures, under the One-More-RSA assumption [10].

Matching Privacy. Next, we consider security of oblivious

matching, as performed by HS. To do so, we need to

show that HS matches tweets to followers while learning

nothing about cleartext tweets and hashtags. However, as

discussed in Section III, we do not attempt to prevent

HS from learning tweeter/follower relations, distributions of

(encrypted) tweets and hashtags, as well learning whether

multiple follow requests are based on the same hashtag.

(Though we sketch out a way to avoid the latter in Section
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(1) Tweet
Bob (db, M, ht∗) HS

δ∗ = H(ht∗)db

t∗ = H2(δ∗)

k∗ = H1(δ∗)

ct∗ = Enck∗ (M)
(t∗, ct∗)

�� Store (Bob, t∗, ct∗)

(2) Oblivious Matching
HS: ∀(U, V, t) in storage s.t. V = ‘Bob’ ∧ t = t∗:

Store and mark (Bob, t∗, ct∗) for delivering to U

(3) Read
HS Alice

If (Bob, t∗, ct∗)

marked for Alice

(Bob, t∗, ct∗)
��

Recover (Bob, ht, δ, t)
s.t. t = t∗

k = H1(δ)

Output M=Deck(ct∗)

Figure 3: Tweeting and reading in Hummingbird. It executes on
common input H , H1, H2. All computation is mod Nb.

VII-C.)

Let T = {m1, ht∗1, . . . , mn, ht∗n} be a set of tweets

and R = {ht1, . . . , htl} a set of follow requests.1 Then,

we define the corresponding sets that HS receives as

T̂ = {ct∗1, t∗1 . . . , ct∗n, t∗n} and R̂ = {t1, . . . , tl}. We want

to demonstrate that, with overwhelming probability, any

function ζ(T ,R) computable by an adversary A on input

(T̂ , R̂), can be also computed by a PPT algorithm A∗ that

has only access to an oracle matching tweets and requests.

Specifically, we need to show that:

|Pr[ζ(T ,R)← A(T̂ ,R̂)]− Pr[ζ(T ,R)← AO(T ,R)]|

is negligible in the security parameter, with O implementing

the following functions:

match(i, j)=1⇔∃ht∗i ∈ T , htj ∈ R : ht∗i =htj

matchtw(i, j)=1⇔∃ht∗i ∈ T , ht∗j ∈ T : ht∗i =ht∗j ∧ i �= j

matchreq(i, j)= 1⇔∃hti ∈ R, htj ∈ R : hti =htj ∧ i �= j

If this occurs, then there exists a PPT algorithm A∗ that

can construct T̄ = {γ∗1 , υ∗1 , . . . , γ∗n, υ∗n}, R̄ = {υ1, . . . , υl},
indistinguishable from T̂ , R̂. Thus, A∗ can simulate A with

input T̄ , R̄ to obtain the same function output. A∗ builds

T̄ , R̄ as follows:

1We assume, w.l.o.g., that there is only one tweeter, thus, removing
identities from the sets of tweets and follow requests.

• Assume there are no requests, R̄ = ∅. The i-th

tweet/token pair γ∗i , υ∗i of T̄ is set as follows:

γ∗i ←R ZNb

υ∗i :

{
υ∗i = υ∗j if ∃ j : O.matchtw(j, i) = 1 ∧ j < i

υ∗i ←R {0, 1}τ3 otherwise

• Assume there are no tweets, thus, T̄ = ∅. The i-th

token υi of R̄ is set as:

υi :

{
υi = υj if ∃ j : O.matchreq(j, i) = 1 ∧ j < i

υi ←R {0, 1}τ3 otherwise

• Assume there are both tweets and follow requests, i.e.,

T̄ �= ∅, T̄ �= ∅. The i-th tweet/token pair γ∗i , υ∗i of T̄ is

set as in the first bullet. The i-th token υi of R̄ is set as:

υi :

⎧⎪⎨
⎪⎩

υi = υj if ∃ j : O.match(j, i) = 1 ∧ j < i

υi = υj if ∃ j : O.matchreq(j, i) = 1 ∧ j < i

υi ←R {0, 1}τ3 otherwise

In all above cases, (T̄ , R̄) is indistinguishable from

(T̂ , R̂). If not, then we could use A, A∗ to distinguish

random strings from pseudo-random ones.

