
A Knowledge-Based Approach To Intrusion Detection Modeling

Sumit More, Mary Matthews, Anupam Joshi, Tim Finin

Computer Science and Electrical Engineering
University of Maryland, Baltimore County

Baltimore, MD, USA
{sumitm1, math1, joshi, finin}@umbc.edu

Abstract—Current state of the art intrusion detection and
prevention systems (IDPS) are signature-based systems that
detect threats and vulnerabilities by cross-referencing the
threat or vulnerability signatures in their databases. These
systems are incapable of taking advantage of heterogeneous
data sources for analysis of system activities for threat detec-
tion. This work presents a situation-aware intrusion detection
model that integrates these heterogeneous data sources and
build a semantically rich knowledge-base to detect cyber
threats/vulnerabilities.

Keywords-security, vulnerability, intrusion detection, infor-
mation extraction, ontology

I. INTRODUCTION

Cyber crimes are being used to assist activities like

espionage, politically motivated attacks and credit card fraud

at an alarming rate. For example, [1] describes how Tibetan

computer systems were compromised giving attackers access

to potentially sensitive information, [2] reports how an

attacker defaced the web-site of Turkey’s embassy in China

and [3] reports how hackers stole 40 million credit card

numbers.
State of the art intrusion detection and prevention systems

(IDPS) perform signature-based monitoring of the cyber-

infrastructure to identify any malicious activities and gen-

erate an alert when such activity is detected. These systems

share a limitation that if the signature of an attack is not

available in their database, they cannot detect it. These

systems are also point-based solutions which are currently

incapable of integrating information coming from heteroge-

neous sources. The heterogeneous data sources can provide

very useful spatial and temporal information of the system

activities, which can be useful in tracking threats and attacks.

We argue for a semantically rich approach to intrusion detec-

tion, where gathering data from different sources, integrating

them, and reasoning over such information-rich knowledge-

base will improve the detection of detect an attack or threat.

We present a framework for this ontological approach and

demonstrate its working.

II. BACKGROUND AND PREVIOUS WORK

Intrusion detection and prevention systems like Snort [4]

and IBM X-Force [5] are signature-based systems that moni-

tor a system’s behavior and compares it with a predefined no-

tion of acceptable behavior. If the system deviates from the

predefined and fixed description of acceptable behavior, an

associated set of anomalous activities is checked, and an alert

is raised if the current activity is found in that set. Though

most of these IDS/IPS systems have well defined attack

update mechanisms that keep them current with information

on new attacks, they face certain limitations. These systems

cannot detect threats in the infrastructure if the signature

of the threat is not present in the system database. Apart

from the traditional IDS/IPS systems, there are many other

host and network based activity monitors such as Wireshark

[6], Nagios [7] and Cacti [8] that provide elaborate data

logs of the activities being performed at the host/network

level. These monitoring tools also have a rule-based alerting

mechanism, where the activities in the infrastructure are

monitored and checked against a pre-defined set of rules, and

corresponding actions are taken when certain events satisfy

certain rules. Unless the behavior of the attack is known,

these systems cannot detect it.

Many data sources on the Web today are comprised of

information related to intrusions and attacks in different

levels of verbosity. Mulwad et al. [9] described a system

for extracting information about vulnerabilities and cyber

attacks from different unstructured data sources like vulner-

ability description feeds (CVE, CCE, CPE, CVSS, XCCDF,

OVAL) [10], hacker forums, chat rooms, blogs, etc., and

informing the expert about it. Khadilkar et al. [11] explain

the importance of a semantic model for information repre-

sentation and present an ontology for National Vulnerability

Database. They demonstrate the building of a knowledge-

base from structured a data set and its usage.

Undercoffer et. al [12], [13] emphasized the importance of

ontological linking of the vulnerabilities for a more effective

IDS mechanism. Ontological specification of attacks and

intrusions presents superior machine interpretable definitions

of the concepts and relations between them, as compared to

the conventional taxonomic representation. This makes way

for knowledge sharing and reuse, as well as better reasoning

and analysis of the information at hand.

Undercoffer [14] presents a host based intrusion detec-

tion system, making use of ontological representation of

the intrusions and attacks, which performs better than the

conventional signature-based intrusion detection system.

