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Abstract— The recent adoption of ubiquitous computing tech-
nologies has enabled capturing large amounts of human behav-
ioral data. The digital footprints computed from these datasets
provide information for the study of social and human dynamics,
including social networks and mobility patterns, key elements
for the effective modeling of virus spreading. Traditional epi-
demiologic models do not consider individual information and
hence have limited ability to capture the inherent complexity
of the disease spreading process. To overcome this limitation,
agent-based models have recently been proposed as an effective
approach to model virus spreading. However, most agent-based
approaches to date have not included real-life data to characterize
the agents’ behavior. In this paper we propose an agent-based
system that uses social interactions and individual mobility
patterns extracted from call detail records to accurately model
virus spreading. The proposed approach is applied to study the
2009 H1N1 outbreak in Mexico and to evaluate the impact
that government mandates had on the spreading of the virus.
Our simulations indicate that the restricted mobility due the
government mandates reduced by 10% the peak number of
individuals infected by the virus and postponed the peak of the
pandemic by two days.

I. INTRODUCTION

Planning for a pandemic (e.g., H1N1, influenza, etc.) is a

public health priority of any government. Traditional epidemi-

ological approaches base their solutions on using differential

equations that divide the population into subgroups based

on socio-economic and demographic characteristics. Although

these models fail to capture the complexity and individuality

of human behavior, they have been extremely successful in

guiding and designing public health policies. The recent adop-

tion of agent-based modeling (ABM) approaches to simulate

pandemics has allowed to capture individual human behavior

and its inherent fuzziness by representing every person as

a software agent. The ABM model characterizes each agent

with a variety of variables that are considered relevant to

model virus spreading such as mobility patterns, social net-

work characteristics, socio-economic status, health status, etc.

Hence, ABM approaches need realistic data to create agents

that effectively capture human behavior. Typically this data is

obtained from the census or by means of surveys [1].

The adoption of ubiquitous computing technologies by very

large portions of the population (e.g. GPS devices, ubiquitous

cellular networks or geolocated services) has enabled captur-

ing large scale human behavioral data. These datasets contain

1Work done while author was an intern at Telefónica Research, Madrid.

information that is critical to accurately model the spread of a

virus, such as human mobility patterns or the social network

characteristics of each individual [2][1].

In this paper, we propose an ABM system designed to

simulate virus spreading using agents that are characterized

by their individual mobility patterns and social networks as

extracted from cell phone records. We carry out simulations

with data collected during the 2009 Mexican H1N1 outbreak

and measure the impact that government calls had on the

mobility of individuals and the subsequent effect on the spread

of the H1N1 virus. To the best of our knowledge, this is the

first time that this kind of real-life information is used in an

ABM system.

The remainder of this paper is organized as follows: Section

II discusses the related work regarding traditional disease

models and ABM simulation environments; Section III de-

scribes the infrastructure of a cell phone network and how cell

phone records are captured; our proposed ABM architecture

is presented in Section IV. Section V presents a case study

that evaluates the impact that government mandates regarding

mobility restrictions had on the spreading of the 2009 H1N1

virus outbreak in Mexico. Finally, we describe our conclusions

and outline our future work in Section VI.

II. RELATED WORK

A. Traditional Epidemic Disease Models

Traditional epidemic disease models are based on the SIR

model and its variations (SI, SIR, SIS, SEIR, etc.) [3]. These

approaches, called compartmental models, split the population

into compartments that represent the different stages of a

disease. The most general approach is the SIR model that

typifies the disease progression as follows: (1) S, represents

the susceptible (S) portion of the population i.e. those yet to

be infected; (2) I, represents those that are currently infective

or infectious (I); and (3) R, represents individuals that have

recovered (R) from the disease and no longer take an active

part in the disease spread. Other models like the SEIR, add an

intermediate stage (E) which represents a latent state in which

individuals have been exposed to the disease but are not yet

infective, i.e. the individuals in this stage have the virus but

can not infect others. All these models represent the virus

transmission by a set of nonlinear ordinary differential equa-

tions (ODEs) that associate a transition rate to the mobility of

agents between compartments. These transition rates are used
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by the models to define a reproductive rate R0 that represents

the number of people in a susceptible population that could

be infected by an infective agent. In general, if R0 > 1 the

disease spreads epidemically and when R0 ≤ 1 the disease

dies out.