VI. SYSTEM PROTOTYPE

We implemented Hummingbird as a working re-

search prototype. It is available at http://sprout.ics.uci.edu/

hummingbird.

In this section, we demonstrate that: (1) by using efficient

cryptographic mechanisms, Hummingbird offers a privacy-

preserving Twitter-like messaging service, (2) the resulting

implementation introduces no overhead on the central ser-

vice (HS) (thus raising no scalability concerns), and (3)

performance of Hummingbird are suitable to real-world

deployment.

A. Server-side

In the description of the implementation, we distin-

guish between server- and client-side components, as shown

in Figure 4. Hummingbird’s server-side component corre-

sponds to HS, introduced in Section IV. It consists of three

parts: (1) database, (2) JSP classes, and (3) Java back-end.

We describe them below.

Database. Hummingbird employs a central database to

store and access user accounts, encrypted tweets, follow

requests, and profiles.

JSP Front-end. The visual component of Hummingbird is

realized through JSP pages. They allow users to seamlessly

interact with a back-end engine, via the web browser.

Main web functionalities include: registration, login, issu-

ing/accepting/finalizing a request to follow, tweeting, read-

ing streaming tweets, and accessing user profiles.
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Hummingbird 
Website

(JSP Front-end)

Server-Side
Java Back-end

Hummingbird 
Firefox Ext

(HFE)

Client-Side 
Java Back-end 

(CJB)

Client Side 
(Firefox 3.x Browser)

Hummingbird Architecture

Server Side

Figure 4: Server-side and Client-side components of the Hum-
mingbird prototype.

Java Back-end. Hummingbird functionality is realized by

a Java back-end running on HS. The back-end is deployed

in Apache Tomcat. The software includes many modules

and we omit their detailed description. The back-end mainly

handles access to the database, populates web pages, and

performs efficient matching of tweets to followers using off-

the-shelf database querying mechanisms.

B. Client-side

Users interface with the system via the Hummingbird web

site. We implement each of the operations in Hummingbird
as a web transaction, and users perform them from their

web browser. However, several client-side cryptographic

operations need to be performed outside the browser: to the

best of our knowledge, there is no straightforward browser

support for complex public-key operations such as those

needed in OPRF computation.

To this end, we introduce, on the client-side, a small Java

back-end, used to perform cryptographic operations. Then,

we design a Firefox extension (HFE) to store users’ keys

and to automatically invoke appropriate Java code for each

corresponding action. Its latest version is compatible with

Firefox 3.x.x and is available from http://sprout.ics.uci.edu/

hummingbird.

Client-side Java Back-end (CJB). Hummingbird users

are responsible for generating their RSA keys, en-

crypt/decrypt tweets according to the technique presented

in Section IV, and perform OPRF computations during

follow request/approval. In our system, these cryptographic

operations are implemented by a small Java back-end, CJB,

included in the HFE presented below. CJB relies on the Java

Bouncy Castle Crypto library.

Hummingbird Firefox Extension (HFE). As mentioned

above, HFE interfaces the web browser to the client-side

Java back-end, that is included as part of the extension

package. The extension code connects to it using Java Live-

Connect [43]. Once installed, HFE is completely transparent

to the user. HFE is used for:

Key management. During user registration, HFE automati-

cally invokes RSA key generation code from CJB, stores

(and optionally password-protects) public/private key in the

extension folder, and lets browser report public key to HS.

Following. For each of the three steps involved in requesting

to follow a tweeter, the user is guided by Hummingbird
web site, however, CJB code needs to be executed to

realize corresponding cryptographic operations. This is done,

automatically, by HFE.

Tweet. When a user tweets on Hummingbird, HFE—

transparently to her—intercepts message and hashtag and

invokes the CJB code to encrypt the message and generate

the appropriate cryptographic token.

Read. Followers receive, from HS, tweets matching their

interest, however, these are encrypted (recall that matching

is performed obliviously at HS). Nevertheless, HFE auto-

matically decrypts them (using CJB code) and replace web

page content with corresponding cleartext.

