
software or system requirements except the need for a rea-
sonably up-to-date Web browser. The tricky integration,
installation, and configuration tasks are under the control
of an expert on the server side. These advantages apply to
both the general public and small research teams.

Typical Web applications have browser-based user inter-
faces for one or more user roles and might keep some in-
formation in persistent storage, such as a relational database.
Since the early days of common gateway interface (CGI)
scripting, technologies for developing Web applications
have evolved by leaps and bounds to address growing ex-
pectations with respect to reliability, maintainability, exten-
sibility, performance, scalability, and other goals.

In this article—the first in a planned series about Web ap-
plication development—we take an exploratory hike through
the architectural layers of a Web application built with state-
of-the-art, widely used technologies. We focus on the upper
layers that provide the application’s user interface (we’ll get
into the lower tiers next time). By no means intended as a
complete treatise on Web application development, this arti-
cle is an overview meant to spark your interest and provide a
starting point for further exploration.

Our running example—linear regression over a persistent
set of points, implemented on the Java 2 Enterprise Edition
(J2EE) platform—is simple enough to let us focus on the ar-
chitecture, but rich enough to motivate a careful architec-
tural discipline.

Architectural Goals and Overview
The typical Web application intended for production use
has several specific goals:

• consistent visual styles, layout, and navigation through-

out the application, each specified in a single place;
• support for internationalization;
• declarative validation of user input, specified in a single

place;
• declarative component assembly, allowing the application

to be reconfigured without modifying any code; and
• support for an object-oriented data model declaratively

mapped to a relational database or other suitable persis-
tent-storage technology.

In the old days, developers implemented the desired func-
tionality as single or multiple CGI scripts without really
worrying about these goals: the code responsible for such
concerns was mixed together without much structural sep-
aration. Consequently, making any changes—for example,
to the layout or the user-interface language—was extremely
tedious and error-prone.

Today, professional Web developers stick to the same ar-
chitectural disciplines and supporting technologies used by
developers of other types of software. Various enterprise ap-
plication development platforms have arisen, such as J2EE,
.NET, and Zope; each has its own distinct characteristics, but
all support similar architectural disciplines and blueprints.

The architectural blueprint shown in Figure 1 is typical:
it has three major tiers (user interface, business functional-
ity, and persistence) and multiple minor layers within each
tier to support the specific Web application goals listed ear-
lier. Underlying this blueprint is a model-view-controller ar-
chitecture, which sets the tone for separating three key
concerns: business functionality (the model), exchanging in-
formation with the user (the view), and dynamic behavior
(the controller). For each tier, we can list the specific J2EE-
related technology in our example to achieve the desired ef-
fect, without implying that any choice is superior to the
alternatives. We use the term post-EJB (Enterprise Java
Beans) for technologies that have recently emerged as more
effective alternatives to J2EE-standard EJBs.

Core Functionality
Let’s take a look at the application’s core functionality. It
must be capable of maintaining a set of points (including

80 Copublished by the IEEE CS and the AIP 1521-9615/05/$20.00 © 2005 IEEE COMPUTING IN SCIENCE & ENGINEERING

A HIKE THROUGH POST-EJB J2EE
WEB APPLICATION ARCHITECTURE
By Konstantin Läufer

S INCE THE MID-NINETIES, SERVER-BASED

WEB APPLICATIONS HAVE EMERGED AS A

CONVENIENT WAY TO PROVIDE FUNCTIONALITY

TO A USER AUDIENCE WITHOUT ANY SPECIFIC

Editors: Paul F. Dubois, paul@pfdubois.com

George K. Thiruvathukal, gkt@cs.luc.edu

Konstantin Läufer, klaufer@luc.edu

PROGRAMMINGS C I E N T I F I C P R O G R A M M I N G

SEPTEMBER/OCTOBER 2005 81

adding, editing, and deleting them) and performing linear
regression over the current set of points.

A good way to model this kind of basic “business” or do-
main functionality is in the form of a service interface with
one or more service implementations. Figure 2 shows a ser-
vice interface with methods that correspond to the expected
capabilities, as well as some basic abstractions from our prob-
lem domain. The interface RegressionResult is an ex-
ample of a transfer object, which aggregates multiple pieces of
a result as a single object.

Assuming we have at least one implementation of our ser-
vice interface—for example, a mock implementation for
testing—our job is to expose the service’s capabilities to the
user. In other words, we’ve started in the middle of our over-
all architecture, so we need to build the user interface up-
ward in successive layers.

The first step is to work on the dialog layer, which deter-
mines how the user will interact with the application. From
there, we can focus on the presentation layer, international-
ization, and consistent navigation, layout, and visual styles.

Dynamic Behavior
The dynamic model, shown as a UML state-machine diagram
in Figure 3, helps us understand how the user interacts with
the core functionality in an abstract fashion, without decid-
ing (yet) what these interactions will look, sound, or feel like.