One of the main restrictions of the original compartmental

models is that they assume that all members within one

compartment are identical to each other. Recent literature has

evolved the SIR/SEIR models to overcome such homogeneity

by creating metapopulation models. Metapopulation models

extend the traditional epidemiological approaches to differen-

tiate types of population within each epidemic state (S,E,I,R).

For example, Balcan et al. differentiate subgroups within

the population based on vaccinations received, symptomatic

versus asymptomatic individuals, citizens that travel versus

those who do not, natural immunity to diseases, etc. [4].

Similarly, Brockmann et al. define different metapopulations

based on their mobility patterns inferred from the movements

of US bank notes[5].

B. Agent-based Epidemic Models

Compartmental models cannot capture the complexity of

human behavior, particularly regarding mobility patterns and

social networks. Although metapopulation models attempt to

overcome such limitations they still suffer from behavioral

generalizations within the metapopulations. In this context,

agent-based epidemic models (ABMs) are designed to capture

the behavior of each unique individual (agent). As a result,

agent-based epidemiological simulations are more powerful

than metapopulation models to represent the spreading of

viruses given their granularity and capability to model behav-

ior and interactions individually [6].

Although this research line is quite novel, the literature

already reports some relevant results. Apolloni et al. propose

Simdemics, an integrated modeling environment that aids

public health officials in pandemic planning [7]. Simdemics

is an agent-based simulator that defines four models to evolve

the epidemic spread: (1) a statistical model of the population

(based on age, gender or geographical density), (2) a social

interaction model, (3) a disease model, that accounts for the

impact that demographic or socio-economic factors might

have on epidemic spreading, and (4) intervention models e.g.,
public policy changes, agent behavioral changes, etc. In their

conclusions, the authors advocate for the necessity to have

accurate human behavioral models that reveal mobility and

interaction patterns.

Barrett et al. present an agent-based simulator called

EpiSimdemics [8]. The authors build a synthetic population

from the United States Census characterizing each individual

(agent) with 163 different variables. Individuals are mapped to

geographically located housing units, and their daily activities

are modeled from a wide arrange of datasets like education

statistics to model school attendance or transport surveys to

model mobility patterns. The disease model consists of two

parts: the between-hosts disease transmission and the within-
host disease progression. The within-hosts progression is mod-

eled as a finite state machine with probabilistic transitions

(PTTS) that determines the evolution through the various

disease states. The between-hosts transmission is modeled as

follows:

pi = 1− exp(τ
∑

r∈R
Nr ln(1− rsiρ)) (1)

where pi is the probability that an infection is triggered in a

susceptible agent i; τ is the duration of exposure; R is the set

of infective agents and Nr the number of such agents with

infectivity r; si is the susceptibility of individual i and ρ the

basic transmissibility of the disease. This equation represents

an intuitive process: the probability of inter-agent transmission

increases with the amount of time spent in the presence of an

infective individual and the number of infectious agents (and

their infectivity) present at a given location. This approach is

specially relevant when the transmission is mainly by direct

contact, which is the case of H1N1.

ABM simulations, specially if done for large populations,

require large amounts of memory and time. Recent literature

has also explored how to effectively compute ABM models.

Parker et al. present the Global-Scale Agent Model, GSAM,

which focuses on achieving high performance while com-

puting realistic agents [9]. The GSAM system can generate

over a billion distinct agents with models that include daily

interactions. Additionally, the authors show how to use GSAM

system to model epidemic evolutions at a planetary scale.

In general, although agent-based epidemic models improve

traditional epidemiological approaches, all the solutions imple-

mented so far face the same limitation: the information used

to model human mobility and social networks is extracted

from census data and surveys. Although these data might

approximate real behavior, it does not account for changes

in behavior due to the epidemic itself. The model proposed in

this paper aims to achieve a more realistic representation of

human behavior which includes the behavioral changes that

might take place during the epidemic.

