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Abstract- The frequency spectrum bandwidth used in 
modern wireless systems is limited while the number of wireless 
systems is rapidly increasing. In order to alleviate the spectrum 
scarcity, secondary systems can opportunistically access the 
temporarily unused licensed bands of primary systems which 
are known as spectrum holes or white spaces, by altering their 
transmitting parameters so that the interference is minimal to 
primary user while coordinating access to this channel with 
other cognitive radio (CR) users in the vicinity. Spectrum 
sensing is necessary to enable dynamic spectrum access without 
interfering with primary users. This optimizes the use of 
available radio frequency spectrum while minimizing 
interference to other licensed or unlicensed users by detecting 
and utilizing only the white spaces. This paper explores various 
sensing methods, their performance, applicability and 
effectiveness under different transmission conditions and 
advantages and disadvantages incorporated with each sensing 
method. 

 
Index Terms—Cognitive radio, Spectrum Sensing 

 

I. INTRODUCTION 

    Cognitive radio is an intelligent radio which is capable 
of autonomous reconfiguration by adapting to the 
communication environment. Since a cognitive radio operates 
as a secondary user which does not have primary rights to any 
pre-assigned frequency bands, it is necessary for it to 
dynamically detect the presence of primary users. In 2004, the 
IEEE formed the 802.22 Working Group to develop a 
standard for wireless regional area networks (WRAN) based 
on cognitive radio technology in response to the Notice of 
Proposed Rule Making issued by FCC that identifies 
cognitive radio as the candidate for implementing 
negotiated/opportunistic spectrum sharing. WRAN systems 
will operate on unused VHF/UHF bands [24, 27]. 

Stages of operation in CRs are spectrum sensing (detecting 
the presence of licensed users and determining which portions 
of the spectrum are vacant), spectrum management (selecting 
the best available channel and varying transmission 
parameters accordingly), spectrum sharing (coordinating 
access to this channel with other CR users in the vicinity) and 
spectrum mobility (vacating the channel when a licensed user 
is detected in the channel).  
   Sensing of unused spectrum can be based on transmitter 
detection methods, interference based detection method or 
cooperative detection methods. Currently investigated 
transmitter detection methods are matched filter, Eigen-value 
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based detection, cyclostationary and energy detection. 
Cooperative detection schemes include centralized, 
distributed and cluster-based sensing methods. While 
transmitter and cooperative detection methods sense the 
spectrum so as not cause interference to the primary 
transmitter, interference based detection shifts its focus to 
guarantee minimal primary receiver interference.  

 

 
 

Fig. 1.  Classification of cognitive radio spectrum sensing 
 

  

II.  TRANSMITTER DETECTION 

A.  Energy detection 
Energy detection is the widely used spectrum sensing 

method since prior knowledge of the licensed user signal is 
not required, performs well with unknown dispersive 
channels and it has less computational and implementation 
complexity and less delay relative to other methods. 
However, this method relies on the knowledge of accurate 
noise power and hence is vulnerable to the noise uncertainty. 
Energy detection is optimal for detecting independent and 
identically distributed (iid) signals in high SNR conditions, 
but not optimal for detecting correlated signals. 

Energy detection compares the energy of the received 
signal in a certain frequency band to a threshold value(γ) 
which is defined according to the SNR, to derive the two 
binary hypothesis; whether the signal present or not [2]. The 
signal received by the secondary user x(t), can be expressed 
as follows for the two hypothesis where s(t) is the primary 
users’ transmitted signal, n(t) is the additive white Gaussian 
noise (AWGN) and h is the amplitude gain of the channel.  
   

X(t) = ���������������������������������	��
���������� � ���� � ������������������������ � 
  

 
 

Fig. 2.  Block diagram of an energy detector 
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Interference, noise uncertainty and varying threshold under 
low SNR can limit its performance. The minimum SNR 
threshold below which the detector cannot reliably identify a 
primary signal is denoted by SNRwall [1, 3]. CRs using energy 
detection have limited flexibility to choosing reconfigurable 
parameters such as operating frequency, modulation scheme 
and transmission power since information about the type of 
transmission cannot be detected. Another method of detection 
is the use of a periodigram and averaging the squared 
magnitudes of the FFT [5].  