User interaction occurs only in one of the four view states
(represented by rounded rectangles); because these states share
three outgoing transitions, they’re bundled in a composite state.
Hollow circles represent choice states, which serve to branch on
conditions, and solid circles represent join states, which allow
multiple incoming transitions to continue along single paths.

Transitions are labeled trigger [guard]/effect. If the trigger—
events such as a user’s incoming HTTP request—is absent,
the transition occurs automatically. If a guard is present, the
transition occurs only if the guard is currently true. The ef-
fect is a piece of code executed as the transition occurs.

A particular scenario, such as the steps in Figure 4, shows
a specific path through a dynamic model. In practice, it works
well to start with a few scenarios, perhaps in the form of sta-
tic (X)HTML pages, before trying to pin down the dynamic
model.

Web Application Frameworks
We still need to choose a suitable technology for the user in-
terface tier of our Web application. The continual prolifer-
ation of Web application frameworks makes this choice
increasingly difficult.

View

User
interface

tier

Middle
tier

Persistence
tier

Visual styles
Cascading Style Sheets

Layout
SiteMesh

Navigation
SiteMesh

i18n
Resource bundles

Presentation
Java Server Pages/Java Standard Tag Library

Controller

Validation
Struts declarative validation

Dynamic behavior
Struts servlet and actions

Lightweight container
Spring framework

Application model
POJOs providing business services

Data model
POJOs with Hibernate O/R mapping

Relational database
JDBC database

Figure 1. Architectural blueprint. The post-Enterprise Java
Beans (EJB) Java 2 Enterprise Edition (J2EE) Web application
architecture, with its typical tiers and layers, is a good starting
point for addressing our architectural goals.

<<interface>>

+getPoints():Collection
+getSlope():double
+getYintercept()double

RegressionResult
<<interface>>

Business
classes

Classes mapped to
relational tables by ORM

* *

+addPoints(x:double,y:double,
 color:String):void
+getPoint(id:int):Point
+editPoint(id:int,x:double,
 y:double,color:String):void
+removePoint(id:int):void
+getResult():RegressionResult

RegressionSerice

<<interface>>

+getid():int
+getX():double
+getY():double
+getColor():String

Point

DefaultPoint Color

Figure 2. Service interface. The application and data models’
class diagram shows the interfaces and classes that
correspond to our Web application’s core capabilities.

82 COMPUTING IN SCIENCE & ENGINEERING

In our example, we’ll settle on the widely used, well-docu-
mented Jakarta Struts framework (http://struts.apache.
org/), which supports a model-view-controller architecture.
The controller is a configurable servlet, the model is any set of
suitable Java classes, and the views are any suitable document-
centric components, such as Java Server Pages (JSPs), that ul-
timately produce (X)HTML content a Web browser can
display.

All incoming HTTP Web requests go straight to the con-
troller, which assembles incoming Web form data into form
beans and passes them to an action (a small application-specific
controller plug-in). The action typically examines the in-
coming form bean, interacts with the model, and populates
the form bean with information to send back to the user; the
controller then forwards the request to another action or
view for final presentation to the user. When mapping state-
machine terminology to Struts components, “triggers” map
to incoming requests, “effects” map to actions, “trigger ar-
guments” map to form beans, and “view states” map to views.
This correspondence isn’t exact because Web applications’
concurrency semantics differ from state-machine diagrams,
but the structure is close enough to be quite helpful.

Controller Configuration
The Struts servlet configuration file, usually called small
struts-config.xml, has several sections. Most importantly,
the action entries correspond closely to the state-machine dia-
gram and represent all transitions except those coming out of
view states, which are implemented as links or form actions in
the actual views. For example, the following entries represent
the transitions involved in the scenario shown in Figure 4, which
are numbered in Figure 3 in the order they occur in the scenario:

<action path=”/add” <- trigger

type=”points.web.NewAction” <- effect

name=”pointForm” <- argument

scope=”request”

validate=”false”>

<forward name=”success”

path=”/WEB-INF/jsp/add.jspx”/> <- target

</action>

<action path=”/addSubmit”

type=”points.web.AddAction”

name=”pointForm”

validate=”true”

input=”/add.do”

scope=”request”>

<forward name=”success”

path=”/list.do”/>

</action>

<action path=”/list”

type=”points.web.ListAction”

name=”listForm”

scope=”request”>

<forward name=”success”

path=”/WEB-INF/jsp/list.jspx”/>

</action>

The following action from the middle of our scenario
processes the incoming form data and passes it to the busi-
ness service method it invokes:

public class AddAction ... {

S C I E N T I F I C P R O G R A M M I N G

index.jspx

editSubmit.do edit.do delete.do addSubmit.do

navigation.jspx

edit.jspx list.jspx add.jspx

initial edit
init.do

delete
8 2, 5 1

7

3, 6

[invalid]

init list addSubmit

editSubmit

[valid]/EditAction

add
/InitAction [valid]/AddAction [invalid]

/FindAction

/DeleteAction /ListAction /NewAction

list.do add.do

Figure 3. Dynamic behavior model. Hollow circles represent choice states, and solid circles represent join states. The rounded
rectangles are the four view states.