C. Performance
Following its architecture, the Hummingbird prototype

guarantees privacy of tweeters and followers at minimal

costs for both and at virtually no cost for the server. In

particular, cryptographic overhead incurred by tweeters and

followers is negligible and arguably not perceivable by end-

users. Table I summarizes the overhead incurred by each

operation in Hummingbird. On the user side, experiments

were conduced on a 2011 Macbook Pro with a 2.3 GHz

Intel Core i5 CPU. Whereas, HS was running on an Intel

Harpertown platform with a 2.5GHz Xeon CPU (HS). Per-

formance analysis is discussed below.

Follow. Following a user requires executing the three-step

protocol of Figure 2. (Once again, since messages are routed

through HS, this protocol is asynchronous and does not re-

quire users to be simultaneously online.) It requires an OPRF

invocation, thus, two modular multiplications, one (short)

exponentiation, two hash evaluations, one RSA signature

and one modular inversion in the RSA setting. Therefore,

computational overhead is clearly dominated by tweeter’s

computation of one RSA signature per each requested hash-

tag. According to our experiments, an RSA signature with

a 1024-bit modulus takes less than 1ms using Java and

Chinese Remainder Theorem, while modular multiplications

take less than 0.01ms. Thus, we conclude that the user-side

cryptographic overhead stemming from the Follow protocol

is dominated by the time to perform the web transaction

itself. Total communication overhead amounts to 2 integers

in the RSA group for each hashtag of interest.

Tweeting. This operation requires one hash and one RSA

signature for each hashtag associated with the tweet and the
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Operation Computation Overhead Communication
HS User Overhead

Request to Follow None 1 exp, 1 mult, 1 hash 1024 bits

Approve Request None 1 exp 1024 bits

Finalize Request None 1 mult, 1 inv, 1 hash 1024 bits

Tweet None 1 exp, 1 hash 1 AES enc 160 bits

Read None 1 AES dec 160 bits

Match O(log(n)) – –

Table I: Overhead of all Hummingbird operations per-hashtag.

[Notation: n denotes the total number of follow requests; AES enc/dec’ use 128-bit symmetric keys; ’hash’ designates SHA-1
invocations; ’exp’, ’mult’, and ’inv’ denote, resp., modular exponentiations, multiplications, and inverses of 1024-bit integers.]

computation of one symmetric key encryption (e.g., AES).2

Hence, computation overhead is once again negligible com-

pared to that required to complete the web transaction.

Communication overhead only amounts to one output of a

cryptographic hash function (e.g., SHA1) for each hashtag.

Also, reading a tweet only requires one AES decryption,

which can be considered negligible.

Server Overhead. HS is not saddled with any crypto-

graphic operations. Besides storing/relaying messages, HS
simply matches tweets to followers by matching pseudo-

random values. For any incoming pair (encrypted tweet,
cryptographic token), HS only needs to lookup the token

against those uploaded by corresponding followers (and,

if needed, forward the ciphertext). In our implementation,

tokens are outputs of SHA1 hash function, computed over

OPRF evaluations on hashtags. Thus, complexity of the

matching function depends only on the efficiency of the

lookup algorithm. Although we ignore details of the Twitter

“search” algorithm for matching tweets to subscription, we

consider that matching hashtags in Twitter is conceptually

similar to matching tokens in HS. In other words, if we were

to implement a non-private baseline that matches tweets to

followers in the clear, matching operation would actually

incur comparable complexity. Also, HS lookup performance

can be enhanced using, for example, binary search tech-

niques, replication and load-balancing.

VII. DISCUSSION AND EXTENSIONS

To the best of our knowledge, Hummingbird is one of

the first attempts to construct a privacy-enhanced micro-

blogging OSN architecture. Tweeters control who can access

their tweets while enforcing fine-grained access control. That

is, a tweeter authorizes followers to read only tweets with

specific hashtags. We believe this offers benefits to both

tweeters and followers. For example, Alice can subscribe

to CNN tweets with the hashtag #CNNTonight and avoid

receiving all other CNN tweets that are not of interest.

Furthermore, a tweeter’s control over followers enables new

2Signatures for recurring hashtags can be cached so that each new tweet
would only require one encryption operation.

revenue possibilities. For example, Financial Times might

require followers to pay a subscription fee for accessing pre-

mium and time-critical content, e.g., stock market forecasts.

Moreover, followers can follow arbitrary tweets without

disclosing their interests. For example, if Alice subscribes

to tweets with hashtag #Caucus from NYT, no one learns

her subject of interest.