Integration of conventional signature-based intrusion de-

2012 IEEE Symposium on Security and Privacy Workshops

© 2012, Sumit More. Under license to IEEE.
DOI 10.1109/SPW.2012.26

75

IEEE CS Security and Privacy Workshops

75



Figure 1. Situation Aware Intrusion Detection System: System Architec-
ture

tection with other data sources along with ontological rea-

soning can lead to an intrusion detection system that has the

ability to potentially link and infer means and consequences

of cyber threats and vulnerabilities whose signatures are not

yet available. The key components of this system would be

the IDS/IPS sensor information module, data from different

sensor streams, text-data from web, domain expert knowl-

edge, the ontology knowledge base and the reasoner.

III. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Figure 1 shows the system architecture of our framework.

The architecture can be broadly divided into two sections:

data streams and ontology knowledge-base and reasoner.

A. Data Streams

The data streams include different channels that provide

useful information related to an attack. Examples of some

these channels are:

• Streams from host system which provide information

related to the activities/processes that are executing at

the host like logs from top [15] and monit [16]

• Streams from a network based activity monitors like

Wireshark [6], Nagios [7], Cacti [8] etc.

• Sensor data coming from the IDS/IPS modules provide

us with verbose information related to the system

and network traffic, the data-packets sent and received

by the system, the source and destination ports/IPs,

the type of hardware at the source and destination,

protocols of communication, and time-stamp related

information.

• Logs from hardware sensor monitors like Cisco IPS

4200 [17].

• Web data stream which contains text related to the

attacks/vulnerabilities. This unstructured text data can

be parsed into named entities which can be used to

enrich the knowledge-base.

• Structured text data like well-defined threat/attack de-

scriptions. [10]

The items of interest from these data streams are asserted on

facts in our knowledge-base. The integration and inferencing

over this aggregated data can enable better detection of

complex attacks.

B. Knowledge-Base and Reasoner

This module comprises of the ontology, knowledge-base,

and the reasoning logic. We extended the ontology and

knowledge-base proposed by Undercoffer [12] [13] and

added rules to the reasoning logic. The ontology comprises

of 3 fundamental classes: ‘means’, ‘consequences’, and

‘targets’. The ‘means’ class encapsulates the ways and

methods used to perform an attack, the ‘consequences’

class encapsulates the outcomes of the attack, and the

‘target’ class encapsulates the information of the system

under attack. For instance, the ‘means’ class consists of

sub-classes like ‘BufferOverFlow’, ‘synFlood’, ‘LogicEx-

ploit’, ‘tcpPortScan’, etc., which can further consist of

their own sub-classes; the ‘consequences’ class consists of

sub-classes like ‘DenialOfService’, ‘LossOfConfiguration’,

‘PrivilegeEscalation’, ‘UnauthUser’, etc.; and the ‘targets’

class consists of sub-classes like ‘SystemUnderDoSAttack’,

‘SystemUnderProbe’, ‘SystemUnderSynFloodAttack’, etc.

The entities that are collected from different data streams

are asserted into one of the classes based on the properties

of the class and the meaning of the entity. For instance,

‘annots.api executible’ is an object of a class ‘process under

stack overflow’, which is a subclass of ‘buffer overflow’,

which in turn is a subclass of ‘means’ class. Similarly,

‘remote execution’ is a subclass of ‘remote to local’ class,

which in turn is a subclass of ‘unauthorized user access’

class, which in turn is a subclass of ‘consequence’ class.

Likewise, system being monitored is an object of ‘system

under remote attack’, which is a subclass of ‘system under

unauthorized user access’, which in turn is a subclass of

‘targets’ class.

The information from different data channels is encoded

in Notation-3 format. The knowledge-base is built up by

encoding the information as OWL assertions which are

converted to N3 triples. Notation 3 encodes a set of state-

ments and its meaning in conjunction to the meaning of the

statements. The statement of the form (x p y). asserts that

the relation p holds between x and y. When p is identified

7676



@prefix dbpedia: <http://dbpedia.org/resource/> .
@prefix ids: <http://ebiquity.org/ontologies/cybersecurity/
ids/v2.0/ids� > .
[a ids:Vulnerability;
ids:hasMeans dbpedia:Buffer overflow;
ids:hasConsequence dbpedia:Denial-of-service attack].

