
62 Copublished by the IEEE CS and the AIP 1521-9615/10/$26.00 © 2010 IEEE Computing in SCienCe & engineering

S C I E n t I f I C  P r o g r A m m I n g

Editors: Konstantin Läufer, laufer@cs.luc.edu

Konrad Hinsen, hinsen@cnrs-orleans.fr 

Why and hoW to Use  
arbitrary Precision
By Kaveh R. Ghazi, Vincent Lefèvre, Philippe Théveny, and Paul Zimmermann

M ost floating-point compu-
tations today are done in 
double precision—that is, 

with a significand (or mantissa, see 
the “Glossary of Terms” sidebar) of  
53 bits. However, some applications re-
quire more precision: double-extended 
precision (64 bits or more), quadruple 
precision (113 bits), or even more. In a 
2001 article in The Astronomical Jour-
nal, Toshio Fukushima wrote, “In the 
days of powerful computers, the errors 
of numerical integration are the main 
limitation in the research of complex 
dynamical systems, such as the long-
term stability of our solar system and 
of some exoplanets […]” and gave an 
example in which using double preci-
sion leads to an accumulated round-
off error of more than 1 radian for the 
solar system! Another example where 
arbitrary precision is useful is static 
analysis of floating-point programs 
running in the electronic control units 
of aircrafts or nuclear reactors.

As our running example here, we’ll 
assume we want to determine 10 deci-
mal digits of the constant 173746a + 
94228b − 78487c, where a = sin(1022), 
b = log(17.1), and c = exp(0.42). In this 
simple example, there are no input 
errors because all values are known 
exactly—that is, they’re known with 
infinite precision. We ran all experi-
ments reported here with GNU Com-
piler Collection (GCC) 4.3.2 running 
on a 64-bit Core 2 under Fedora 10, 
with GNU C Library 2.9.

Our first program (in the C lan-
guage) is

#include <stdio.h>

#include <math.h>

int main (void)

{

double a = sin (1e22), 

b = log (17.1);

double c = exp (0.42);

double d = 173746*a + 

94228*b - 78487*c;

printf ("d = %.16e\n", d);

return 0;

}

From this program, we get d = 

2.9103830456733704e−11. This 
value is completely wrong; the ex-
pected result is −1.341818958 ·10−12. 
We can change double into long 
double in the above program to use 
double-extended precision (64-bit  
significand) on this platform (on ARM 
computers, long double is double 
precision only; on PowerPCs, it cor-
responds to double-double arithmetic 
[see the “Glossary of Terms” sidebar], 
and, under Solaris, it corresponds 
to quadruple precision). We also 
change sin(1e22) to sinl(1e22L), 
log to logl, exp to expl, and 
%.16e to %.16Le; we then get d = 

-1.3145040611561853e−12. This 
new value is almost as wrong as the 
first one. Clearly, the working preci-
sion is not enough.

What Can Go Wrong
Several things can go wrong in our 
running example. First, constants 
such as 1e22, 17.1, or 0.42 might  
not be exactly representable in binary. 
This problem shouldn’t occur for 
the constant 1e22, which is exactly 
representable in double precision,  
assuming the compiler transforms it 
into the correct binary constant, as 
required by IEEE 754 (see the “IEEE 
754 Standard” sidebar). However, we 
can’t represent 17.1 exactly in bina-
ry, the closest double-precision value  
being 2406611050876109 ·2−47, which 
differs by about 1.4 ·10−15. The same 
problem happens with 0.42.

Second, for a mathematical function, 
such as sin, and a floating-point input, 
such as x = 1022, the value sin x usually 
isn’t exactly representable as a double-
precision number. The best we can do 
is to round sin x to the nearest double-
precision number, say, y. In our case, we 
have y = −7675942858912663·2−53 and 
the error y − sin x is about 6.8 ·10−18.