Three parameters are defined as Pd (probability of detecting 
the signal when the signal is preset), Pm (Probability of 
missed detection when the signal is present (1-Pd)) and Pf 

(probability of false alarm; deciding a signal is present when 
the primary user signal is indeed not present). A high Pf 
results in low spectrum utilization since the false alarms 
increase the number of missed opportunities while a high Pm 

results in missing the presence of primary user and causing 
interference to the primary user [4 - 6].  

The probability density function (PDF) of the integrator 
output can be written as [6]: 

 

 fY(y) = ��� ������� � ��� �! " �# �������������������������	�
�� $ %�&'�()* !*+,-* �.� �/012�3������������          (1) 

where u is the time bandwidth product and γ is the signal to 
noise ratio. Im-1(.) is the (m-1)th modified Bessel function of 
the first kind  and the gamma function is given by: 

 
 Γ(a) = 4 56 �! 7859:  (2) 

The probabilities of detection and false alarm in a non 
fading channel can be derived using the cumulative 
distribution functions of the central and non-central chi-
square distributions as given in [4, 6]: 

 
 Pf = P{Y>λ|��	} =���;�����< �= ���;�   > Gm (?) (3) 

 Pd = P{Y>λ|���} = Qm(01@�2� Aλ) (4) 
 
where the incomplete gamma function is given by: 
 

 Γ(a,b) = 4 56 �! 7859B  (5) 

and generalized Marcum Q-function is given by:  
 

 Qm(a,b) = C DE6E() ! F*,G** .; ��HI�8I9
B    (6) 

Pf  is independent of the fading channel conditions, but Pd 
is dependent on the instantaneous SNR(γ) and can be 
expressed as [4]: 

 
 Pd = 4 JK/01@2� AL3MN�O�& 8I (7) 

where fγ(x) is the probability density function of the signal 
under fading. There are different types of fading models 
applicable to urban and rural environments. Nakagami fading 
model is suitable for urban environments with multipath 
propagation and can be used in mobile communication. 
Rayleigh fading model is applicable to urban areas where 
there is no line of sight communication and the signal is 
received after several reflections and scattering. Rician fading 
model can be applied when line of sight communication 
exists yet the signal suffers from multipath interference. 
Probability functions for each fading model are described as 
below [30]. 

 
Rayleigh channel: 

 f(γ) = �& ! & &P#      , γ Q 0 (8) 

Nakagami-m channel: 

 f(γ) = ���;� �$R&P'; 2; �! &; &P#      , γ Q 0 (9) 

Rician channel: 

 f(γ) = ST�&  ! S �U,)�++P   .: V1WS�ST��&&P X  , γ Q 0 (10) 

where K is the Rician factor 

From (4) the average probability of detection over 
Rayleigh, Nakagami and Rician fading channels has been 
derived in [4,6,7]. 

B. Matched filter detection  
Matched filter detection can achieve a shorter sensing time 

for a certain probability of false alarm or probability of 
detection but it requires the accurate synchronization and the 
priory knowledge of primary user’s features such as 
bandwidth, modulating type and order, operating frequency 
and pulse shaping [8], which would be possible only if the 
licensed user intends leveraging cooperation. For 
demodulation it has to achieve coherency with primary user 
signal by performing timing, carrier synchronization and 
channel equalization and power is consumed to demodulate 
the signal. Detecting above features and implementing 
matched filter detection is possible when primary users have 
pilots, preambles, synchronization words or spreading codes 
that can be used for coherent detection. 
 
C. Cyclostationary detection 

Transmitted signals have cyclostationary features which 
are caused by periodicity or statistics of mean or 
autocorrelation of the signal and cyclostationary detector 
exploits these features to detect the presence of the primary 
user. Modulated signals in general are associated with 
periodicities such as digital sequences in the form of pulse 
trains, sine wave carriers, repeating spreading or having 
cyclic prefixes which result in an inherent autocorrelation in 
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these communication signals. A cyclostationary detector 
detects the presence of a signal based on the periodicity of the 
transmission by using a spectral correlation function (SCF) 
instead the power spectrum density (PSD). Noise, in general, 
is wide sense stationary and indicates no periodicity; hence 
the cyclostationary detector can differentiate the permanent 
user signal easily from the noise pattern [8].  

Unlike the matched detector, cyclostationary feature 
detector does not require transmitter information at the CR. 
Under uncertain noise powers and low SNR it can perform 
better than the energy detector. Nevertheless cyclostationary 
detector requires excessive signal processing capabilities and 
is computationally very complex to implement.  