Figure 2. This example shows the extracted information encoded as OWL
assertions serialized using N3.

by a URI, and that URI when dereferenced in the web

gives some information, that information may in practice

be used to determine more information about the semantics

of the statement. The entities collected from different data

sources can be properties of a class in the ontology (e.g., port

number, IP address, OS version, hardware platform etc.) or

objects of the classes defined in the ontology (e.g., stack

overflow in annots.api [18] can be object of ‘process under

buffer overflow’ class in the ontology). The knowledge-base

thus consists of N3 triples of the form (subject predicate
object).

The reasoning logic module takes inputs from different

data streams, the knowledge asserted into the knowledge-

base, and the ontology to infer the possibility of a

threat/attack. The N3 triples are used by the reasoning algo-

rithm to deduce an occurrence of a threat/attack. The rea-

soner logic infers from the knowledge-base and information

gathered to flag an alert, giving the means, consequences,

and targets of the attack, if there exists any. The sensor

information coming from the IDS/IPS modules, and the web-

text information coming from the web-text analyzer are used

for continuous evolution of the knowledge-base. The rea-

soning logic is a set of rules defined in N3. The knowledge

base that is built up by asserting the ontology is used by

these rules to derive chains of implications. Instances are

asserted and de-asserted into/from the knowledge base as

temporal events occur. The query language is of the form

((predicate)(subject) (object)), where at least one of the three

elements of the triple must contain a value. The other one

or two elements may be left uninstantiated (signified by

prefacing them with a ?). If there are any triples in the

knowledge base that match the query either as the result of

an assertion of a fact or a derivation of rules resulting from

the chain of implication, the value of those triples will be

returned. Figure 2 shows an example of an OWL assertion

represented in the N3 notation.

Figure 4 shows the ontology backbone of the framework

[13] [19]. It gives a high-level overview of the reasoning

mechanism being used by the framework for analysis and

result deduction. Each of the classes of the ontology have

properties which give important information regarding that

class. For example, the ‘system’ class has properties like

‘hasMaliciousProcess’, ‘maliciousProcessDetails’, ‘hasAf-

fectedProduct’, ‘affectedProductDetails’, ‘outboundAccess’,

‘portDetails’ etc. which map information coming from the

{ebIDS:webtext ebIDS:hasVulnerabilityTerm ”true” .
ebIDS:webtext ebIDS:hasSecurityExploit ”true” .
ebIDS:webtext ebIDS:hasText ?Product .
ebIDS:scannerLog ebIDS:hasProduct ?Product .
ebIDS:webtext ebIDS:hasText ?Process .
ebIDS:scannerLog ebIDS:hasProcessExecuted ?Process .
ebIDS:scannerLog ebIDS:hasPortOpened ”true” .
ebIDS:scannerLog ebIDS:hasOutboundConnection ”true” .
ge(ebIDS:scannerLogOutboundPortOpenTimestamp
ebIDS:scannerLogProcessExecutionTimestamp)
ebIDS:attack ebIDS:hasMeans ”Arbitrary Code Execution”.
ebIDS:attack ebIDS:hasConsequence ”Unauthorized Remote
Access”}
=>
{ebIDS:system ebIDS:hostUnderAttack ”true”.
ebIDS:webText ebIDS:hasProduct ?Product.
ebIDS:webText ebIDS:hasProcessExecute ?Process.
ebIDS:means ebIDS:maliciousProcess ?Process.
ebIDS:means ebIDS:affectedProduct ?Product. }

Figure 3. Sample Reasoning Logic Rule

network scanner and the web-text. In the Adobe attack, these

properties had corresponding values of ‘true’, ‘annots.api’,

‘true’, ‘Adobe Reader 8.1.1’, ‘true’, and ‘port 80’.

The rules are constructed using these N3 triples and con-

ditional operators. Figure 3 shows a sample rule that infers

an attack based on the N3 triple values. The rule states that

if the text description consists of some ‘vulnerability terms’,

mentions some ‘security exploit’, has a text mentioning

a certain product (with some specific version) and some

process which is being executed, which in turn is also logged

by the scanner, and there is an opening up of an out-bound

port; then there is a possibility of an attack on the host

system with ‘means’ and ‘consequences’ mentioned in the

ontology.

