
886 IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 30, NO. 4, DECEMBER 2007

Open Forum

Editorial
Software Obsolescence—Complicating
the Part and Technology Obsolescence

Management Problem
I. INTRODUCTION

AS a result of the rapid growth of the electronics industry, many
of the electronic parts in products have a procurement life cycle

that is significantly shorter than the life cycle of the system they go into.
A part becomes obsolete when it is no longer manufactured, either be-
cause demand has dropped to low enough levels that manufacturers
choose not to continue to make it, or because the materials or tech-
nologies necessary to produce it are no longer available. The military
refers to this situation as diminishing manufacturing sources and mate-
rial shortages (DMSMS). Avionics and military systems may encounter
obsolescence before being fielded and always experience obsolescence
problems during their field life, [1].

Today there are a growing number of methodologies, databases and
tools that address status, forecasting, risk, mitigation and management
of electronic parts obsolescence, [2]. However, the one common at-
tribute of all the methodologies, databases and tools that are in use
today, whether reactive, proactive or strategic, is that they focus exclu-
sively on the hardware life cycle. In most complex systems, software
life cycle costs (redesign, re-hosting and re-qualification) contribute as
much or more to the total life cycle cost as the hardware, and the hard-
ware and software must be concurrently sustained.

II. SOFTWARE OBSOLESCENCE

Software obsolescence [more specifically commercial off the shelf
(COTS) software obsolescence] is generally due to one of three main
causes.

1) Functional Obsolescence: Hardware, requirements, or other soft-
ware changes to the system obsolete the functionality of the soft-
ware (includes hardware obsolescence precipitated software ob-
solescence; and software that obsoletes software).

2) Technological Obsolescence: The sales and/or support for COTS
software terminates:
• the original supplier no longer sells the software as new (end-of-

sale);
• the inability to expand or renew licensing agreements (legally

unprocurable);
• software maintenance terminates—the original supplier and/or

third parties no longer support the software (end-of-support).
3) Logistical Obsolescence: Digital media obsolescence, formatting,

or degradation limits or terminates access to software.

Manuscript received October 9, 2007.
Digital Object Identifier 10.1109/TCAPT.2007.910918

Analogously, hardware obsolescence can be categorized similarly to
software obsolescence: functional obsolescence in hardware is driven
by software upgrades that will not execute correctly on the hardware
(e.g., Microsoft Office 2005 will not function on a 80486 processor
based PC); technological obsolescence for hardware means that more
technologically advanced hardware is available; and logistical obsoles-
cence means that you can no longer procure a part.

The applicable definition of software obsolescence varies depending
on the system that uses the software, and where and how that system is
being used. COTS software has both end-of-sale dates and end-of-sup-
port dates that can be separated by long periods of time. For many main-
stream COTS software applications (e.g., PC operating systems), both
the end-of-sale and end-of-support dates are published by the software
vendors. For applications that have a connection to the public web (e.g.,
servers and communications systems), the relevant software obsoles-
cence date for both the deployment of new systems and the continued
use of fielded system is often the end-of-support date because that is the
date on which security patches for the software terminate making use
of the software a security risk. For other embedded or isolated applica-
tions, the relevant software obsolescence date is governed by either an
inability to obtain the necessary licenses to continue using it or changes
to the system that embeds it (functional obsolescence issues).

Although some proactive measures can be taken to reduce the obso-
lescence mitigation footprint of software including: making code more
portable, using open-source software, and third-party escrow1 where
possible; these measures fall short of solving the problem because they
often require large or simply unavailable resources to take advantage of.
It is also not practical to think that software obsolescence can somehow
be avoided. Just like hardware, military and avionics systems have little
or no control over the supply chain for COTS software or the soft-
ware development infrastructure they may depend upon for developing
and supporting in-house software. Need proof? Consider the following
quote [3]:

“The only big companies that succeed will be those that obso-
lete their own products before someone else does”
Bill Gates, Founder, Microsoft Corporation.

Obviously, Microsoft’s business plan is driven by motivations that
do not include minimizing the sustainment footprint of military and
avionics systems.

In the COTS world, hardware and software have developed a sym-
biotic supply chain relationship where hardware improvements drive

1A third-party receives source code if the original provider terminates sup-
port.

1521-3331/$25.00 © 2007 IEEE

IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 30, NO. 4, DECEMBER 2007 887

software manufactures to obsolete software, which in turn cause older
hardware to become obsolete—from Dell and Microsoft’s viewpoint,
this is a win-win strategy. Besides COTS software (hardware specific
and non-hardware specific), system sustainment depends on in-house
(organic) application software, software that provides infrastructure for
hardware and software development and testing, and software that ex-
ists at the interfaces between system components (enabling interoper-
ability). While hardware obsolescence precipitated software obsoles-
cence is becoming primarily an exercise in finding new COTS soft-
ware (and more often COTS software and new hardware are bundled
together), the more challenging software obsolescence management
problem is often found at the interfaces between applications, appli-
cations and the operating system, and drivers.

III. SOFTWARE OBSOLESCENCE MITIGATION AND COSTS

There are significant costs associated with the management and mit-
igation of software obsolescence. In general, the following areas of
cost/resource/time have to be considered.

