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Abstract—Modeling real-world social situations has proven to be 
one of the most daunting challenges in computational social 
science. With the exception of simplistic, single-domain scenarios, 
most computational models are quickly overwhelmed with the 
complexity and diversity of real-world scenarios.  In this paper, 
we apply intent-driven modeling to a complex, real-world 
scenario. By mapping actors’ intentions to their beliefs and goals, 
we are able to explain their actions and propose predictions of 
future actions.  Specifically, we look at ways to help understand 
and explain complex group behaviors during epidemics in 
relation to national borders. Using an intent-driven socio-cultural 
behavioral model implemented with the help of Bayesian 
Knowledge Bases (BKBs), we explore the actions and reactions of 
actors in an epidemic setting, providing insight into behaviors 
affecting border security.  Using these tools, we are able to 
employ dynamic, multi-domain modeling to explain the decisions 
and actions taken by actors in the scenario.  We validate our 
methodology by modeling and analyzing migration behaviors 
during the 2009 H1N1 pandemic in Mexico. 

Index Terms-- Socio-cultural Behavioral Modeling; Intent 
Model; Computational Social Science; Border Epidemics; Dynamic 
Social Models; Bayesian Knowledge Bases  

I.  INTRODUCTION 
Computational models have been used in the social 

sciences since the earliest days of computing, but this use was 
restricted primarily to data and statistical analyses.  Early 
efforts at computer simulation in social sciences were 
necessarily simplified and symbolic in nature [1].  Recently, a 
more robust use of the modeling capabilities has begun to 
emerge, particularly in the area of agent-based modeling [2]. 
Even these advanced models do not deftly handle dynamism - 
the constant changing of events, actors, and actors’ beliefs and 
goals, inherent in a complex real-world scenario. Adequately 
representing cultural factors is also crucial because of the 
profound effect they have on individual/group behavior and 
decision making. A modeling framework to represent and 
relate socio-cultural factors from multiple domains, such as 
social, economic and political domains, to individual and group 
behavior is one of the critical challenges in computational 
social science. 

One such complex real-world scenario is the behavior of 
populations during a cross-border epidemic. Dealing with 

epidemic or pandemic outbreaks in neighboring countries and 
resultant mass migration is a major concern for border security 
agencies across the world, including the US. Understanding 
how populations behave during epidemics and identifying 
triggers can help to evolve better border security and border 
health policies. Why do some people primarily maintain their 
current border-crossing behavior?  Why do attempted border 
crossings increase or decrease?  What prompts more 
individuals to try illegal crossings?   Answering questions such 
as these can yield tremendous insight into expected behaviors 
in future or hypothetical scenarios.  However, using typical 
epidemiology models to address border control issues during 
an epidemic faces two major hurdles: 1) modeling human 
decisions and actions is not their focus and 2) explaining 
behavior, and thus identifying the root causes for behavior, is 
not a capability they offer.  Until the complex dynamics of 
group and individual behaviors can be analyzed and explained, 
border control during epidemic outbreaks can at best be only 
reactionary.  By adding the power of intent-driven models to 
traditional epidemiology approaches, border control can 
become more of a proactive effort, even during the chaos of an 
epidemic outbreak. 

In this paper we present an intent-driven model to represent 
and analyze behavior of populations during an epidemic and 
their propensity to flee to neighboring countries. Intent-driven 
models allow us to model actor intentions by representing their 
axioms (beliefs about themselves), beliefs (beliefs about 
others), goals and actions. By modeling actor and group intent, 
it is possible to address the complex interactions in cross-
border epidemics. We incorporate socio-cultural factors from 
multiple domains, required for modeling such complex 
behaviors, by employing a probabilistic framework called 
Bayesian Knowledge Bases (BKBs)[3]. Apart from its 
capability to represent uncertain and incomplete information, it 
also supports a mathematically sound reasoning system that not 
only calculates likely outcomes from given evidence, but also 
provides explanations as to which events and evidence most 
profoundly affected the result. By incorporating cultural 
elements into the intent-driven model, we are able to model the 
different motivations that actors may have, as influenced by 
their cultural background.  Culture affects actors’ beliefs, goals 
and decisions, and thus is critical to properly represent the 
entirety of influences affecting actors’ decisions. Including 
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cultural influences in the model allows analysts and Subject 
Matter Experts (SMEs) the power and freedom to fully 
represent their intuitions, and to explore the model for 
explanations to emergent behaviors.  We provide insight into 
actions taken during an epidemic, to reveal explanations for 
observed behavior, and to therefore sharpen our understanding 
of the likely impacts on border control during various outbreak 
scenarios.  