 
D. Eigen-value based detection 

Eigen value based detection is a novel method which is 
based on the Eigen values of the covariance matrix of the 
received signal at the secondary users. The expression for 
decision threshold has been derived based on the random 
matrix theory (RMT) which is also under research and in a 
developing stage [21]. 

This method achieves both high Pd and low Pf without 
requiring information of the primary user signals, channel and 
noise power as a priori hence it can overcome the noise 
uncertainty problem faced by energy detectors[22] Further, 
no synchronization is needed as in matched filter detection. 
Since the covariance matrix incorporates the correlations 
among the signal samples, the Eigen value based detection 
outperform the energy detection in the presence of correlated 
signals while its performance is comparable to that of the 
energy detector in the presence of independent and identically 
distributed (iid) signals [23].  But it is computationally more 
complex than the energy detector [24]. 

There are three main Eigen value based detection methods 
under study, which are classified according to the test statistic 
used to detect the signal [22]. The test statistic is compared 
against a computed threshold [26] .The three methods are the 
maximum minimum Eigen value (MME), energy with 
minimum Eigen value (EME) and maximum Eigen value 
detection (MED).  MME method uses the ratio of the 
maximum Eigen value to minimum Eigen value of the sample 
covariance matrix as the test statistic [25, 26] while EME 
method employs the ratio of the average power of the 
received signal to minimum Eigen value [22,24]. In MED 
method the maximum Eigen value is used as the test statistic 
to be compared against a threshold [22, 23]. 

However the results derived so far in this field are based on 
asymptotical assumptions which would make them inaccurate 
in many practical scenarios [25]. 

 
E. Other detection methods 

There are some other detection methods proposed in the 
literature such as multi taper spectrum estimation, filter bank 
spectrum estimation, combined energy detection, likelihood 
ratio test, covariance based  sensing, wavelet-based sensing 
and waveform-based sensing [28,31-37] of which the latter 

two has been of great research interest. Waveform-based 
sensing or coherent sensing analyses the received signal by 
correlating it with a known signal pattern or a template [34]. 
This approach can outperform the energy detector in 
convergence time and reliability. Moreover, it requires short 
sensing time and it has been shown that the performance of 
the sensing algorithm improves as the length of the signal 
templates increases. However, this method is susceptible to 
synchronization errors and can be applied only to systems 
with known signal patterns. The other significant method, 
wavelet-based approach can scan over a wide bandwidth 
simultaneously. Wavelet-transform of the spectrum’s PSD 
can characterize the local regularity of signals. The wideband 
under consideration is divided into consecutive frequency sub 
bands where the power spectral characteristic within each sub 
band is smooth but exhibits a discontinuous change between 
adjacent sub bands. By analyzing these discontinuities 
information on the locations and intensities of spectrum bands 
can be extracted. Once the PSD edges are detected the powers 
within bands between two edges are estimated. Using this 
information and edge positions, the frequency spectrum can 
be characterized as occupied or empty. Solutions based on the 
local maxima of both gradient wavelet modulus and 
multiscale wavelet products are derived and tested in the 
literature. The type of wavelet used determines the efficiency 
of this system [32, 32]. 

 

III.  COOPERATIVE DETECTION 

The transmitter detectors operate as individual nodes. 
Depending on the spatial distribution, secondary nodes have 
access to different primary users and hence face problems 
imposed by hidden node, shadowing, multipath and receiver 
uncertainty (inability of a CR to detect a primary transmitter 
due to weakness of its signal but CR’s transmission is 
adversely affecting the reception of the primary receiver). 
Information collected at each individual CR can be combined 
in decision making to address the above mentioned issues and 
cooperative detection employs this technique. 

Advantages of cooperative detection methods are their 
ability to prevent hidden node, shadowing, multipath and 
receiver uncertainty problems and high accuracy [11]. These 
are achievable at the cost of traffic overhead caused by the 
implementation complexity, the need for a control channel 
and the delay incorporated with the communication between 
CRs and data processing. In a cooperation based spectrum 
sensing scheme, the measurements of several secondary users 
are combined and examined together in order to determine the 
presence of the primary user.  