IV. PROTOTYPE AND VALIDATION

In order to test the working of our framework, we

simulated an attack in a controlled environment on a local

network (a private Ethernet based network consisting of

2 desktop machines and IBM ES750 Network Scanner)

and observed the results of the system. We simulated a

vulnerability present in Adobe Acrobat Reader, CVE-2009-

0927 [18], as it was reproducible in a small controlled

environment and has the of characteristics necessary for this

validation. The vulnerability was a stack based overflow in

Adobe Acrobat Reader which allowed remote executors to

execute arbitrary code. The attack resided in the Annots.api

plug-in of Adobe Acrobat Reader. The vulnerability database

of the IBM Proventia Network Scanner was set to the level

where it could not detect the attack CVE-2009-0927 directly.

The attack payload was embedded in a PDF file and was

configured to open up a TCP port for a remote machine

on execution. On attack simulation the Network Scanner

logged the execution of Annots.api, and thereafter port 80

was opened for a remote machine. However, since the IDS

7777



Figure 4. This figure shows a high-level sketch of the IDS OWL ontology from [19].

vulnerability database did not have the signature for the

exploit, the attack was not flagged.

We used IBM Proventia ES750 Network Scanner and

Snort as the IDS mechanisms. The logs from these systems

were also used as packet captures where threats/attacks

were not detected. The logs gave us timestamped host and

network information like port/protocol of communication,

IPs of source and destination, processes/system-calls invoked

at the host, etc.

Web sources like vulnerability description feeds (CVE,

CCE, CPE, CVSS, XCCDF, OVAL) [10], hacker forums,

chat rooms, blogs, etc. were traversed to get a set of named

entities out of the unstructured text. The CVE description

[18] and a technology blog post [20] were chosen as text

from which the named entities were to be extracted. The

named entities were then mapped onto the classes in the

ontology knowledge-base and were used by the reasoner for

decision making.

OpenCalais [21], an open source semantic analysis tool,

was used as a web-text analyzer. OpenCalais took unstruc-

tured text as input and gave a set of named entities as

output. It also tried to group the entities in certain classes.

OpenCalais was given text from two web links [18], [20].

Figure 5 shows the texts given to the web-text analyzer.

OpenCalais takes the text and attaches semantically rich

metadata like the topic being discussed, entities that pop

up in the text, events and facts that occur, etc. to the

content. Figure 6 shows the named entities extracted by

the text-analyzer. The named entities were mapped to the

CVE [18] text description: Stack-based buffer overflow in
Adobe Reader and Adobe Acrobat 9 before 9.1, 8 before
8.1.3, and 7 before 7.1.1 allows remote attackers to execute
arbitrary code via a crafted argument to the getIcon method of
a Collab object, a different vulnerability than CVE-2009-0658.

Juniper Networks Link [20] text description: Acrobat and
Reader are prone to a remote code-execution vulnerability
because they fail to sufficiently sanitize user-supplied input
before using it in the ’strncpy’ function in the ’Annots.api’
file. This issue affects the ’getIcon()’ JavaScript method of a
Collab object. Specially crafted arguments can cause a
stack-based buffer overflow.

Figure 5. The two boxes are the text descriptions given to the web-text
analyzer. The first text box gives an official description of the vulnerability,
while the second gives description from some tech-blog web-link

corresponding means, consequences, and targets classes of

the ontology.

The reasoner logic found the annots.api dll being

executed at the host via the logs received from the network

scanner. The log also pointed out the product using this

service i.e. Adobe Acrobat Reader. The text data from the

web-link [20] also comprised of ‘annots.api’ in the text.

The packet dump showed the opening up of port 80 for

clear outbound access after execution of annots.api. The

CVE description [18] mentioned ‘remote execution’ in the

text. The rule repository could comprise of a rule which

would flag an alert if there is an opening of outbound

network port if the application requesting it inherently does

7878



Company: Adobe Systems Incorporated
Technology: Adobe
Named Tags: Computing

Adobe Software
Buffer Overflow
Vulnerability
Arbitrary Code Execution

Company: Adobe Systems Incorporated
Technology: Adobe

api
PDF

Named Tags: Computing
Javascript
Buffer Overflow
Vulnerability
Arbitrary Code Execution

Figure 6. These two examples show the named entities extracted from
the text-descriptions by the web-text analyzer.

CVE-2009-0932 text description: Directory traversal
vulnerability in framework/Image/Image.php in Horde before
3.2.4 and 3.3.3 and Horde Groupware before 1.1.5 allows
remote attackers to include and execute arbitrary local files via
directory traversal sequences in the Horde Image driver name.