Third, as the sidebar notes, IEEE 
754 requires neither correct round-
ing of mathematical functions like 
sin, log, and exp, nor even some 
given accuracy, and results are com-
pletely platform-dependent.1 How-
ever, while the 1985 version said 
nothing about these mathematical 
functions, the 2008 version recom-
mends correct rounding. Thus, the 
computed values for the variables a, 
b, and c might differ by several ulps  

Although double precision is usually enough, arbitrary precision increases accuracy and the reproducibility  
of floating-point computations.

CISE-12-3-SciPro.indd   62 4/6/10   4:42:54 PM



may/June 2010 63

(or units in last place; see the  
“Glossary of Terms” sidebar) from the  
correctly rounded result. As we  
describe later, on this particular 

platform—whether optimizations 
are enabled or not—all three func-
tions are correctly rounded for the 
corresponding binary arguments x, 

which are themselves rounded with 
respect to the decimal inputs. 

Finally, a cancellation happens in  
the sum 173746a + 94228b − 78487c.  

Glossary of Terms
Radix, Significand, and Exponent
If x is a floating-point number of precision p in radix β, we 
can write it x = ±0.d1 d2 … dp · βe, where s = ±1 is the 
sign of x, m = 0.d1d2 … dp is the significand of x, and  
e is the exponent of x. this representation is unique if we 
force d1 to be non-zero. Also, different conventions are 
possible for the significand, which lead to different values 
for the exponent. for example, IEEE 754-2008 uses  
m = d1.d2 … dp, which gives an exponent smaller by one; 
it also uses a third convention, where the significand m is 
an integer.

Unit in Last Place
If x = ±0.d1d2 … dp · βe is a floating-point number, we 
denote by ulp(x) the weight of the least significand digit  

of x, that is, βe−p. (the value of ulp(x) doesn’t depend on 
the convention chosen for the (s, m, e) representation.) 

Sterbenz’s Theorem
Sterbenz’s theorem says that if x and y are two floating-
point numbers of precision p, such that y/2 ≤ x ≤ 2y, then 
x − y is exactly representable in precision p. As a conse-
quence, there are no round-off errors when computing 
x − y.

Double-Double Arithmetic
Double-double arithmetic approximates a real number r 
by the sum of two double-precision numbers—say, x + y. 
If x is the rounding-to-nearest of r, and y is the rounding-
to-nearest of r − x, then double-double arithmetic gives an 
accuracy that’s twice as large as that of a single double-
precision number.

The Ieee 754 sTandard

IEEE 754 is a widely used standard for floating-point 
representations and operations that your computer uses 

everyday.1 It’s very important because it defines floating-point 
formats, which lets two computers exchange floating-point 
values without any loss of accuracy. the standard requires 
correct rounding for arithmetic operations, which guarantees 
that the same program will yield identical results on two dif-
ferent computers (under some conditions that we omit here). 
IEEE 754 was first approved in 1985, and was revised in 2008. 
We describe the revision here, denoted as IEEE 754-2008.

More on IEEE 754-2008
IEEE 754-2008 defines basic formats (for computations) 
and interchange formats (to exchange data between 
different implementations). there are five basic formats: 
binary32, binary64, binary128, decimal64, and 
decimal128. the binary32 and binary64 formats 
yield single and double (binary) precision, respectively, and 
usually cor respond to the float and double data types in 
the ISo C language. the decimal formats are new to IEEE 
754-2008; some preliminary support is available in gnU 
Compiler Collection (gCC). for example, decimal64 is 
denoted by _Decimal64 in gCC, in conformance with  
the current draft on decimal floating-point arithmetic in  
C, tr 24732 (see www.open-std.org/jtc1/sc22/wg14/www/
projects).

our running example then becomes: 

#include <stdio.h>

#include <math.h>

int main (void)

{

 _Decimal64 a = sin (1e22);

 _Decimal64 b = log (17.1);

 _Decimal64 c = exp (0.42);

 _Decimal64 d = 173746*a+94228*b-78487*c;

 printf ("d = %.16e\n", (double) d);

 return 0;

}

and we get d = 0.0000000000000000e+00. (We  
had to convert the final result d to double because the 
gnU C library doesn’t yet support printing of decimal 
formats.) 