When fusing the data cooperative schemes can either use 
hard decisions or soft decisions [13, 11] to evaluate whether 
the primary signal is present. In hard decision making, 
individual CRs make the decisions regarding the existence of 
the primary user and the final decision is made by fusing 
these decisions from individual cognitive users together. The 
hard decision can be made using either the OR rule or the 
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AND rule. Under the OR rule, if one of the sensing cognitive 
users decides that the primary user is present then all the 
cooperating CRs accept that the primary signal is present 
whereas under the AND rule, only if all the cognitive users 
decide that the primary user is present, entire system will 
accept that the primary is present. An optimum value for Pd or 
Pf can be obtained by considering only the decisions of CRs 
with higher SNR, for the decision making [11, 12]. Other sub-
optimal hard decision schemes in use are the Counting Rule 
and Linear quadratic detector. In counting rule a threshold 
value is determined and if the number of users that decide that 
the primary user is present is above a threshold value, then 
this decision is accepted by the entire system, else it is 
rejected. Linear quadratic detector uses partial statistical 
knowledge, without ignoring the correlation information 
completely, to give a general suboptimal solution to the 
fusion problem and gives a better performance than the one 
obtained by ignoring the correlation information entirely [13, 
16].  

In soft decision making, the decision is made by correlating 
the measurements collected by the individual users rather 
than the decisions of the individual users. It has been shown 
that soft decision making has much better results when 
compared to hard decision making. A weighted linear 
combination of the measurements of cognitive users is taken 
for decision making. The weights are chosen so as to 
maximize the value of Pd for a given value of Pf. Larger 
weighting coefficients are assigned to secondary users which 
receive high SNR signals and are likely to make their local 
decisions consistent with the real hypothesis, allowing more 
contribution to the global decision making. Lesser weights 
would be assigned to secondary users experiencing deep 
fading, limiting their contribution to the global decision 
making [4, 12].  

 
A. Centralized cooperative detection 

Centralized cooperative spectrum sensing uses regulator 
dependent management where a central unit collects sensing 
information from CR devices and identifies the available 
spectrum and allocate the unused spectrum to the secondary 
users that require access to the spectrum by the use of 
methods such as spectrum pooling and spectrum leasing. But 
if the number of devices is large, the data traffic between 
nodes would be highly crowded and a larger bandwidth 
would be required [11].  
 
B. Distributed cooperative detection 

Distributed cooperative spectrum sensing does not require 
a backbone infrastructure and final information is learnt from 
the closest node, hence it has less traffic over head compared 
to centralized cooperative detection. Still it has disadvantages 
such as network information overhead and band width 
consumption. In distributed cooperative detection, cognitive 
nodes share information among neighbors but they make their 
own decisions as to which part of the spectrum they can use 
[16].  

C. Cluster-based cooperative spectrum sensing 
In cluster based spectrum sensing, the most favorable user 

with the largest reporting channel gain in a cluster is selected 
as the cluster head. The cluster heads collect the sensing 
results from all the other users in the same cluster and 
forward them to the common receiver, which coordinates the 
CRs. After receiving the authorization from the common 
receiver, through cluster heads, all the cognitive users initiate 
the spectrum sensing independently. The cluster heads collect 
local observations in the same cluster and make a cluster 
decision according to a fusion function. If the control channel 
bandwidth is low, radios exchange decisions or summary 
statistics rather than long vectors of raw data. On the other 
hand if the control channel bandwidth is high, CRs can 
exchange entire raw data. Next the cluster decisions are 
reported to the common receiver, which would make a final 
decision according to a fusion function. After determining the 
occupancy of the spectrum the common receiver transmits 
back the final decision to the CRs via cluster heads and 
informs which secondary users are allowed to transmit [14, 
15].  
 

IV.  INTERFERENCE BASED DETECTION  

Transmitter detection and cooperative detection methods 
focus on reducing the interference to the primary transmitter. 
Interference based detection shifts its focus to minimize the 
interference to the primary receiver irrespective of the 
primary transmitter’s operation. The signal power received at 
the primary receiver reduces exponentially with the distance, 
until it reaches a level of noise floor. At this point, although 
the primary transmitter is operating, the primary receiver 
treats this communication as simply noise and not 
transmission; hence the secondary user can utilize the channel 
since no interference is introduced to the primary user’s 
communication, as the primary receiver is not in the receiving 
mode. An interference cap is introduced above the maximum 
noise level, known as interference temperature; below this 
level the primary receiver will treat this transmission as 
simply noise. If the detected primary signal level is below the 
interference temperature, the secondary user may utilize that 
channel. Further if the transmission power of a CR remains 
below the interference cap, it may utilize any frequency 
parameters of its choice. A main challenge faced in 
implementation of this method is the receiver interference 
temperature determination. 