A. Information Disclosure

As argued in Section III, operational requirements of HS
impose a (minimal) privacy leakage. Any time a follow

request is issued, HS learns who are the involved parties;

later, when the request is finalized, HS also learns that

the request has been accepted. In other words, HS always

knows who follows whom and can build a full graph of

tweeter-follower relations. Also, HS learns whenever: (1) a

tweet matches a follow request, (2) two follow requests for

the same tweeter are based on the same hashtag, and (3)

two tweets by the same tweeter contain the same hashtag.

However, (3) is avoidable, as discussed in Section VII-C

below.

B. User Anonymity

Our focus is mainly on privacy; user anonymity is largely

beyond the scope of this paper. In Hummingbird, all user

identities are assumed to be known to everyone. However,

pseudonymous or anonymization techniques could be used

to protect identities of both followers and tweeters.

As far as followers, pseudonymity is perhaps the best

achievable degree of privacy, since HS forwards all tweets

matching a follower’s interests to that follower. Thus, even

if a follower’s real identity is unknown, at the very least,

there must be some persistent identifier or an account.

The same does not hold for tweeters: they can actually

attain real anonymity, however, not without system modi-

fications. In current OSNs, followers and tweeters are one

and the same: they are all users. Suppose that we decouple

the two roles and create follower-users and tweeter-users.

The former would still create accounts much like they do

today and would continue depositing tokens corresponding

to hashtags of interest. However, tweeter-users would have
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no accounts at all. Instead, each time Bob has a tweet

to post, he would connect to HS via some anonymous

means (e.g., Tor) and communicate the tweet, same as in

Hummingbird. This way, whenever Bob produces two tweets

with different hashtags, HS would be unable to link them

to the same author. If we employ this approach in tandem

with the mechanism described below (for unlinking same-

hashtag tweets) privacy would increase even further. Finally,

we note that anonymity of tweeter-users would necessitate

a change in our Follow protocol: instead of using HS as a

store-and-forward conduit, Alice and Bob would need to run

this protocol directly, away from HS.

We conclude that many aspects of achieving anonymity

in a Twitter-like OSNs remain open and more work is

clearly needed. In its current form, Hummingbird does not

provide anonymity nor does it hide relationships between

tweeters and followers. Greater privacy would be achieved

if the central server could be oblivious of user identities and

tweeter-follower relationships.

C. Unlinking Same-Hashtag Tweets

We sketch out a simple method for preventing HS from

learning whether multiple tweets by the same tweeter contain

the same hashtag.

The OPRF-based Follow protocol between Alice and

Bob remains the same. But, instead of the token t cor-

responding to ht, Alice now deposits a temporary token:

tseq = H3(seq, t) at HS, where seq is the current sequence

identifier and H3(·) is yet another suitable cryptographic

hash function. For his part, Bob now labels its tweets in

the same manner. Periodicity of seq can be arbitrary: time-

based (e.g., a week, a day or an hour) or volume-based, e.g.,

100 or 1, 000 tweets. (The former makes more sense as it

would not require fine-grained synchronization. Whenever

the epoch changes – due to either time or volume – both

tweeters and followers update seq, recompute tseq and each

follower deposits it at HS. Although increased frequency of

re-depositing tokens at HS might be considered undesirable,

we note that users tend to be connected most of the time

and bandwidth involved in re-depositing is rather low; linear

in the number of tokens for each follower.

Clearly, within the same seq epoch, all tweets by the

same tweeter with the same ht would remain linkable by

HS. However, consider two tweets from different epochs

containing the same hashtag: they are labeled with tseq =
H3(seq, t) and tseq′ = H3(seq′, t), respectively, where

seq �= seq′. Linking them is computationally infeasible

due to the properties of H3(·). On the other hand, as

pointed out in Section III, the privacy gain obtained from

this modification is of dubious value. The main reason is

that HS retains its central role and sees all tokens updates

by all followers. This allows it to perform very effective

traffic analysis. For example, if Alice follows Bob on a

given ht, HS would trivially see when both Alice’s current

token tseq starts matching Bob’s counterpart. HS would thus

easily infer the periodicity of seq and, with high probability,

link Bob’s tweets with the same ht. On the other hand,

there might still be some value in this method if followers

subscribe to many hashtags by many tweeters. We defer

further investigation of this topic to future work.