IEEE 754 requires correct rounding for the four basic  
arithmetic operations (+, −, ×, ÷), the square root,  
and the radix conversions (for example when reading a 
decimal string into a binary format, or when printing a 
binary format into a decimal string). this means that  
the computed result should be as if computed in infinite 
precision, and then rounded with respect to the current 
rounding mode. IEEE 754-2008 specifies five rounding 
modes (or attributes): roundTowardPositive,  
roundTowardNegative, roundTowardZero,  
roundTiesToEven, and roundTiesToAway.

Double-Extended Precision and Linux
We can configure the traditional floating-point unit of the 
32-bit x86 processors to round the results either in double 
precision (53-bit significand) or in extended precision  
(64-bit significand). most operating systems, such as 
freeBSD, netBSD, and microsoft Windows, configure their 
processors so that, by default, they round in double precision. 
In contrast, under Linux, rounding is done by default in ex-
tended precision; this is a bad choice for the reasons detailed 
elsewhere (www.vinc17.org/research/extended.en.html).

Reference
ANSI-IEEE std. 754-2008, Floating-Point Arithmetic1. , IEEE, 2008.

CISE-12-3-SciPro.indd   63 4/6/10   4:42:55 PM



S C I E n t I f I C  P r o g r A m m I n g

64 Computing in SCienCe & engineering

Assuming it’s computed from left to  
right, the sum 173746a + 94228b is 
rounded to x = 1026103735669971·2−33  
≈ 119454.19661583972629, while 78487c  
is rounded to y = 4104414942679883·2−35  
≈ 119454.19661583969719. By Sterbenz’s  
theorem (see the “Glossary of Terms” 
sidebar), there are no round-off errors 
when computing x − y; however, the 
accuracy of the final result is clearly 
bounded by the round-off error made 
when computing x and y—that is, 
2−36 ≈ 1.5 ·10−11. That the exact re-
sult is of the same order of magnitude 
explains why our final result d is com-
pletely wrong.

The GNU MPFR Library
By arbitrary precision, we mean the 
ability for the user to choose the pre-
cision of each calculation. (Multiple 
precision means that large significands 
are split over several machine words; 
modern computers can store at most 
64 bits—about 20 digits—in one 
word.) Several programs or libraries 
let us perform computations in ar-
bitrary precision; this is particularly 
true for most computer algebra sys-
tems such as Mathematica, Maple, or 
Sage. Here, we focus on GNU Mul-
tiple Precision Floating-Point Reli-
able (MPFR),2 a C library dedicated 
to floating-point computations in ar-
bitrary precision (for languages other 
than C, see the “Other Languages” 
sidebar).

As the “IEEE 754 Standard” side-
bar describes, what makes MPFR 
different is that it guarantees correct 
rounding. With MPFR, our running 
example becomes:

#include <stdio.h>

#include <stdlib.h>

#include "mpfr.h"

int main (int argc,  

char *argv[])

{

mp_prec_t p = atoi 

(argv[1]);

mpfr_t a, b, c, d;

mpfr_inits2 (p, a, b, 

c, d, (mpfr_ptr) 0);

mpfr_set_str (a, "1e22",  

10, GMP_RNDN);

mpfr_sin (a, a, 

GMP_RNDN);

mpfr_mul_ui (a, a, 

173746, GMP_RNDN); 

mpfr_set_str (b, "17.1",  

10, GMP_RNDN); 

mpfr_log (b, b, 

GMP_RNDN);

mpfr_mul_ui (b, b, 

94228, GMP_RNDN);

mpfr_set_str (c, "0.42", 

10, GMP_RNDN);

mpfr_exp (c, c, 

GMP_RNDN);

mpfr_mul_si (c, c, 

-78487, GMP_RNDN);

mpfr_add (d, a, b, 

GMP_RNDN);

mpfr_add (d, d, c, 

GMP_RNDN);

mpfr_printf ( 

"d = %1.16Re\n", d);

mpfr_clears (a, b, c, d, 

(mpfr_ptr) 0);

return 0; 