III. PRELIMINARIES

In order to capture realistic human mobility patterns and

social dynamics, we use the ubiquitous infrastructure provided

by a cell phone network. Cell phone networks are built using

a set of cell towers, called Base Transceiver Stations (BTS),

that connect the cell phones to the network. Each BTS has a

latitude and a longitude – its geolocation – and gives cellular

coverage to an area called a sector. We assume that the sector
of each BTS is a 2-dimensional non-overlapping polygon,

and we use a Voronoi tessellation to define its coverage area.

Figure 1(left) shows a set of BTSs with the original coverage

area of each cell, and Figure 1(right) presents its approximated

coverage computed using Voronoi.

Call Detail Record (CDR) databases are generated when a

mobile phone connected to the network makes or receives a

phone call or uses a service (e.g., SMS, MMS, etc.). In the

process, and for invoice purposes, the information regarding

the time and the BTS tower where the user was located when
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Fig. 1. (Left) Example of a set of BTSs and their coverage and (Right)
Approximated coverage obtained applying Voronoi tesselation.

the call was initiated is logged, which gives an indication of

the geographical position of a user at a given moment in

time. Note that no information about the exact position of

a user in a cell is known. From all the data contained in a

CDR, our study only uses the encrypted originating number,

the encrypted destination number, the time and date of the

call, the duration of the call, and the BTS towers used by the

originating and destination cell phone numbers.

We use CDR data to compute the individual mobility and

social models that are part of the proposed ABM architecture

to model virus spreading. Specifically, we build: (1) a mobility
user model that estimates the position of each agent at each

moment in time and (2) a social user model that identifies

each agent’s social network (in the sense of close relations).

Due to the nature of the CDR data available, each agent’s

mobility model is computed at the BTS level i.e., the ABM

system will be able to determine, at each moment in time, the

BTS coverage area where an agent is located. The position of

the agent within the coverage area of the BTS is unknown.

As a result of that limitation, the ABM system will provide

more accurate mobility models in areas with high densities

of towers (urban areas) where coverage areas per BTS are

smaller in size. Each individual’s social network is modeled

as the set of close relations obtained from the CDRs. Specifics

about its computation are explained in Section IV. Note that

this model is critical to determine when the transmission of

the virus takes place. We assume that two agents that are part

of the same social network are more likely to be physically

close than two agents that do not know each other. Hence,

whenever two agents are in the same coverage area (BTS),

the probability of infection between the two will be higher if

they are part of the same social network.

This approach of capturing and modeling agent behavior

from CDRs sets our work apart from others because: (1)

we model agents from real individual data and not from

census or surveys as previously explained; and (2) we capture

behavioral adaptations to the spread of the disease i.e., changes

in mobility patterns or in the social network of the agents as

the disease spreads over time. In fact, census or survey data

give a one snapshot view of a society’s behavioral patterns.

However, cell phone data is collected in real time and provides

an accurate daily representation of the agents’ behaviors and

their changes due to external events. Finally, note that although

the ABM system we present is designed for cell phone records,

a similar approach could be used with logs from any other

location-based service, such as e.g. geolocalized Twitter.

IV. ABM OF VIRUS SPREADING USING CDRS

We propose an ABM architecture with two main com-

ponents: (1) a set of agents that are modeled using the

information contained in call detail records; and (2) a discrete

event simulator (DES) that simulates the virus propagation

over time based on the agents’ models.

A. Agent Generation

We define the behavior of each agent with three models:

(1) a mobility model extracted from CDR data; (2) a social

network model computed from CDR data; and (3) a disease

model that characterizes the progression of the disease through

its various states in each agent.

1) Mobility Model: The mobility model provides the po-

sition (at the BTS level) where the agent is at each moment

in time. This model is used by the event simulation process

to predict the location of each agent at each simulation step.

The temporal granularity of the mobility model determines the

granularity of the simulation steps e.g., if the mobility model

computes hourly distributions of locations, the simulation step

will be one hour.