Entities Extracted: Technology Internet, Horde, Directory
traversal, Computing, Vulnerability, Tree traversal.
Vulnerability Terms: Computer security exploits,
Web security exploits, Machine code, Injection exploits,
Malware
Scanner Logs Terms: image.php, horde groupware
Inference Rule Applied: Rule1
Result: Attack Flagged

Figure 7. Sample 1 CVE-2009-0932: Description, extracted entities, and
result

not require a network access for its execution. The reasoner

linked the occurrence of Annots.api in the packet dump

from IDS, the opening up of port 80, and the text-analyzer

output to conclude that it is a probable attack on the system.

Figure 12 shows the summary of the Adobe attack and the

steps executed by the framework to conclude the occurrence

of an attack. The named entities extracted from the web-text

and the network scanner are asserted into the knowledge-

base in the form of N3-triples, and the reasoning logic shown

in Figure 3 is used to determine the occurrence of the attack.

The reasoning logic was tested on multiple vulnerabilities

that roughly fell in a similar category. 8070 CVE [22] vul-

nerability text descriptions were chosen, which mentioned

vulnerabilities in different products/platforms/applications

that resulted in giving the attacker an unauthorized remote

access to the host. The rules mentioned in figures 8, 9, 10,

and 11 were used to infer the possibility of an attack. The

network scanner logs were simulated, i.e. the logs were

built up so as to reflect that the data mentioned in the

{ebIDS:webtext ebIDS:hasVulnerabilityTerm “true” .
ebIDS:webtext ebIDS:hasSecurityExploit “true” .
ebIDS:webtext ebIDS:hasText ?Product .
ebIDS:scannerLog ebIDS:hasProduct ?Product .
ebIDS:webtext ebIDS:hasText ?Process .
ebIDS:scannerLog ebIDS:hasProcessExecuted ?Process .
ebIDS:scannerLog ebIDS:hasPortOpened “true” .
ebIDS:scannerLog ebIDS:hasOutboundConnection “true” .
ge(ebIDS:scannerLogOutboundPortOpenTimestamp
ebIDS:scannerLogProcessExecutionTimestamp) .
ebIDS:means ebIDS:maliciousProcess ?Process .
ebIDS:means ebIDS:affectedProduct ?Product}
=>
{ebIDS:system ebIDS:hostUnderAttack “true”.
ebIDS:webText ebIDS:hasProduct ?Product.
ebIDS:webText ebIDS:hasProcessExecute ?Process.
ebIDS:attack ebIDS:hasMeans “Arbitrary Code Execution”.
ebIDS:attack ebIDS:hasConsequence “Unauthorized Remote
Access”}

Figure 8. Reasoning Logic Rule 1: Outbound Access (Unauthorized
Remote Access) via Malicious Process Execution

{ebIDS:webtext ebIDS:hasVulnerabilityTerm “true” .
ebIDS:webtext ebIDS:hasSecurityExploit “true” .
ebIDS:scannerLog ebIDS:hasProduct ?Product .
ebIDS:webtext ebIDS:hasText ?Product .
ebIDS:scannerLog ebIDS:hasCommandExecuted ?Command .
ebIDS:webtext ebIDS:hasText ?Command .
ebIDS:scannerLog ebIDS:hasPortOpened “true” .
ebIDS:scannerLog ebIDS:hasOutboundConnection “true” .
ge(ebIDS:scannerLogOutboundPortOpenTimestamp
ebIDS:scannerLogProcessExecutionTimestamp) .
ebIDS:means ebIDS:maliciousCommand ?Command.
ebIDS:means ebIDS:affectedProduct ?Product}
=>
{ebIDS:system ebIDS:hostUnderAttack “true”.
ebIDS:webText ebIDS:hasProduct ?Product.
ebIDS:webText ebIDS:hasCommandExecute ?Command.
ebIDS:attack ebIDS:hasMeans “Arbitrary Code Execution”.
ebIDS:attack ebIDS:hasConsequence “Unauthorized Remote
Access”}

Figure 9. Reasoning Logic Rule 2: Unauthorized Remote Ac-
cess/Monitoring via Malicious Command Execution

text to be true. For example: For the text in figure 7, the

scanner log was assumed to have information regarding the

Horde’ software, the corresponding version numbers, and

the malicious file name (../Image/Image.php). The reasoning

framework which used conjunction of the text, network

monitor logs, and the reasoning rules mentioned above was

successful in inferring 7120 of the 8070 attacks.