D. Collusions

As discussed in Section III, our HS adheres to the honest-

but-curious (HbC) adversarial model. In particular, though

it diligently follows all Hummingbird protocols, HS can

attempt to violate privacy of either (or both) tweeters or

followers. The former entails HS learning the hashtag ht∗

used to derive the token t∗ that accompanies a tweet.

Whereas, HS violates follower privacy if it learns ht used to

derive t previously deposited by a follower. We claim that,

since HS is an HbC adversary, it does not create spurious

(or phantom) followers. If HS were to be treated as a fully

malicious adversary, it is easy to see that creating phantom

followers would allow it to obtain cryptographic tokens on

arbitrary hashtags and match them to existing tweets or

follow requests.

On the other hand, HS might still try to collude with

other users. In particular, a collusion between HS and a

tweeter would immediately disclose all interests of sub-

scribers pertaining to that tweeter. Similarly, a collusion with

a follower, would allow HS to learn all subscribers who

have any common interests with the colluding subscriber.

Nevertheless, we claim that users (tweeters or followers)

who collude with HS necessarily lose some of their own

privacy. Suppose that Alice is one of Bob’s followers on

hashtag ht who has previously deposited the corresponding

token t at HS during the Finalize Request protocol. In order

to learn ht corresponding to t, HS must collude with (1) any

Bob’s follower on ht, e.g., Alice, or (2) Bob himself.

In the former case, Alice could reveal to HS ht that was

used as secret OPRF input in the Issue Request protocol. By

doing so, Alice clearly looses her own privacy with respect

to ht. Whereas, HS learns the identities of all other Bob’s

followers on ht. This is a serious breach of privacy. However,

this “feature” unfortunately appears to be unavoidable, since,

as discussed in Section III-A, HS’s ability to simultaneously

match a given token to all of is followers is a fundamental

component of Twitter and any similar OSN.

Now, suppose that HS colludes with Bob with the goal

of learning ht corresponding to some t deposited at HS by

one or more Bob’s followers. As part of colluding with HS,

Bob could compute its PRF over arbitrary hashtags until

the output matches t. However, in general, this might be

computationally infeasible if the hashtag of interest – ht –

is not easily predictable by Bob, i.e., not in Bob’s usual

repertoire. We also note that, by revealing to HS that ht
corresponding to t, Bob would give up privacy of all of his
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past and future tweets containing the same ht. We therefore

consider that Bob has a low incentive to collude with HS.

E. Handling Retweets

Twitter allows forwarding other tweeter’s tweets to one’s

own followers. Hummingbird has been designed with pri-

vacy in mind and one of its main goals is to allow tweeters

to control who can access their data. For this reason, we

do not allow retweets at this stage. Nevertheless, followers

in Tweeter, Hummingbird or any other messaging system

can always redistribute the content of the messages they

decrypt. Effective means of addressing this issues are beyond

this paper’s scope. Similarly, Hummingbird does not allow

followers to reply to a tweet. As Alice follows Bob on

“private” hashtags, replying to a tweet would immediately

sacrifice Alice’s privacy.

F. Extending Hummingbird to Mobile Applications.

One of Twitter’s most attractive features is its perva-

siveness. User can tweet and follow others from virtually

any computing device, e.g., a laptop, a tablet, a PDA or a

smartphone. Our current prototype only supports Firefox 3.x.

However, Hummingbird’s low overhead makes it perfectly

suitable for resource-constrained devices, such as smart-

phones. In fact, even in a smartphone setting, the overhead

of most CPU-demanding operation in Hummingbird (i.e.,

RSA signatures) is still quite low. For example, on a 2010

HTC Nexus One, running Android 2.3.6, it takes less than

20ms to generate an RSA signature.

G. Support for Multiple Hashtags

The description of Hummingbird in Section IV assumes

that all tweets and follow requests contain a single hashtag.

We now describe how to efficiently extend our protocol for

tweeting or issuing follow requests on multiple hashtags.

Tweeting with multiple hashtags: Bob tweets a message

M and associates it with n hashtags, ht∗1, . . . , ht∗n. Anyone

with a follow request accepted on any of these hashtags

should be able to read the message. We modify the tweeting

protocol in Figure 3 as follows: Bob selects k∗ ←R {0, 1}τ1 ,

and computes ct∗ = Enck∗(M). He then computes:

{δ∗i }ni=1,← {H(ht∗i )
db mod Nb}ni=1

Finally, Bob sends to HS:(
ct∗, {EncH1(δ∗

i )(k)}ni=1, {H2(δ∗i )}ni=1

)
The rest of the protocol involving matching at HS, as well

as Alice’s decryption, is straightforward and we omit it.