We propose a mobility model that divides each day into a

set S of i non-overlapping equal-length time slots. Formally,

the mobility model of agent n, Mn, is defined as:

Mn = {Mwday
n ,Mwend

n } =
{{Mwday,0

n , ..,Mwday,i
n }, {Mwend,0

n , ..,Mwend,i
n }} ∀i ∈ S

Mwday,i
n = {pwday,i,0

n , . . . , pwday,i,j
n } ∀j ∈ B

Mwend,i
n = {pwend,i,0

n , . . . , pwend,i,j
n } ∀j ∈ B

(2)

where B is the number of BTS towers that give coverage

to a geographic area; and pwday,i,j
n and pwend,i,j

n denote the

probability that agent n may be found at BTS j in timeslot

i during a weekday or weekend, respectively. Given a CDR

dataset, the mobility model is built by associating with each

time slot i the set of BTSs where each person has been

observed during weekdays or weekends during the period of

time under study. Note that each individual might be assigned

to more than one BTS in a specific time slot i. In this case,

the event simulator assigns the position of the tower with the

highest probability, i.e., the BTS that the individual has used

the most over the training period. Since people tend to show

monotonic behaviors, an average person typically has very few

BTS towers in his/her mobility model. In the cases where a

time slot contains no data, which typically happens for time

slots at night, we assume that the person did not move from

the latest predicted location in time.

As shown by Song et al. in [10], mobility models computed

from CDRs can accurately predict the real locations of users

with 93% accuracy. However, two pre-requisites need to be

fulfilled in order to achieve this level of accuracy: (1) individ-

uals need to visit more than two locations (BTSs) during the

training set; and (2) they need an average call frequency of

≥ 0.5 calls per hour. Additionally, research by Candia et al.
[11] indicates that there exist relevant behavioral differences
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between weekend and weekday behaviors and advocate for

mobility models that can capture such differences. We will

explain details about the computation of our mobility models

that satisfy these requirements in Section V.

2) Social Network Model: The social network of an individ-

ual plays a key role in virus spreading because it identifies the

set of individuals with whom a person has a close relationship.

This is specially relevant for viruses that are transmitted by

direct physical contact, like H1N1. We compute the social

network of an agent as the set of individuals with whom there

was at least one reciprocal contact during the time period under

study. By contact, we mean any type of communication: call,

SMS or MMS, and does not need to be the same type to

imply bidirectionality. Note that an agent can be a member of

more than one social network. Additionally, given that humans

show clear different behavioral patterns between weekday and

weekend, we compute two social networks per agent. Formally

speaking, the social network Sn of agent n is computed as:

Sn = {Swday
n , Swend

n } =
Swday
n = {list of reciprocal contacts in wdays}

Swend
n = {list of reciprocal contacts in wends}

where Swday
n is the social network during the weekdays and

Swends
n the social network during the weekends. Given the

social networks of an agent, we assume that the probability

of being physically close to another agent will be higher

if that other agent is part of its social network. To model

physical proximity within a BTS coverage area we define

two probabilities: (1) p1 is the probability that two agents

that are in the same BTS at the same time of the simulation

and are part of the same social network are physically close

enough for the virus to be possibly transmitted; and (2) p2 the

probability that two agents that are in the same BTS and are

not in the same social network at the same moment in time

are physically close for the virus to be possibly transmitted.

It is expected for p1 to be larger than p2 given the social

connection. These two probabilities are a novel contribution

of our work since previous ABM approaches did not have

access to real behavioral data. It is important to clarify that p1
and p2 define the probability of two agents being physically

close when they are in the same BTS at the same moment in

time. The probability for the infection to occur between those

agents will be defined by the disease model (explained below).

3) Disease Model: The disease model captures the pro-

gression of the disease in each agent. This model, together

with the mobility and social models, is used by the discrete

event simulator to reproduce the evolution of the disease at a

global scale. We follow a similar approach to that of Barret

et al. [8] and define a disease model that is composed of two

parts: the between hosts transmission model and the within
host progression model.

In Figure 2 we observe that the between hosts transmission

model happens at a probability pi, given by Eq. 1, and

represents the probability that an agent goes from Susceptible

to Exposed. In our model, we assume that all agents have

the same initial susceptibility and infectivity i.e., ri = 1 and

si = 1∀i.
The within host model represents the evolution from Ex-

posed to Infective in a given period of time ε, and from

Infected to Removed in period of time β.