We selected the 2009 H1N1 outbreak in Mexico as the 
scenario in this initial effort. Because this outbreak originated 
in a close neighbor to the US, it provides an interesting setting 
for studying both observed and hypothetical border impacts.  In 
studying this scenario, we show the applicability of intent-
driven models to understanding the events that transpired 
during the epidemic, and also explore the possible 
consequences of different decisions being taken during the 
outbreak.  The paper is organized as follows.  Section II 
provides a brief background on relevant modeling approaches. 
Section III provides a primer on the use of BKBs for 
representing cultural information and explains the relevance of 
culture to our simulation. Section IV describes the 
experimental validation including a detailed description of the 
scenario, results and analyses.  Finally, in Section V, 
concluding remarks and future directions are discussed. 

II. BACKGROUND 
Most current epidemiology models focus on predicting the 

spread of an epidemic [4][5], but do not attempt to explain the 
behaviors of individuals or groups of people exposed to an 
epidemic. Even those studies that do attempt to account for 
individual and group dynamics, through the use of social 
networks (SNs), do not provide explanations for those 
behaviors [6].  There has been work in other domains that have 
tried to model similar real-world scenarios. For example, 
Stabilization and Reconstruction Organizational Model 
(SROM) [7] has been used to represent and analyze large 
nation-scale social processes with regard to national 
reconstruction. However, it is not a generic model and cannot 
be easily mapped to other domains.  In SROM, regions can be 
defined in sub-models, but then the interactions between them 
must be specified and are essentially static, resulting in a loss 
of dynamism and flexibility.  There have also been attempts to 
model dynamism and to analyze the effects of changes in a 
social network [8][9]. Although they have provided some 
theoretical insights, they have not been transitioned to real- 
world problems.  Attempts at implementing models to 
represent complex social situations have yielded insightful 
simulations [10], but are limited in their abilities to explain the 
causes for their emergent behaviors.  Similarly, incorporating 
culture into models has met with limited success.  Some 
models manage to be generic enough to be applicable to 
multiple domains [11], but that very generic nature has limited 
their ability to produce meaningful results, and certainly do not 
provide explanatory power.  Other models successfully provide 
impressive depth and detail [12][13], but are not portable in the 
least.  All of the effort invested into a particular domain is lost 
and cannot be transitioned into a new domain or area of 
interest.  Even models specific to the epidemiology domain 
struggle to implement enough detail for useful analysis while 
not over-taxing computational resources. This leads to 

compromises in both rigor and detail [14].  To fully address the 
complexity of the social situations found in real-world 
problems, a model must be able to simultaneously handle 
dynamism and multi-domain information.  In this paper we 
describe how our intent-driven model can provide these 
capabilities, while also providing explainability for outcomes. 

III. OUR APPROACH 
As previously mentioned, modeling actors’ axioms, beliefs, 

goals and actions allow us to capture their intentions.  
However, modeling intent is a challenge because of the 
uncertainties involved.  When deducing the intent of an actor, 
we must infer that intent from what we know of the actor’s 
background, his belief system, his history and experience with 
related issues, his education, i.e. his culture.  Such information 
is inherently uncertain and incomplete.  To effectively work 
with information of this nature, a probabilistic reasoning 
framework is required.  This is why Bayesian Knowledge 
Bases (BKBs) form the backbone of our model. Bayesian 
Networks (BNs) [15] are a special class of BKBs.  In contrast 
to BNs, BKBs have the added capabilities to handle incomplete 
information and incorporate cyclic and even potentially 
contradictory information.  Combined with their ability to 
support reasoning algorithms to provide explanations for 
predictions, their suitability for this problem is apparent.   