}

This program takes as input the 
working precision p. With p = 53, we 

get d = 2.9103830456733704e−11. 
Note that this is exactly the re-
sult we got with double preci-
sion. With p = 64, we get d = 

−1.3145040611561853e−12 which 
matches the result we got with 
double-extended precision. With  
p = 113, which corresponds to  
IEEE 754 quadruple precision, we  
get d = −1.3418189578296195e−12 
which exactly matches the expected 
result.

Constant Folding
In a given program, when an ex-
pression is a constant, such as 3 +  
(17 × 42), it can be replaced at  
compile-time by its computed val-
ue. The same holds for floating- 
point values, with an additional  
difficulty: the compiler should 
be able to determine the round-
ing mode to use. This replacement  
by the compiler is known as con-
stant folding (en.wikipedia.org/wiki/
constant_folding). 

With correctly rounded constant 
folding, the generated constant de-
pends on the format of the floating-
point type on the target platform, 
and not on the building platform’s 
processor, system, or mathematical 
library. This provides both correctness 
(the generated constant is the correct 
one with respect to the precision and 
rounding mode) and reproducibility 
(platform-dependent issues are elimi-
nated). As of version 4.3, GCC uses 
MPFR to perform constant folding 
of intrinsic (or built-in) mathemati-
cal functions such as sin, cos, log, and 
sqrt.

oTher lanGuaGes

Several languages other than C or C++ provide access 
to arbitrary precision floating-point arithmetic. for 

what concerns multiple Precision floating-Point reliable 
(mPfr), there are interfaces for the Perl, Python, Haskell, 
Lisp, and Ursala languages (see www.mpfr.org for more 
details).

Using mPfr from fortran is not easy because the mPfr 
C library uses complex aggregate C data types for repre-
senting arbitrary precision numbers. It would be difficult 
to represent and manipulate these structures from fortran 
using the mPfr interface. If, however, you’re willing to  

restrict precision to exactly that of the underlying platform’s 
C data types for double or long double floating point, it’s 
easier to write C wrappers for various mPfr mathematical 
functions and call these externally from fortran code (for 
example, see www.loria.fr/~zimmerma/mpfr/fortran.html).

gnU’s fortran implementation uses mPfr to constant-
fold mathematical functions as well. So, if an expression is 
a compile-time constant formula, the gnU fortran com-
piler will replace it with a correctly computed and correctly 
rounded result, just like the gnU C-family of languages (as 
we describe in the main text). Constant-folded expressions 
are of course limited to the precision of the predefined 
fortran data types.

CISE-12-3-SciPro.indd   64 4/6/10   4:42:55 PM



may/June 2010 65

Consider, for example, the follow-
ing program:

#include <stdio.h>

#include <math.h>

int main (void)

{

double x = 2.522464e-1;

printf ( 

"sin(x) = %.16e\n", 

sin (x));

return 0;

}

With GCC 4.3.2, if we compile 
this program without optimizing 
(that is, using −O0), we get as result 
2.4957989804940914e−01. With 
optimization (that is, using −O1), 
we get 2.4957989804940911e−01. 
Why this discrepancy? With −O0, 
the expression sin(x) is evaluated 
by the mathematical library (here the 
GNU C library, also called GNU 
libc or glibc). With −O1, GCC rec-
ognizes that the expression sin(x) 
is a constant, with rounding mode 
to nearest; it therefore calls MPFR 
to evaluate it and directly replaces 
sin(x) with its correctly rounded 
value. (When compiling with −O1, 
we can even omit linking with the 
mathematical library—that is, gcc 
−O1 test.c—which proves that the 
mathematical library isn’t used at all. 
On the contrary, gcc −O0 test.c 
yields a compiler error, and gcc −O0 
test.c −lm works, showing that 
the mathematical library is needed 
here. To disable constant folding 
and other optimizations on intrinsic 
built-in functions, we can use gcc 
-fno-builtin, or more specifically, 
gcc -fno-builtin-sin, to target 
the sin function by itself.) The cor-
rect value is the one obtained with 
−O1. Note, however, that if the GNU 
C library doesn’t round correctly  