Once an agent reaches the Removed state, it is considered

to be protected from the virus and thus is removed from the

simulation. The specific values of ε and β in Eq. 1 depend on

the disease being modeled and are determined experimentally

from epidemiological studies. Details about their computation

are given in Section V.

Fig. 2. Disease Model composed of Between hosts and Within hosts models.

B. Discrete Event Simulator

The Discrete Event Simulator (DES) simulates the evolution

of the epidemic spreading for a set of agents over a specific pe-

riod of time. To bootstrap the epidemic spreading, we assume

that an initial agent is Infected and starts the transmission.

The DES has a global clock and evaluates, at each simulation

step, the state of all the agents in terms of mobility, social

network and disease model. The size of the simulation step is

determined by the temporal granularity of the mobility model

(see next section for computation details). Specifically, the

DES does the following consecutive tasks: (1) It identifies the

geographical area (BTS) where each agent is located using the

mobility model; (2) it identifies the geographical areas where

there is, at least, one Infective agent; (3) for each Infective

agent, it takes all the Susceptible agents of his social network

that are located in the same geographical area (BTS coverage)

and applies probability p1 that they will be physically close

for the virus to be transmitted; (4) for each Infective agent and

the rest of Susceptible agents included in its geographical area

(not part of its social network), it applies the probability p2 that

they will be physically close for the virus to be transmitted; (5)

for the set of agents physically close obtained from steps (3)

and (4), it applies the between hosts transmission probability
to go from Susceptible to Exposed; (6) for the agents that

are already in the Exposed or Infective state of the disease

model, it applies the corresponding progression; and at last

(7) it removes from the simulation all agents that have reached

the Removed state.

These steps are repeated for each simulation step during the

overall simulation time.

V. EXPERIMENTS: THE CASE OF H1N1 IN MEXICO

In case of a pandemic, the World Health Organization

(WHO) recommends authoritative bodies to consider the sus-
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pension of activities in educational, government and business

units as a measure to reduce the transmission of the disease.

The actions implemented by the Mexican government to

control the H1N1 flu outbreak of April 2009 constitute an

illustrative example. The actions consisted of alerts and/or

mandates aimed at reducing mobility, and where issued in

three stages: (a) a medical alert issued on Thursday, April 16th,

which was triggered by the diagnosis of the first H1N1 flu

cases; followed by (b) the closing of schools and universities,

enacted from Monday April 27th through Thursday, April

30th; and (c) the suspension of all non essential activities,

implemented from Friday, May 1st to Tuesday, May 5th.

The Mexican H1N1 outbreak has been investigated in a

number of recent papers using analytical SIR models [12],

agent-based approaches [13], [14] or metamodels [15]. From

a public health perspective, there are studies that focus on clin-

ical features, incubation times and transmission channels [16];

or on measuring the impact of interventions such as anti-viral

drugs [4], [17] or vaccination campaigns [15]. However, re-

search into the impact that the Mexican government mandates

had on the spread of the H1N1 virus and on the mobility

of the population is limited [12]. This is mainly due to the

lack of large scale data about social and mobility behavioral

patterns. We overcome these limitations by computing social

and mobility models using Call Detail Records collected from

a Mexican urban area during the H1N1 flu outbreak. We use

these models in the ABM system previously presented and

measure the impact that the actions taken by the Mexican

government had on human mobility and subsequently on the

spread of the virus. Note that we assume that changes in hu-

man behavior are exclusively caused by government mandates.

Although it is probably the main cause, there might be other

reasons – such as fear induced by the media– that could also

have influenced behavioral changes and that are not considered

in our simulations. Next, we describe the experimental setting,

the generation of the agents and our results.

Period Date Range Description
preflu 1/1 – 16/4 Period before any H1N1 case has been

discovered. Agents will move largely
unaffected and showing their usual mo-
bility patterns.

alert 17/4 – 26/4 April 16th - Diagnosis of H1N1 cases
and medical alert triggered the follow-
ing day. People may be reacting to the
news and modify their usual mobility
patterns.

closed 27/4 – 31/4 Schools and Universities closed. Nor-
mal behavior disrupted as people
change their usual mobility patterns.

shutdown 1/5 – 5/5 Closure of all non-essential activities.
reopened 6/5 – 31/5 Restrictions lifted.