BKBs are useful in representing individual (and group) 
intent by making use of the Adversarial Intent Inferencing 
(AII) framework [16][17][18].  As noted by Santos Jr. and 
Zhao [18], intentions are partial plans developed by an actor to 
achieve goals (or desires), based on personal information 
(beliefs) of the state of the world.  This closely follows 
Bratman’s Belief-Desire-Intention (BDI) model [19]. An AII 
model has been successfully used to capture adversary goals, 
intentions, biases, beliefs, and perceptions.  We will leverage 
the modeling concept of AII which extends well to any 
situation where participants may have diverse (even 
conflicting) goals and intentions [20].  

Equally, the AII model extends itself well to incorporation 
of cultural information which can impact intentions, decisions 
and actions [21][22].  What exactly do we mean by culture?  
Culture has many definitions and connotations, but one that 
closely approaches the meaning we are after is:  “The totality 
of socially transmitted behavior patterns, arts, beliefs, 
institutions, and all other products of human work and thought. 
Culture is learned and shared within social groups and is 
transmitted by non-genetic means.” 1   When we speak of 
cultural information and influences, we mean those influences 
mentioned in the definition above, as well as any other learned 
behaviors from one’s environment.  Cultural fragments 
representing certain aspects of an actor’s goals, intentions, 
beliefs and cultural influences can be generated individually by 
multiple modelers/analysts and fused in to a single BKB [23] to 
represent the actor’s overall behavior. Reasoning algorithms 
are then used to determine likely goals and actions, based on 
the available evidence. It is clear that by using the BKB fusion 
algorithm, the intent-based behavioral model allows multiple 
analysts to collaborate in building models for complex social 

                                                           
1 http://dictionary.reference.com/browse/culture.  
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scenarios. This is critical in multi-domain models which 
require experts in various domains to work together.  

A BKB is comprised of rules linking random variables (rvs) 
in an “if-then” fashion.  Unlike BNs, BKBs do not require a 
complete specification of the probability distribution for all rvs, 
which is of tremendous benefit when dealing with real-world 
scenarios and their multitude of unknowns.  BKBs are 
graphically represented as directed graphs with two types of 
nodes: (1) Instantiation-nodes (I-nodes) which represent the 
various states of rvs and (2) Support-nodes (S-nodes) which 
represent probability values in the rules.  An example BKB 
fragment depicting the effect of a hypothetical border closure 
on migration decisions is shown in Figure 1. 

We can also represent a BKB formally as a tuple.  To 
understand the notation, we must first define a correlation 
graph as given in Santos Jr. & Santos [3].   

Definition 1. A correlation-graph is a directed graph � � �� �
�� 	
  in which � � � � �� 	  �� � �� � �� � ���������� � �� 
there exists a unique � � �  such that ��� �
 � 	� If there is a 
link from � � � to � � �, we say that ������������� 

For each S-node   in a correlation graph �! , we denote 
"#$%&��
 as the set of I-nodes pointing to �, i.e. "#$%&��
 �
�� � �'� ( � � 	� and )$*+&��
 as the I-node supported by 
�, i.e. the � such that � ( � � 	. Two I-nodes, ,-�����,.�are 
said to be mutually exclusive if they are different instantiations 
of the same random variable. Similarly, two sets of I-nodes 
�-������.�are mutually exclusive if there exists two I-nodes 
,- � �-�����,. � �. , such that ,-�����,.� are mutually 
exclusive. For example, the sets of I-nodes �/ � �-� 0 � 1.� 
and �/ � �.� 0 � 1.� 2 � +-� are mutually exclusive. 

Given Definition 1, we can now provide a formal definition of 
a BKB, again from Santos & Santos [3]. 