V. CONCLUSION AND ONGOING WORK

We have described a semantically rich framework for a

situation aware intrusion detection system which can harvest

the advantages of heterogeneous data sources to detect the

threats, if any. We tested and found the semantic integration

of web-text and IDS/IPS sensor information to be effective

in detecting threats. The framework performs well, provided

7979



{ebIDS:webtext ebIDS:hasVulnerabilityTerm “true” .
ebIDS:webtext ebIDS:hasSecurityExploit “true” .
ebIDS:scannerLog ebIDS:hasBrowser ?Browser.
ebIDS:webtext ebIDS:hasText ?Browser .
ebIDS:scannerLog ebIDS:hasObject ?Object.
ebIDS:webtext ebIDS:hasText ?Object .
ebIDS:scannerLog ebIDS:hasPortOpened “true” .
ebIDS:scannerLog ebIDS:hasOutboundConnection “true” .
ge(ebIDS:scannerLogOutboundPortOpenTimestamp
ebIDS:scannerLogProcessExecutionTimestamp) .
ebIDS:means ebIDS:maliciousBrowser ?Browser .
ebIDS:means ebIDS:maliciousObject ?Object}
=>
{ebIDS:system ebIDS:hostUnderAttack “true”.
ebIDS:webText ebIDS:hasBrowser ?Browser .
ebIDS:attack ebIDS:hasMeans “Arbitrary Code Execution” .
ebIDS:attack ebIDS:hasConsequence “Unauthorized Remote
Access”}

Figure 10. Reasoning Logic Rule 3: Remote Access via Browser

{ebIDS:webtext ebIDS:hasVulnerabilityTerm “true” .
ebIDS:webtext ebIDS:hasSecurityExploit “true” .
ebIDS:scannerLog ebIDS:hasProduct ?Product .
ebIDS:webtext ebIDS:hasText ?Product .
ebIDS:scannerLog ebIDS:hasObject ?Object.
ebIDS:webtext ebIDS:hasText ?Object .
ebIDS:scannerLog ebIDS:hasPortOpened “true” .
ebIDS:scannerLog ebIDS:hasOutboundConnection “true” .
ge(ebIDS:scannerLogOutboundPortOpenTimestamp
ebIDS:scannerLogProcessExecutionTimestamp)}
=>
{ebIDS:system ebIDS:hostUnderAttack “true”.
ebIDS:webText ebIDS:hasProduct ?Product .
ebIDS:webText ebIDS:hasObject ?Object .
ebIDS:attack ebIDS:hasMeans “Arbitrary Code Execution” .
ebIDS:means ebIDS:maliciousProduct ?Product .
ebIDS:means ebIDS:maliciousObject ?Object .
ebIDS:attack ebIDS:hasConsequence “Unauthorized Remote
Access”}

Figure 11. Reasoning Logic Rule 4: Unauthorized Remote Ac-
cess/Monitoring via Malicious Object

that we have a good set of web links which provide some

meaningful information regarding the threat/attack and data

sources which give entities that map well into the ontology.

There is huge potential for making the web-text analyzer

stronger by enabling it to crawl the web to harvest new

information regarding potential attacks, which in turn can

help detect and prevent zero-day attacks. We continue to

experiment with integration of newer data sources in the

framework and observe the effectiveness of the addition.

ACKNOWLEDGMENT

This work was partially supported by a gift from Northrop

Grumman Corporation and grant from Air Force Office of

Scientific Research.

Experiment Exploit: Adobe vulnerability CVE-2009-0927 [18]
Vulnerability Overview: Stack-based buffer overflow in Adobe
Reader and Adobe Acrobat 9 before 9.1, 8 before 8.1.3 , and
7 before 7.1.1 allows remote attackers to execute arbitrary.
Experiment:
Step 1: Test the exploit on a mock setup.
Step 2: Network traffic collected from the IDS/IPS system for
the exploit.
Step 3: Taking a web source mentioning the vulnerability and
parsing the data from that source to detect the vulnerabilities.
Step 4: Detecting the product/software-application under
threat.
Step 5: Integrating the results of Steps 2, 3 and 4 to give an
appropriate alert.