TABLE I

TIME PERIODS OF STUDY.

A. Experimental Setting

In order to examine the impact of government restrictions

we evaluate changes in the mobility and disease models in

five chronological periods. Table I presents the timeline under

study. It covers from January 1st, 2009 to May 31st, 2009.

Each period is related to specific events that took place

during the outbreak i.e., preflu, alert, closed, shutdown and

reopening. We generate agents (with corresponding mobility

and social models) for each of these time periods. In order

to measure behavioral changes, we define two scenarios: a

baseline scenario and an intervention scenario.

The baseline scenario is built using the mobility and social

models obtained during the pre-flu period, when individuals

show normal – not affected by medical alerts – mobility

behavior. The intervention scenario considers the models that

are built with data from the alert, closed, shutdown and

reopened periods. In this case, depending on the moment of

the simulation, the DES will jump from one set of models

to the next. The evaluation is done by comparing the results

obtained by both scenarios. Due to the inherent randomness

of the spreading process we run each scenario 10 times and

average the results.

B. Generation of Agents

To generate realistic agent mobility and social network

models, we collected CDRs from January 1st to May 31st

of 2009 of one of the most affected Mexican cities. The

entire dataset contains around 1 billion CDRs and around 2.4

million unique cell phone numbers. Each cell phone number is

associated with one agent and we compute the mobility, social

and disease models for both the baseline and the intervention
scenarios.

The mobility models are computed using Eq. 2 with a

granularity of one hour. As described in Section IV, we need

to fulfill a set of requirements to guarantee that the mobility

models computed from CDRs are realistic representations of a

human’s motion. Following the research carried out by Song et
al. [10], we filter the individuals such that only those that (1)

are assigned to at least two BTSs throughout the time periods;

(2) have a minimum average calling rate of 0.25 calls/hour;

and (3) have at least 20% of the hourly time slots filled,

are considered. Finally, since we want to measure behavioral

changes during the outbreak, we only take into account agents

that are active during the five time periods under study.

These requirements narrow down the final number of agents

to 25, 000.

We also build the social network models for the baseline and

the intervention scenarios. As part of these models, we needed

to define values for the contact probabilities p1 and p2. In order

to compute their values, we make use of the work by Cruz-

Pacheco et al. [12], where the authors examined the effect of

the government intervention measures on the epidemic spread

using SIR. We use their simulation to determine the optimal

values of p1 and p2 as follows: we implement an exhaustive

search in the range [0 − 1] over all combinations of p1 and

p2, using .1 increments. For each pair of values tested, we
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run the simulation and obtain a curve representing the number

of infected agents. We select as final p1 and p2 values the

ones that minimize the mean squared error between our curve

and the one presented in Cruz-Pacheco et al. Our search

determined that the best values were p1 = 0.9 and p2 = 0.1,

i.e., the probability that two agents that are in the same BTS

and in the same social network are physically close for the

infection to be transmitted is 0.9, and 0.1 if the agents are not

in the same social network.

To build each agent’s disease model, we use the parameters

reported in the literature related to the H1N1 outbreak (see

Table II). These parameters are common to both scenarios.

Balcan et al. [4] used maximum likelihood analysis of epi-

demic simulations to derive values of R0 = 1.75, an infectious

period of 60 hours β = 60−1 and a latent state (Exposed) of

1.1 days (ε = 26.4 hours). Finally, we compute the value of

ρ using R0 as explained in [13]: R0 = ρ
β ; which gives a final

value of ρ = 34−1.

Parameter Value Description
R0 1.75 Estimated Reproduction number.

ε 26.4−1 hours Expected duration latent period.

β 60−1 hours Expected duration infectious period.

ρ 34−1 hours Expected time before infecting another
agent.

TABLE II

PARAMETERS OF THE DISEASE MODEL.