 

 

 

Definition 2. A BKB is a tuple 3 � ���4
 where � � �� �
�� 	
 is a correlation–graph, and 4 5 �� ( 67�89 such that 

1. ��� � �� "#$%&��
�contains at most one instantiation 
of each random variable. 

2. For distinct S-nodes �-� �. �� � that support the same 
I-node, "#$%&��-
� and "#$%&��.
   are mutually 
exclusive. 

3. For any complementary set of S-nodes : ; � , :  is 
normalized: < 4��
=>? @ 8  where 4��
� is a weight 
function that represents the conditional probability 
"�)$*+&��
'"#$%&��

.  

To re-iterate, we represent the intent of actors or entities 
using their cultural traits modeled probabilistically in BKBs.  
Based on the AII and BDI models, we categorize the rvs in the 
BKBs as: 

1. Beliefs (B): represent what the actor or entity believes 
about other actors and entities. 

2. Axioms (X): represent beliefs about self. In general, 
cultural details such as age, income and location can be 
thought of as axioms. 

3. Goals (G): represent the aims and goals of the actor or 
entity. 

4. Actions (A): represent the possible strategy or actions 
adopted by the actor or entity to achieve their goals. 

  All beliefs, including axioms, can influence other beliefs, 
goals and actions but can only be influenced by other beliefs.  
Likewise, goals can influence other goals and actions, but can 
only be influenced by beliefs and other goals.  Finally, actions 
can only influence other actions, but can be influenced by all 
types of nodes in the AII model.  Figure 1 shows a 
representative BKB fragment with the hierarchy of beliefs, 
goals and actions. The letters in parentheses indicate the type of 
rv represented, as proposed in Santos and Negri [16].  
Generally, ‘X’ represents an axiom, ‘B’ represents a belief, ‘G’ 
represents a goal and ‘A’ represents an action.  

As noted before, fusing fragments is necessary in order to 
integrate the numerous information nuggets into a single, 
coherent model. The method for fusing fragments (Algorithm 
1) [23] can be described as follows.  The input is a set of n 
BKB fragments, {K1 ,K2 , … ,Kn} where Ki = (Gi ,wi , �i , r(�i)). 
Each fragment Ki has an information source represented by �i, 
and r(�i) is the reliability of source �i. The output is a new 
BKB, K’ = (G’,w’)  with G’ = (I’  S’,E’), that is the fusion of 
the n input fragments. For an I-node � in some fragment, let R� 
be the random variable of which � is an instantiation. 

Algorithm 1: BAYESIAN-KNOWLEDGE-FUSION(K1 
,K2 , …,Kn) [23]  
Let G’ = (I’, S’, E’)  be an empty correlation graph 

1. for  all fragments Ki  with i � 1 to n 
2. for  all S-nodes q  Si 
3. Let � � A$�%�&B(q) 
4. Let the source I-node for q be s = (SR� 

 = �i) 
5. Add q, all nodes connected to q in Gi , and the 

corresponding edges to G’ 

 
Figure 1.  Example BKB Fragment 
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6. Add s to G’  along with an S-node supporting it 
7. Let � be a normalizing constant 
8. for  all S-nodes q’  supporting some source node s 
9. Let �’(q’) �  r(s)/�  
10. return K’ = (G’,�’) 

Note that for an S-node q,�A$�%�&B(q) is the I-node it points to. 
To compute the normalizing constant �, we compute for each 
random variable R, the sum of the reliabilities of all source 
nodes supporting an instantiation of R. We then set � to the 
maximum of these sums. 

In our model, we make use of two key calculations: belief 
updating [23] and variable contributions. In belief updating, 
given some state of the world (based on evidence, events or 
facts), we calculate the posterior probability of a target rv 
having a particular instantiation or state.  Belief updating can 
be used to identify probable states and their statistical 
probabilities. This will change as new information, in the form 
of new fragments or new evidence, is introduced into the 
model. Belief updating is one of the key tools used in 
probabilistic networks for addressing the dynamism of the real-
world. 