CVE-2009-0927 text description: Stack-based buffer overflow
in Adobe Reader and Adobe Acrobat 9 before 9.1, 8 before
8.1.3, and 7 before 7.1.1 allows remote attackers to execute
arbitrary code via a crafted argument to the getIcon method of
a Collab object, a different vulnerability than CVE-2009-0658.
Acrobat and Reader are prone to a remote code-execution
vulnerability because they fail to sufficiently sanitize
user-supplied input before using it in the ‘strncpy’ function in
the ‘Annots.api’ file. This issue affects the ‘getIcon()’
JavaScript method of a Collab object. Specially crafted
arguments can cause a stack-based buffer overflow.

Entities Extracted: Technical communication tools, Adobe
software, Programming bugs, Arbitrary code execution,
Vulnerability, Stack, Buffer overflow, Software testing, Adobe
Creative Suite, Adobe Acrobat, Annots.api, Technology
Internet.
Vulnerability Terms: Computer security exploits,
Programming bugs, Computer errors, Software anomalies,
Scanner Logs Terms: acrobat reader, annots.api
Inference Rule Applied: Rule in Figure 3
Result: Threat alert flagged true

Figure 12. Adobe Vulnerability CVE-2009-0927: Description, extracted
entities, and result

REFERENCES

[1] “Tracking ghostnet: Investigating a cyber espionage

network,” http://www.infowar-monitor.net/2009/09/

tracking-ghostnet-investigating-a-cyber-espionage-network.

[2] “Turkish government site hacked amid spat with

china,” http://www.pcworld.com/businesscenter/article/

168359/turkish government site hacked amid spat

with china.html.

[3] “Justice: Hackers steal 40 million credit card numbers,”

http://articles.cnn.com/2008-08-05/justice/card.fraud.

charges 1 card-numbers-debit-magnetic-strips? s=

PM:CRIME.

[4] “Snort,” http://www.snort.org/.

[5] “Internet security systems x-force security threats,”

http://xforce.iss.net.

[6] “Wireshark,” http://www.wireshark.org/.

[7] “Nagios,” http://www.nagios.org/.

8080



[8] “Cacti,” http://www.cacti.net/.

[9] V. Mulwad, W. Li, A. Joshi, T. Finin, and

K. Viswanathan, “Extracting Information about Secu-

rity Vulnerabilities from Web Text,” in Proceedings of
the Web Intelligence for Information Security Work-
shop. IEEE Computer Society Press, August 2011.

[10] “National vulnerability database,” http://nvd.nist.gov.

[11] V. Khadilkar, J. Rachapalli, and B. Thuraisingham,

“Semantic web implementation scheme for national

vulnerability database,” Univ. of Texas at Dallas, Tech.

Rep. UTDCS-01-10, 2010.

[12] J. Undercoffer, A. Joshi, T. Finin, and J. Pinkston,

“Using DAML+OIL to classify intrusive behaviours,”

The Knowledge Engineering Review, vol. 18, pp. 221–

241, 2003.

[13] J. Undercoffer, A. Joshi, and J. Pinkston, “Modeling

Computer Attacks: An Ontology for Intrusion Detec-

tion,” in Proc. 6th Int. Symposium on Recent Advances
in Intrusion Detection. Springer, September 2003.

[14] J. Undercofer, “Intrusion Detection: Modeling Sys-

tem State to Detect and Classify Aberrant Behavior,”

Ph.D. dissertation, University of Maryland, Baltimore

County, February 2004.

[15] “Top command (linux),” http://linux.die.net/man/1/top.

[16] “Monit,” http://mmonit.com/monit/.

[17] “Cisco hardware sensor,” http://www.cisco.com/en/US/

products/hw/vpndevc/ps4077/index.html.

[18] “Adobe acrobat vulnerability cve-2009-0927,”

http://web.nvd.nist.gov/view/vuln/detail?vulnId=

CVE-2009-0927.

[19] http://ebiquity.umbc.edu/ontologies/cybersecurity/ids/.

[20] “Juniper website text description of cve-2009-0927,”

http://www.juniper.net/security/auto/vulnerabilities/

vuln34169.html.

[21] “Opencalais,” http://opencalais.com/.

[22] “Common vulnerabilities and exposures,” http://cve.

mitre.org/.

8181