Once all the agent models have been computed for both

scenarios, we are ready to run both simulations. We initialize

our simulations with one infected agent on April 17th (the first

day a case was detected) [12] and run the simulation for 30

days. The initial agent infected was chosen to have a median

connectivity (size of its social network), and located in one of

the coverage areas that gives service to the airport to simulate

a spread started by an agent that had just arrived to the city

by air.

C. Analysis of the Results

In this Section, we compare the results of the intervention
scenario with the baseline scenario from three different view-

points: (1) a mobility perspective, by comparing changes in

mobility; (2) a disease model perspective, by comparing the

number of susceptible and infected agents; and (3) a spatio-

temporal perspective, by comparing the geographical evolution

of the disease spread.

1) Agent Mobility: In order to measure the changes in

mobility due to government mandates, we computed for each

scenario the percentage of agents that moved from one BTS

coverage area to another one at each step of the simulation (1
step = 1 hour). Figure 3 shows the results.

The baseline plot shows a cyclical day/night behavior

throughout the simulation period. In general, it can be ob-

served that at mid-day, more than 60% of the agents change

BTS; whereas that number decreases to less than 20% during

night hours. We also observe a cyclical behavioral change

during the weekends, where the mobility is reduced when com-

pared to weekdays. The intervention scenario shows similar

cyclical changes. However, there are a number of important

differences when compared to the baseline. There is a signif-

icant decrease in mobility on April 27th, precisely when the

alert period finishes and the close period starts. This decrease

in mobility continues until the beginning of the shutdown
period. On May 1st and throughout the shutdown period, there

is an even larger decrease in mobility (< 30%) that lasts until

all restrictions are lifted on May 6th. Although the behavioral

change during the shutdown period is mainly caused by the

total closure implemented by the government, it is important

to note the following facts: (1) The shutdown period includes

a weekend, which as observed in the baseline, always implies

reduced mobility; and (2) May 1st and May 5th were national

holidays in Mexico (Labor Day and Cinco de Mayo), which

from a mobility perspective should show a behavior similar

to the weekends baseline. To sum up, we can conclude that

during the intervention scenario there is a reduction in the

mobility of the agents of 10% during the alert period and of

up to 30% during the closing and shutdown periods, when

compared to the baseline. These differences in the agents’

mobility disappear once the reopen period starts (from May

6th onwards).

Fig. 3. Percentage of agents that move between BTSs for the intervention
and baseline scenarios. The temporal granularity is 1 hour.

2) Disease Transmission: In this section we study the evo-

lution of the disease focusing on the number of susceptible and

infected agents in the intervention and baseline simulations.

Figure 4 displays the percentage of the population that is in

the susceptible stage of the disease model for a specific date

and time. Results are shown for both the intervention and the

baseline scenarios.
In both cases, we observe that at the beginning of the

simulation (April 17th) all agents are susceptible of being

infected (except for the initial infected agent that starts the

simulation). As time passes, the evolution of susceptible agents

is described by a sigmoid function. The number of susceptible

agents decreases faster in the baseline scenario, i.e. the number

of infected agents grows faster than in the intervention sce-

nario. This result supports the hypothesis that the government

measures taken during the intervention scenario had an impact

62



on the agents’ mobility patterns and hence managed to reduce

the number of infected agents (which implies a larger number

of susceptible agents) when compared to the baseline scenario.

The largest difference between both sigmoid functions takes

place during the peak of the epidemic, with approximately a

10% less of susceptible agents in the intervention scenario.

By the end of the outbreak, the number of susceptible agents

is lower in the baseline than in the intervention scenario (i.e.,
more agents were infected in the baseline scenario).

Figure 5 shows the percentage of infected agents during

the simulation for both scenarios. We observe that the peak

of the epidemic in the intervention scenario happens later in

time than in the baseline, and has a smaller absolute value.

Delaying the peak of epidemics is a priority in intervention

strategies, as the time gained can be used to implement actions

such as vaccination campaigns, which have to be delivered

before the peak in order to be effective. The reduction in

mobility and the closure of public buildings delayed the peak

of the epidemic by 40 hours.