BKBs model the causal chains linking evidence, events, 
goals and other rvs. We can identify variables that are 
responsible for observed phenomena by retracing the causal 
chain to the source rvs, and consequently provide explanations. 
In doing this, we select a target variable in the BKBs and then 
calculate how much other variables contribute towards its 
value. It is these contributions that provide the foundation for 
explainability in our intent-driven model. This contribution is 
essentially the percentage of probability mass that the rv 
contributes to the target rv’s belief updating calculation.  To 
calculate the contribution by an rv r for a target rv q, denoted as 
+=
C (r), for the BKB Bt, we look at all possible worlds or 

inference graphs [3] where q has the specified states. Out of 
these worlds, the probabilities of those worlds containing r are 
summed to calculate the contribution. From [24], the method 
for calculating the contribution is given in Algorithm 2 below. 

Algorithm 2: CONTRIB-COMPUTE(Bt; t; q) 
1. Determine DE

F��
 � ��GE�H
I � 
� �E�H

F ��

� 
     � 4=�J

C K�#
: world containing r in which q is 
true 
     � L=�JC �#
: probability of 4=�J

C �#
 
2. ME

F ��
 �� < �E
FN

HO- ��
 
      � Contribution of r towards q   

All of the above builds toward the ultimate goals of 
explicitly modeling the uncertainty and incompleteness of 
available socio-cultural data, incorporating multi-domain 
details, consolidating the diverse views of analysts/modelers 
and providing predictions backed by explainability.   

IV. EXPERIMENTAL VALIDATION  
In order to validate our intent-driven model, we needed to 

find a sufficiently complex scenario that would also enable us 
to test the effectiveness of our ability to explain outcomes 
produced by the model.  Thus, we needed a historical setting 

where our calculations could be compared to actual outcomes, 
and that had enough recorded information to model and 
validate behavior.  We selected the 2009 H1N1 outbreak in 
Mexico. The outbreak alerted U.S. citizens and government 
officials alike to the potential dangers of epidemics in border 
regions. Beyond simply raising awareness, the outbreak 
instilled something more akin to panic in many individuals.2,3 
The H1N1 outbreak caused much concern worldwide, with 
many fearing a truly devastating pandemic.  However, in the 
end, the fatality rate was comparable to that of the common 
flu. 4  Secondly, with heightened awareness came the 
corresponding desire for a better understanding of what went 
on during the 2009 pandemic and of what might be expected in 
similar incidents in the future.  Although the pandemic did not 
lead to catastrophic cross-border events like mass migrations, 
analyzing the 2009 pandemic can yield some useful insights to 
help plan for similar, but perhaps worse, future events.  Finally, 
with the generous media coverage and the relatively recent 
occurrence of the outbreak, an abundance of data, including 
both disease-related statistics and cultural information, were 
available for incorporation into our model. 

The H1N1 outbreak in Mexico originated on 18 March 
20095, though the first related death was not until 12 April 
2009.6  The virus spread rapidly through Mexico and the US, 
with fatalities appearing much earlier in Mexico. By 27 April, 
confirmed cases of H1N1 had also been reported in Canada and 
Spain. 7   By 25 July 2010, the World Health Organization 
(WHO) reported that over 214 countries worldwide had 
confirmed cases of H1N1, claiming at least 18,398 lives.8  This 
was apparently after the outbreak had peaked, but the pandemic 
was not declared at an end until 10 August 2010.9   

A. Experimental Setup                                                                                  
As the initial groundwork for our simulation of the 

pandemic in Mexico, we chose to model the Mexican 
population and focus on changes in their border crossing 
behaviors and intent.  By building BKB cultural fragments to 
represent various sectors of the Mexican populace, we 
constructed our model fed by inputs from a set timeline 
representing various other events and actions/decisions taken 
by other actors in the scenario, such as the Mexican and US 
governments, and international organizations such as the 
European Union (EU) and the WHO.  In total, a team of 
researchers used information from dozens of newspaper 
articles, news websites, government and non-governmental 
organizations, open sources and general knowledge, to build 23 
BKB fragments and 22 rvs. The probabilities in the BKBs 