Mitigation—Few, if any, of the mainstream hardware mitigation
approaches [4], are applicable or even meaningful for the manage-
ment of software obsolescence. The most common approaches to
mitigating software obsolescence are [5], [6]: Software License
Downgrade—A license downgrade is negotiated with the software
vendor and enables the users to expand or extend the authorized
use of an older product by purchasing additional licenses of the
latest version and applying those licenses to the older product;
Source Code Purchase—In some cases, the original vendor may
allow the customer to purchase the source code for the product
(this may be negotiated in the original contract for the software);
and Third Party Support—In some cases a third-party can be con-
tracted to continue support of an obsolete software application.
Redevelopment—In re-development, software is modified to op-
erate correctly with new application hardware (or with other new
software). This can range from retesting the software to re-archi-
tecting and may also include: re-integration, data porting (data mi-
gration), retraining and document revision.
Requalifying—Either modified or unmodified legacy software
may have to be tested and re-qualified in an operational environ-
ment.
Rehosting—Rehosting means modifying existing software to op-
erate correctly in a new development environment (also called
technology porting). Rehosting is applicable to legacy software
systems originally created with languages and systems that them-
selves have become obsolete.
Media Management—Storage and maintenance of the medium
the software is archived on is a critical element of software ob-
solescence. There are several problems (and costs) involved that
depend on the type of media, the method of storing the media and
version control.
Case Resolution—Various DMSMS case resolution costs apply to
software just like hardware DMSMS case resolution. These costs
may include tracking various resolution metrics, version control,
and database management.

IV. OUTLOOK

Little attention has been paid to software obsolescence. Besides dig-
ital preservation,2 the termination of sales and support of software
comprises the primary focus of the existing literature [5]–[10].

So where do we go from here? COTS software obsolescence is nei-
ther well understood nor managed today and the specific impacts on
system software are largely ignored throughout the existing DMSMS
tool/database set. In reality, DMSMS is a hardware/software co-sus-
tainment problem, not just a hardware sustainment problem. In existing
tools, systems are treated as a disembodied Bill of Materials with little
or no coupling from part-to-part and little functional knowledge of the
operation of the system. Software obsolescence (and its connection to
hardware obsolescence) is not well defined and current DMSMS plan-
ning tools are not generally capable of capturing the connection be-
tween hardware and software.

Few, if any, system development and support organizations actually
track and manage software obsolescence. Systems engineering ap-
proaches to concurrently manage software and hardware obsolescence
are virtually non-existent and there are no formal organizations sharing
obsolescence data and information on software. Various DMSMS
working groups throughout industry and the defense community have
only just started to address the management of software obsolescence
impacts and welcome discussion on this topic.

PETER A. SANDBORN, Guest Editor
Department of Mechanical Engineering
CALCE, University of Maryland
College Park, MD 20742 USA

REFERENCES

[1] P. Singh and P. Sandborn, “Obsolescence driven design refresh plan-
ning for sustainment-dominated systems,” Eng. Economist, vol. 51, no.
2, pp. 115–139, Apr./Jun. 2006.

[2] P. Sandborn, R. Jung, R. Wong, and J. Becker, “A taxonomy and evalu-
ation criteria for DMSMS tools, databases and services,” in Proc. Aging
Aircraft Conf., Palm Springs, CA, Apr. 2007.

[3] “The Bill Gates Method,” APT News, Jul. 21, 2003 [Online]. Available:
http://www.placementpartner.com/apt%20news/news7-21-03.html

[4] R. C. Stogdill, “Dealing with obsolete parts,” IEEE Design Test
Comput., vol. 16, no. 2, pp. 17–25, Apr./Jun. 1999.

[5] T. Rickman and G. Singh, “Strategies for handling obsolescence,
end-of-life and long-term support of COTS software,” COTS J., pp.
17–21, Jan. 2002.

[6] L. Merola, “The COTS software obsolescence threat,” in Proc. Int.
Conf. Commercial-Off-The-Shelf (COTS) Based Software Syst., 2006,
pp. 1–7.

[7] T. Mittelstaedt, “Network community, managing software (and system)
obsolescence,” Computer Bits, vol. 9, no. 11, Nov. 1999.

[8] R. Sheppard, “Software obsolescence,” presented at the COG Work-
shop, May 19, 2005.

[9] A. Gowland, “Managing software obsolescence in the COTS environ-
ment,” presented at the Components and Obsolescence Group (COG)
Workshop, Nov 27, 2002.

[10] “Does software go obsolete?,” CIE Compon. Electron., Mar. 2006 [On-
line]. Available: http://www.cieonline.co.uk/

2If, for example, one searches on “software obsolescence” in Google, the vast
majority of what appears is related to “information or digital preservation.”

888 IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 30, NO. 4, DECEMBER 2007

Peter A. Sandborn (M’87–SM’01) received the B.S. degree in engineering physics from the Uni-
versity of Colorado, Boulder, in 1982, and the M.S. degree in electrical science and Ph.D. degree in
electrical engineering from the University of Michigan, Ann Arbor, in 1983 and 1987, respectively.

He is an Associate Professor and the Research Directory in the CALCE Electronic Products
and Systems Center (EPSC), University of Maryland, College Park, where his interests include
technology tradeoff analysis for electronic packaging, system life cycle economics, electronic part
obsolescence and virtual qualification of electronic components and systems. Prior to joining the
University of Maryland, he was a Founder and Chief Technical Officer of Savantage, Austin, TX,
and a Senior Member of Technical Staff at the Microelectronics and Computer Technology Corpo-
ration, Austin. He is the author of over 100 technical publications and books on multichip module
design and part obsolescence forecasting. He is a member of the editorial board of the International
Journal of Performability Engineering.

Dr. Sandborn is an Associate Editor of the IEEE TRANSACTIONS ON ELECTRONICS PACKAGING

MANUFACTURING.