Another important objective in intervention strategies fo-

cuses on limiting the incidence of a disease (measured in %

of infected agents) at its peak. In our simulations, the total

number of infected agents was reduced by 10% in the peak

of the epidemic in the intervention scenario when compared

to the baseline scenario. These results are in agreement with

the ones reported in [12]. In this case, the authors, using tra-

ditional disease model techniques (SIR), reported a reduction

in prevalence as a result of the government restrictive actions

of 6%− 10%.

Fig. 4. Fraction of susceptible agents in the population over time. These
curves are an average of all simulation runs.

3) Spatio-Temporal Evolution: The combination of the mo-

bility and disease models provides us with a spatio-temporal

representation of the spread of the virus. In fact, we can

analyze the spread not only at a global scale – as done in

the previous section – but at a BTS level. Such analysis

gives an understanding of the geographical and chronological

transmission of the spread throughout the city.

Figure 6(a) displays the main parts of the city under study

and some of its landmarks, namely the subway system which

consists of two lines: L1, runs East-West and L2, which runs

North-South (L2) with one central station in common, C. The

Fig. 5. Fraction of infected agents over time. These curves are an average
of all simulation runs.

downtown area is geographically located around C, E1, E2,

E3 and E4, where there are university buildings, government

offices and commercial areas. Figure 6(b) shows the BTS

coverage areas of the cell towers in the city, computed using

a Voronoi tessellation.

The spatio-temporal analysis allows to study the spread

of the virus in this lattice. Figure 6(c) depicts the number

of infected agents per BTS at 12am on May 2nd (at the

peak of the spreading) in the baseline scenario. Note that

the downtown area contains the largest number of infected

agents, although residential areas located to the west of the city

are also heavily infected, specially when compared to other

residential areas. The intervention scenario shows a similar ge-

ographical distribution of heavily infected BTS areas, although

the number of infected agents is smaller than in the baseline
scenario. Analogously, the temporal evolution of the trans-

mission follows a similar trend both in the intervention and

baseline scenarios: the spread starts in the airport area (where

the first infected agent was) and rapidly evolves towards the

city’s downtown area, where it peaks, until it dies out as agents

turn into the Removed stage. This preliminary spatio-temporal

analysis seems to indicate that although behavioral changes

due to government restrictions manage to reduce and contain

the epidemic, they do not seem to affect its spatio-temporal

evolution.

VI. CONCLUSIONS AND FUTURE WORK

The ability to model and predict the evolution of a virus

spreading is a critical issue for governments and health or-

ganizations. Although previously proposed ABM systems are

able to capture the inherent individuality and randomness

of the process, they have not modeled the spatio-temporal

dynamics of human behavior and its potential changes due

to the alarm situation. This limitation is mainly due to the

fact that the agents’ behavior is typically built from census

or survey data. In this paper, we have introduced an ABM

system whose agents’ mobility and social network models

are built from human behavioral data available in call detail

records. As a result, the agents’ behavior not only mimics a

population’s mobility and social patterns, but also the changes

of these patterns over time. These changes are critical to
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(a)

(b)

(c)

Fig. 6. (a) Map of the city under study with the subway system and reference
landmarks; (b) Division of the city into the BTS coverage areas using a
Voronoi tessellation; and (c) Number of infected agents (represented by the
height and color of the bars in each coverage area) in the baseline scenario
at 12am on May 2nd.

achieve realistic spread simulations that allow us to measure

the real impact of the spread.

We have applied the proposed ABM system to CDR data

captured during the H1N1 outbreak of Mexico in 2009. In

our experiments, we have found that the spread of the virus

was both reduced (by about 10%) and postponed (by about

40 hours) thanks to the government mandates. Our analysis,

which focuses on the agents’ mobility and social networks,

provides a novel approach to ABM simulations based on real

behavior.

Future work will focus on enriching the agents’ characteri-

zation by adding variables such as socio-economic factors and

health status that will create even more realistic simulation

environments. We also plan to work on formal methods

to measure changes in the spread from a spatio-temporal

perspective so as to enhance the preliminary results presented

in this paper. Finally, we plan to analyze the impact that the

location, mobility and social connectedness of the first infected

agent has on the spread of the disease.
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