                                                           
2 P. Curson, "Hysteria at fever pitch," The Australian, 29 April 2009, p. 12 
3 http://www.cbsnews.com/stories/2009/04/30/politics/otherpeoplesmoney/ma
in4979595.shtml 
4 http://www.reuters.com/article/2009/09/16/us-flu-deaths-
idUSTRE58E6NZ20090916 
5 http://www.who.int/csr/don/2009_04_24/en/index.html 
6 http://www.washingtonpost.com/wp-
dyn/content/article/2009/04/25/AR2009042501335.html 
7 http://www.who.int/csr/don/2009_04_27/en/index.html 
8 http://www.who.int/csr/don/2010_07_30/en/index.html 
9 http://www.bloomberg.com/news/2010-08-10/who-declares-swine-flu-
pandemic-over-as-immunity-to-h1n1-virus-has-spread.html 
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represent the subjective view of the researcher, informed by the 
data sources. However, when statistical information was 
available, it was used to generate the probabilities. 

The Mexican populace was modeled by two main 
demographic details: age and location.  Age was broken down 
into three groups that corresponded well with reported 
vulnerability to H1N110: young (0-17), middle-aged (18-64), 
and old (65+). These breakouts were relevant because there 
was a widespread belief that the middle-aged group were 
disproportionately vulnerable, which would likely affect their 
decisions and behavior.  Consequently, we expect the behavior 
for the middle-aged group to be markedly different from that of 
the other two age groups.  A cultural fragment for the middle-
aged group (given in Figure 2) represents the commonly held 
view that H1N1 was more lethal for this group12. Note that the 
probability values represent the intuition of the SME that built 
the BKB, based on his/her expertise, experience and available 
facts. We also implemented a high-level regional model, 
dividing the Mexican state into three geographic areas: the 
north, the south, and the interior.  We subsequently modeled 
the H1N1 epicenter as located in the interior, as the earliest 
outbreaks were reported in the Federal District of Mexico and 
San Luis Potosi11, both in central Mexico.  To incorporate 
diverse behaviors of the Mexican population, we built BKB 
fragments to represent cultural influences of demographic 
examples of typical Mexicans, such as middle-aged and 
interior, or elderly and north.  At the same time, we fused in 
fragments representing individual details, such as region of 
residence in relation to the epicenter of the outbreak.  All of 
these cultural and individual details can influence decision 
making.

 
Figure 2 Cultural fragment for middle-aged population12 

 

Once a representative individual is created by fusing 
relevant cultural fragments, we proceed with building the 
scenario, by fusing in BKB fragments representing events from 
the scenario timeline.  An example of an “event fragment” 
(given in Figure 3) represents the event T8 in the timeline 
(Table 1) when the availability of the vaccine led to a change in 

                                                           
10 http://www.who.int/csr/disease/swineflu/notes/h1n1_vaccine_20090713/en/
index.html 
11 http://www.who.int/csr/don/2009_04_24/en/index.html 
12 http://www.suite101.com/content/who-needs-an-h1n1-swine-flu-shot-
a187205 

  
Figure 3 Event fragement13 

belief that healthcare is more effective13. Our model currently 
begins at the time of the first reported H1N1 case in Mexico, 
and continues until the WHO declared the pandemic over.  We 
make use of 10 rough time steps (Table 1), representing 
significant events in the pandemic development.  Additional 
granularity will be added in future work as the model matures.  

Of primary interest are the changes in the migration 
patterns.  In the BKBs, the intent to migrate is represented by 
the rv (A) Migrate and has five states “to US legally”, “to US 
illegally”, “Nowhere”, “within MX” and “Internationally”. 
“Internationally” indicates the action of migrating to Mexico’s 
southern neighbors and “Nowhere” indicates the action of not 
migrating. First, we must understand how migration is linked to 
the pandemic events in our model.  In plain terms, the 
migration behavior is linked indirectly to the pandemic via two 
key rvs: (X) Fear level and (G) Escape pandemic.  
Consequently, migration behavior during the pandemic is 
influenced by individual goals to flee the pandemic, which in 
turn are formed by an individual’s fear level.  

