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This new book, cleverly entitledEeyondthe Kalman Filler, 
is by far the best book on filtering published in many years: It is 
clearly written, well organized, authoritative, and contains a 
wealth of useful information. It explains a state-of-the-art class 
of practical nonlinear filtering algorithms, called ‘‘pam.de 
filrers,” using examples and theory accessible to normal 
engineers. The book contains many examples of practical 
nonlinear filters worked out in detail. One of the best features 
of the book is the large variety of plots of filter estimation 
accuracy for different types of filters, including the extended 
Kalman filter (EKF), the unscented Kalman filter (UKF), 
particle filters (PFs), as well as a bound on the theoretical 
optimal performance. It is refreshing to see such thorough 
quantitative work. The main focus of this book is particle 
filtering, which is a new class of nonlinear filter which often 
results in vastly superior performance compared with the 
Kalman filter. The Kalman filter is the most widely used and 
most successful algorithm for real world aerospace and other 
applications. It is used in many radars, passive infrared 
systems, sonar, and other systems, as well as for multi-sensor 
data fusion. Thousands of papers have been written about 
Kalman filters. Often the Kalman filter gives excellent 
estimation accuracy - but not always. There are many 
real-world applications in whicb Kalman filter accuracy is 
poor relative to theoretical expectations, owing to nonlinearity 
in the measurement equations or the dynamical model of the 
physical system. Almost all real-world problems are nonlinear. 
Only textbooks and papers create the impression that filtering 
problems are linear. 

Particle filters use real-time on-line Monte Carlo 
simulations to model the decrease of uncertainty due to sensor 
measurements and the increase of uncertainty as time evolves 
in the physical system of interest. This is a very direct approach 
to modelling uncertainty, facilitated by the availability of fast, 
low-cost modem computers with large memories. Computer 
speed and memory have increased by roughly eight orders of 
magnitude per unit cost since Kalman published his famous 
paper in 1960. This is what allows us to run particle filters in 
real-time on a single PC for significant real-world applications. 
Each particle represents one possible random path of the state 
vector of the system. The probability density of the state vector 

conditioned on the measurements is represented by these 
particles, similar to a histogram. The expected value of the 
state vector is computed by adding up all the particles, with 
appropriate weights (some particles are more important than 
others). One can code a pretty good particle filter in a page or 
two of MATLAB. One does not need to understand the finer 
points of stochastic calculus or the Fokker-Planck equation, or 
any fancy numerical methods for solving partial differential 
equations. On the other hand, the best particle filters use 
sophisticated (but easy to code) sampling methods (e.g.. 
Hastings-Metropolis), rather than brute force simple Monte 
Carlo sampling. A crucial detail in particle filters is called 
“importance sampling,” which means putting the particles in 
the most important regions in state space. This is accomplished 
by using some simple Bayesian probability theory. 

The key issue in nonlinear filters of any kind is the curse of 
dimensionality. This is the phrase coined by Richard Bellman 
over forty years ago to describe the exponential growth of 
computational complexity as a function of dimension of the 
state vector of the system. The computational complexity of 
the Kalman filter grows as the cube of the dimension, but for 
general nonlinear problems using filters that achieve optimal 
accuracy, the computational complexity grows more rapidly 
with dimension. It has been asserted (but not in this book) that 
particle filters avoid the curse of dimensionality. But, contrary 
to popular opinion, particle filters generally do not avoid the 
curse of dimensionality. The authors should be commended for 
not making such an assertion. Moreover, they avoid hype and 
buzzwords, and use good solid quantitative analysis and 
credible simulations to compare the performance of particle 
filters with other competing algorithms. 

Another outstanding feature of this book is the extensive use 
of a new theoretical bound on optimal estimation accuracy. 
Many plots show quantitative comparisons between Kalman 
filters, unscented Kalman filters, particle filters, and 
theoretical bounds on accuracy. For parameter estimation 
problems, engineers have used the Cramer-Rao bound (CRB) 
for many decades. However, the CRB only applies to filtering 
problems with zero process noise. This book uses a theoretical 
bound that is a generalization of the CRB, which was published 
a few years ago. This generalized CRB gives surprisingly tight 
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bounds on optimal estimation accuracy for many practical 
problems with non-zero process noise. 

A word of caution about comparisons with the extended 
Kdman filter: 

Hard-boiled engineers know that there is no such 
thing as “the” EKF, just as  there is no such thing 
as “the” UKF or “the” PF. But rather, there are 
hundreds of different types of EKF, UKFs, and 
PFs. which use various engineering tricks’ (e.g., 
second order terms, iterations), tuning of process 
noise, different coordinate systems, various 
factorizations of the covariance matrix, etc. 

.Therefore, when someone says that “the” PF is much better 
than “the” EKF, the fmt question to ask is: Exactly which of the 
hundreds of possible EKFs are we talking about? Similarly, 
there are hundreds of different PFs using bells and whistles 
invented to reduce computational complexity. The second 
question to ask about such comparisons is: Are the Monte 
Carlo simulation results correct? You should never trust a 
Monte Carlo simulation without some method to verify its 
correctness. I am appalled by engineers who blindly believe 
the results of Monte Carlo simulations. Years ago, it was 
standard to demand a simple back-of-the-envelope calculation 
that explains a Monte Carlo simulation result, but, 
unfortunately, this good practice has diminished with time. 
There are many. examples of engineers who have come a 
cropper as a result of blindly believing Monte Carlo 
simulations. 

One of my favorite stories happened only a few years ago on 
a big expensive high-tech missile system, which shall remain 
nameless. The Monte Carlo simulation predicted that the 
probability of correct target association between Sensor A and 
Sensor B was not good enough. A long expensive study was 

undertaken to fix this problem. The focus of the study was a 
detailed cost/performancelscbedulelrisk system trade-off of 
five or ten methods to improve the accuracy of Sensor A. 
Nobody questioned the correctness of the Monte Carlo 
simulation results. During the study, I compared the Monte 
Carlo simulation results with a simple back-of-the-envelope 
formula, and it was obvious that the Monte Carlo simulation 
was performing much worse than it should compared with 
theory. Theory predicted better than 99% probability of correct 
target association, whereas the simulation produced roughly 
50%. Not a minor discrepancy! Needless to say. this 
announcement was not greeted with joy by the authors of the 
Monte Carlo simulation. In fact, they were in denial. After 
many months, the simulation code was scrutinized by an 
engineer who had not coded the simulation and who was not in 
the same company or state of the Union or state of mind. Sure 
enough, there was a bug in the Monte Carlo simulation! After 
fixing the bug, the Monte Carlo simulation predicted good 
target association probabilities, in excellent agreement with 
theory. This saved millions of dollars in needless system 
improvements. Much more can be said about this subject, but 
suffice it to say that this book on particle filters builds 
confidence in the correctness of its results by the comparison of 
multiple filters, as well as the theoretical bound on estimation 
accFac y. 

This book can be read by any engineer who understands 
Kalman filtering. The prerequisites are modest: elementary 
probability theory, calculus and linear algebra. Beyond the 
Kalman Filter is also ideal for graduate or advanced 
undergraduate courses. Such a course could be a mixture of 
new interesting theory and fun numerical experiments. 

- Reviewed by Fred D a m  
31 7 Astor Street 
Carlisle, MA 01741 
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