Following on multiple Hashtags: Alice follows Bob on

any hashtags: (ht1, . . . , htl). The Follow Request protocol

in Figure 2 needs to be trivially extended to include l
parallel Blind-RSA executions, one for each hashtag in

(ht1, . . . , htl). Thus, Alice obtains (δ1, . . . , δl), i.e., Bob’s

RSA signatures on hashtags of interest. She then deposits at

HS: (t1, . . . , tl)← (H2(δ1), . . . , H2(δl)).

H. Oblivious AES as OPRF

Another possibility for realizing OPRFs is to use Oblivi-

ous AES. An Oblivious AES construction involves a sender,

on input a secret AES key s, and a receiver on input a

message x. Using an oblivious evaluation of the AES circuit

(about 30, 000 gates), e.g., relying on Yao’s garbled circuits

for secure two-party computation [54], the receiver can

obtain AES.Encs(x) without disclosing x to the sender, and

without learning s. Therefore, assuming that AES is secure

pseudorandom permutation, one could securely realize, in

ROM, the OPRF fs(ht) as H ′(AES.Encs(ht)). Use of

Oblivious AES would remove virtually any overhead during

tweeting as the tweeter would no longer need to perform

any public-key operation. However, overhead incurred by

the oblivious evaluation of the AES garbled circuit (e.g.,

see [45]) is still relatively high compared to the Blind-RSA

protocol. Therefore, we do not use it as it would significantly

slow down the follow requests. Nonetheless, as improved

constructions become available, we can replace Blind RSA

based techniques with Oblivious AES with no architectural

change.

VIII. RELATED WORK

This section reviews related work: we distinguish be-

tween (i) results focusing on OSN security and privacy, (ii)

techniques for securing publish/subscribe networks, and (iii)

constructs for Attribute-based Encryption.

A. Privacy in OSNs

Increasing proliferation and popularity of Online So-

cial Networks (OSNs) prompted privacy concerns with

the amount and sensitivity of disseminated and collected

personal information. Consequently, the security research

community started to explore emerging issues and chal-

lenges. A number of recent studies, such as [14, 21, 23, 53],

considered privacy in Facebook, MySpace, and other OSNs.

Recently, [5] overviewed the state of the art in OSN pri-

vacy from different perspectives (including psychology and

economics) and highlighted a number of research gaps. The

work in [32] measured the extent of personally identifiable

information disclosed by Twitter users. Also specific to

Twitter is the analysis of privacy leaks in [41] and [40].

Several cryptographic protocols have been proposed to

improve confidentiality, access control, or anonymity in

OSNs. One proposal closely related to Hummingbird is

#h00t [6]. It allows a group of users (communities that share

a common password or plaintext hashtag) to communicate

with privacy. Similar to Hummingbird, cryptographic tags

in #h00t are computed by hashing plaintext keywords.

#h00t also leverages hash collisions to provide deniability,

i.e., the ability for an user to prove that they were not
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tweeting/following about a particular hashtag.. The work

in [17] applies the concept of “virtual private networks”

to OSN, i.e., it establishes a confidential channel between

“friends” in order to share sensitive data. A similar ap-

proach is taken by FaceCloack [38], where sensitive data is

encrypted and stored on third party servers (distinct from

the OSN provider), while only authorized users holding

decryption keys can access them. NoYB [31] focuses on

user privacy with respect to the OSN provider and also

tries to conceal users that are encrypting their contents.

Finally, Scramble! [8] uses broadcast encryption [19] for

improved access control on Facebook, i.e., allowing each

user to specify the recipients of shared information, similar

to the concept of circles in Google+.

Decentralized OSNs have been advocated for privacy-

aware social networking[1–3]. For example, [7] provides a

cryptographic API that achieves improved access control,

anonymity and confidentiality. Whereas, our approach fo-

cuses on privacy for centralized OSNs, a social-network

model that supports high availability and real-time content

dissemination. In fact, decentralized architectures – e.g.,

those based on p2p networks [15] – might hinder real-time
availability of information (a crucial feature in Twitter) or

require users to buy cloud storage for their data [50].