B. Results and Analyses 
Due to space constraints, we will limit our discussions to 

the most interesting results from the experimental simulation.  
To begin with, it is most useful to look at the migration 
behavior for middle-aged Mexicans, as they are easily the most 
populous group. 14   While we established the relative ratio 
between illegal and legal migrations to the US based on factual 
sources, 15 , 16  we were unable to find reliable numbers for 
Mexican migration to southern neighbors.  Consequently, it is 
important to focus primarily on the changes in probability 
values and thus migration behavior, rather than the actual 
probabilities produced by our model.  

 

                                                           
13 http://www.cdc.gov/h1n1flu/vaccination/public/vaccination_qa_pub.htm 
14 https://www.cia.gov/library/publications/the-world-factbook/geos/mx.html 
15 http://migrationinformation.org/USfocus/display.cfm?id=767 
16 http://pewhispanic.org/files/reports/126.pdf 
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In Figure 4, we readily observe that the 
migration is illegal migration to the US, with l
the US and other international migration bein
This conforms to our preliminary research m
You may also notice that only 9 time steps ar
plots, while Table 1 lists 10 time steps.  The fi
omitted in the interest of brevity, due to the v
scale and resolution in transitioning from the
pre-pandemic behavior to the chaos of full-sca
the model is refined in future work, this tran
smoother and more conducive to analysis.  

If we follow the timeline in order and anal
Figure 4, we see a level of illegal immigratio
during T2, followed by a gradual decline in 
for the next two time steps.  This correspond
with an initial panic, followed by an even
sending experts to Mexico) that helps control t
the EU’s recommendation to restrict travel did
influence on migration behavior in our mode
raising the pandemic level in T5 clearly did.  
T7, T9, and T10, the change in migration follo
for the events transpiring in those time step
seems to be a problem.  In T8, a vaccine is a
would logically calm fears and therefor
migration.  What is the cause of the apparen
that legal and international migrations follow t
so we will not examine them separately here.   

As mentioned earlier, our system models 
from three regions: north, interior, and south. 
migrations from the north for an explanation 
To explore the factors affecting the illegal m
conduct contribution analysis. Figure 5 shows 
probability mass various rvs contributed t
probability for illegal immigration to the U.S
region of Mexico.  It is very evident that t
contributors to illegal immigration are also inc
from T7 to T8, and most importantly, ar
encourage migration.  In fact, they are all relat
As an individual begins to believe H1N1 is pa
for him, his fear level begins to increase and, c
desire to escape the pandemic increases.  Clear
learning of the disease deadliness has carrie
significant impact in T8 before beginning to w
clear is why that impact continued to increase

Table 
Time 
Step  

Physical date  
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e inherent uncertainty and 
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del, in the form of cultural 
the fusion algorithm.  

uture directions for the work 
f our future goals is to 
represent social relations 
l relations are crucial to 

and panic spread in a 
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the nuances of social 
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multi-scalar nature of social systems. For example, the intent of 
an actor to migrate has a bearing on how his community or 
neighborhood behaves, which in turn affects how people in the 
town behave and so on. Modeling ripple effects of events 
across multiple scales is a capability that CISNs provide. With 
regards to the actual H1N1 modeling, we have produced a solid 
foundation upon which to progress our analysis of the potential 
causes and effects of cross-border migration during an 
epidemic. We will analyze “what-if” situations such as 
expected migratory behaviors of the Mexican population if US 
border security becomes stringent and severe restrictions are 
placed on legal immigration. This is one of the strengths of our 
methodology that we would like to highlight in future work. As 
we incorporate additional capabilities, the complexity of the 
model will increase tremendously, as will our ability to analyze 
and explain. 
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