Another approach is to detect the primary receiver through 
the local oscillator reverse leakage power which couples back 
through the input port and radiates out of the antenna. If no 
primary receiver is around, a CR may use any frequency band 
of its choice irrespective of primary transmitters in the 
vicinity. Detecting leakage power directly with a CR would 
be impractical due to difficulty of detecting leakage over 
large distances and variable local oscillator leakage power. As 
a solution low cost sensor nodes can be mounted close to the 
primary receivers. The nodes would first detect the local 
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oscillator leakage to determine which channel the receiver is 
tuned to and then transmit this information to the CR through 
a separate control channel [9].  
 

V.  SUMMARY 

In this literature review we explored the field of spectrum 
sensing in cognitive radio implementation which is a rapidly 
developing technology area in telecommunication. The CRs 
should be able to detect signals in the wideband regime and 
the performance of the sensing should be adequate to ensure 
efficient use of available spectrum and limited interference to 
the licensed primary users’ communication within an 
acceptable amount of time. We analyzed the sensing 
techniques available in current literature and their advantages, 
disadvantages and applicability. 

Energy detection is the most common scheme of spectrum 
sensing with low implementation and computational 
complexities. If the receiver cannot gather sufficient 
information about the primary user signal but the power of 
the random Gaussian noise is only known to the receiver, the 
optimal detector is an energy detector. However, the 
performance of the energy detector is susceptible to 
uncertainty in noise power and fading channels. Also, energy 
detectors often generate false alarms triggered by unintended 
signals because they cannot differentiate signal types and has 
poor performance under low SNR.  

When the information of the primary user signal such as 
the pulse shape, packet format and modulation type and order 
is available, matched filter is the optimal detector. Since most 
wireless network systems have pilots, preambles, 
synchronization word or spreading codes, these can be used 
for the coherent detection. It has high accuracy and the 
minimum sensing time.  Nonetheless it involves high 
complexity and need for receivers for all signal types of wide 
band regime. 

Cyclostationary feature detection is to detect the target 
users by utilizing the cyclostationary features of the observed 
signals. These features are detected by analyzing the SCF. It 
can distinguish not only interference from the target users but 
also among different types of transmission scenarios and 
users and is robust to uncertainty in noise power and 
propagation channel. Nevertheless, it is computationally 
complex and requires significantly long observation time. 

Eigen value based detection is a blind sensing method that 
does not need either the information of the source signals or 
the propagation channels. Unlike the energy detector Eigen 
value based detector is invulnerable to noise uncertainty and 
can perform well under low SNR conditions. Complexity of 
this method depends on the computation of the covariance 
matrix and the Eigen value decomposition. Nevertheless, this 
method has not yet been tailored to practical scenarios.  

Cooperative detection mitigates the uncertainty in a single 
user’s detection through collaboration. Detection probability 
is improved by reducing the multipath fading, hidden node 
and shadowing effects. This method can employ either data 

fusion or decision fusion depending on the available channel 
resources. If enough bandwidth can be allocated for the 
control channel, raw data can be exchanged; otherwise the 
decisions would be exchanged. Further it is categorized 
according to the inter-cognitive radio communication 
architecture as distributed, centralized and cluster based. 
However, this method introduces additional operations and 
traffic overhead. Furthermore, reliable information exchanges 
among the cooperating users must be guaranteed and practical 
fusion algorithms should be robust to data errors due to noise, 
interference and channel impairments. 

The interference based detection shifts its attention to 
avoiding interference to primary receivers. As long as CR 
users do not exceed the interference temperature limit, which 
is the amount of new interference the receiver could tolerate 
by their transmissions, they can use this spectrum band. The 
difficulty of this model lies in accurately determining the 
interference temperature limit and reliably detecting the weak 
LO leakage signals of the primary receivers. 

CR systems for dynamic spectrum access is an emerging 
technology which is still in its early stages of development 
and research is being carried out to achieve high accuracy of 
detection, minimal sensing time, less computational and 
implementation complexities and detection of spread 
spectrum primary users. Furthermore, novel algorithms and 
sensing methods are being proposed in this field. 
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