B. Privacy-Friendly Publish/Subscribe Networks

The service provided by Twitter could be considered as a

kind of a Publish/Subscribe network (Pub/Sub). In Pub/Sub,

publishers do not program messages to be sent directly to

specific subscribers. Rather subscribers register their interest

in an event, or a pattern of events, and are subsequently

asynchronously notified of events generated by publishers.

Subscribers register arbitrary complex queries over events to

a multitude of brokers (usually organized in an hierarchy)

that receive events by publishers and notify subscribers. (For

more details on Pub/Sub, we refer to [22].) In contrast,

Twitter has a single central server, handles simple keyword-

based queries and requires interaction between followers and

tweeters. Nevertheless, we review recent Pub/Sub privacy-

enhancing techniques an discuss their (un)suitability to the

Twitter scenario.

The work in [48] focuses on confidentiality in content-

based Pub/Sub systems and introduces some techniques for

efficient matching at the broker, who learns nothing about

the data being matched. Another recent result [51] uses

multiple-level commutative encryption to privately share

information in an hierarchical content-based multi-broker

Pub/Sub system. While data producers and consumers might

not know each other, the system requires each user to interact

and trust each peer at two-hop distance in the network.

Finally, [33] proposes a cryptographic mechanism, based

on Attribute-Based Encryption (ABE) [28] and Searchable

Encryption [13, 52], to support confidentiality for events

and matching filters.

All above solutions require publishers and subscribers to

trust (i) each other [48], (ii) the brokers [51], or (iii) a third

party [33]. Thus, none can offer data privacy in Twitter-

like settings. Tweeters and followers might have no mutual

knowledge and no third party should be trusted to access

sensitive data.

C. Attribute-Based Encryption

Attribute-based encryption (ABE) was introduced by Sa-

hai and Waters [49]. In ABE, decryption capability can be

given to any party whose decryption keys satisfy arbitrary

(encryptor-selected) policy. In particular, in [49], a ciphertext

and decryption keys are labeled with set of attributes.

Thus, decryption is possible only if the sets of ciphertext

and decryption key attributes have at least d attributes in

common. ABE was later extended by [29] and [11]. The

former proposed Key-Policy ABE where keys are associated

to access structures and a ciphertext can be decrypted by a

key only if the ciphertext attributes satisfy the key access

structure. Whereas, the latter proposed Ciphertext-Policy

ABE where ciphertexts are associated with access structures

and keys with attributes: a ciphertext can be decrypted only

if the key attributes satisfy its access structure.

In general, ABE could be used in Hummingbird substitut-

ing cryptographic tokens of tweets with attributes required

for decryption. Similarly, tokens computed by followers

could be replaced by attributes of their decryption keys.

However, there are some issues complicating the adoption

of ABE in Hummingbird.

First, it is unclear how to achieve follower privacy in

ABE, i.e., how can a follower obtain the decryption key

for “attributes” of her choice without leaking her interests

to the tweeter. Also, matching tweets and follow requests

would require the server to get the decryption key of each

follower. In other words, checking if the set of attributes

associated with a tweet and the one associated with a follow

request are disjoint, requires the secret decryption key of the

follower.

Finally, ABE schemes incur considerable overhead by

requiring a number of bilinear-map computations linear in

the number of attributes associated to a ciphertext or a

decryption key. For example, encryption/decryption opera-

tions in [11] are one order of magnitude slower than in

Hummingbird.

IX. CONCLUSION

This paper presented one of the first efforts to mitigate

rampant lack of privacy in modern micro-blogging OSNs.

We analyzed privacy issues in Twitter and laid out an

architecture (called Hummingbird) that offers a Twitter-like

service with increased privacy guarantees for tweeters and

followers alike. While the degree of privacy attained is not

absolute, it is still valuable considering current complete lack

of privacy and some fundamental limitations inherent to the
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centralized gather/scatter message dissemination paradigm.

We implemented Hummingbird architecture as a research

prototype and evaluated its performance. Since almost all

cryptographic operations are conducted off-line, and none is

involved to match tweets to followers, the resulting costs and

overhead are very low. Our work clearly does not end here.

In particular, several extensions, including revocation of

followers, anonymity for tweeters as well as unlinking same-

hashtag tweets, require further consideration and analysis.
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