on that example, most values are 
correctly rounded by the GNU C 
library (on computers without ex-
tended precision), as recommended 
by IEEE 754-2008. In the future, 
we can hope for correct rounding for 
every input and every function. 

Note also that on x86 processors, the 
GNU C library uses the fsin imple-
mentation from the x87 coprocessor, 
which for x = 0.2522464 returns the 
correctly rounded result. However, 
this is just by chance because among 
the 107 double-precision numbers in-
cluding 0.25 and above, fsin gives an 
incorrect rounding for 2,452 of them. 

As we’ve shown here, using double 
precision variables with a signifi-

cand of 53 bits can lead to much less than 
53 bits of accuracy in the final results. 
Among the possible reasons for this loss 
of accuracy are round-off errors, nu-
merical cancellations, errors in binary- 
decimal conversions, bad numerical 
quality of mathematical functions, 
and so on. Using arbitrary precision— 
such as with the GNU MPFR library— 
helps to increase the final accuracy. 
More important, as our constant fold-
ing within the GCC example dem-
onstrates, the correct rounding of 
mathematical functions in MPFR  
helps increase the reproducibility of 
floating-point computations among 
different processors with different 
compilers and operating systems. 

References
V. Lefèvre, “test of mathematical func-1. 

tions of the Standard C Library,” 2009, 

www.vinc17.org/research/testlibm. 

L. fousse et al., “mPfr: A multiple-2. 

Precision Binary floating-Point Library 

With Correct rounding,” ACM Trans. 

Mathematical Software, vol. 33, no. 2, 

2007, article 13.

Kaveh R. Ghazi is a software engineer and 

a free Software contributor. He is also a 

member of the gnU Compiler Collection 

Steering Committee and integrated gCC 

with the mPfr library to provide the con-

stant folding functionality described here. 

He has a BS in computer science from rut-

gers University. Contact him at ghazi@caip.

rutgers.edu.

Vincent Lefèvre is an InrIA researcher at 

the LIP (Laboratoire de l’Informatique du 

Parallélisme), École normale Supérieure de 

Lyon, france. His research interests include 

computer arithmetic. Lefèvre received a PhD 

in computer science from the École normale 

Supérieure de Lyon in 2000. Contact him at 

vincent@vinc17.net.

Philippe Théveny is a software engineer 

in the InrIA team ArEnAIrE at Laboratoire 

de l’Informatique du Parallélisme in Lyon, 

france, and a contributor to the mPfr, 

mPC, and mPfI libraries. théveny has bach-

elor degrees in mathematics and computer 

science from Université de montpellier, 

france. Contact him at philippe.theveny@

ens-lyon.fr.

Paul Zimmermann is research director at 

InrIA nancy–grand Est, france. His research 

interests include computational number 

theory and arbitrary precision arithmetic. 

He wrote, with richard Brent, the textbook 

Modern Computer Arithmetic (Cambridge 

University Press, to appear). Zimmermann 

has a PhD in computer science from École 

Polytechnique in Palaiseau, france. He is a 

member of the program committee of the 

Symposium on Computer Arithmetic (ArItH).  

Contact him at Paul.Zimmermann@ 

inria.fr.

Selected articles and columns from 
IEEE Computer Society publica-

tions are also available for free at http://
ComputingNow.computer.org.

CISE-12-3-SciPro.indd   65 4/6/10   4:42:56 PM