SEPTEMBER/OCTOBER 2005 83

public ActionForward execute(

ActionMapping mapping,

ActionForm pointForm,

HttpServletRequest request,

HttpServletResponse response) ... { ...

// obtain arguments from form bean

double x = Double.parseDouble(BeanUtils

.getProperty(pointForm, PROPERTY_X));

double y = Double.parseDouble(BeanUtils

.getProperty(pointForm, PROPERTY_Y));

String color = BeanUtils

.getProperty(pointForm, PROPERTY_COLOR);

// interact with model

Util.getRegressionService(this)

.addPoint(x, y, color);

// provide informative message

request.setAttribute(

ATTRIBUTE MESSAGE KEY, “add.message”);

// trigger state transition

return

mapping.findForward(FORWARD_SUCCESS);

Form beans are defined either programmatically as Java
classes or declaratively in the Struts configuration file (the
latter is much more convenient and usually the better
choice). Note that the first four properties are for informa-
tion coming from the user, whereas the last one is for send-
ing a selection list of valid colors to the user:

<form-bean name=”pointForm”

type=”org.apache.struts.validator.

DynaValidatorForm”>

<form-property type=”int”

name=”id” initial=”-1”/>

<form-property type=”double”

name=”x” initial=”0”/>

<form-property type=”double”

name=”y” initial=”0”/>

<form-property type=”java.lang.String”

name=”color”/>

<form-property type=”java.util.ArrayList”

name=”colors”/>

</form-bean>

Although form beans are considered controller compo-
nents, they’re used to ship information back and forth be-
tween the views and the controller. We’ll see in the next
section how views refer to form beans.

Exchanging Information with the User
At this point, we’re still missing the view components, which
define how our application exchanges information with the
user. We must choose a suitable visual presentation mecha-
nism for our Web application (although, in principle, the ex-
change could also be aural, tactile, and so on). Struts will
work with several view components, including Velocity (a
Java-based template engine) and XML/XSTL, but it pro-
vides particularly good support for JSPs in the form of spe-

Figure 4. Screenshot sequence. Using CiSE’s Web page, we run
through a typical scenario of a user’s interaction with the
application: attempting to add an (initially invalid) point and
displaying the results.

84 COMPUTING IN SCIENCE & ENGINEERING

S C I E N T I F I C P R O G R A M M I N G

cialized tag libraries that coexist with the Java Standard Tag
Library (JSTL).

Let’s focus on a single set of concerns: what we have to
present to the user and receive back. We’re not worried
(yet) about navigation, layout, or visual styles, which we’ll
get into later in a systematic way. At this stage, our view
components all look very plain, as you can see in Figure 5
(Figure 6 shows this view’s JSP source). Note how submis-
sion of the embedded form generates a request to a resource
called addSubmit, hence the transition labeled “3, 6” in
Figure 4.

By design, these plain views don’t provide access to other
functionality. The cool thing is that we can achieve the look
from Figure 3 without having to touch these views again!

Internationalization
You probably noticed that the view source in Figure 6 in-

cludes absolutely no literal text at all. We facilitate interna-
tionalization (i18n, the process of adapting software for
world-wide audiences) by using resource bundles, which
contain literal, possibly parameterized text that view com-
ponents can look up with a key. The resources used in the
add point view are defined as

global.title=Points:

global.heading=Points:

...

add.title=Add

add.heading=Add

add.submit=Add Point

...

pointForm.prompt.x=X:

pointForm.prompt.y=Y:

pointForm.prompt.color=Color:

Chéz Thiruvathukal

Thunder and Lightning Using S5
At a recent Chicago Python User Group meeting (ChiPy), I
noticed several folks using an innovative Web-based ap-
proach for so-called lightning presentations, wherein the
speaker talks for five to 10 minutes
about a technical topic in a nutshell.
I’m under the distinct impression that a
lightning talk, aside from being quick,
is supposed to leave the listener in a
“wow!” state at the end, wondering
how such a great technical presenta-
tion can be given in 10 minutes or less.

S5 (www.meyerweb.com/eric/
tools/s5/) is a standards-based presen-
tation framework designed to work
entirely within the comfort and safety
of a Web browser. S5 itself is based on
Opera Show, which was designed to
work with the Opera Web browser
(www.opera.com). Because many of
us have fled to Mozilla Firefox in
droves, Opera Show was a promising
technology that went largely unno-
ticed in the browser world. The S5 au-
thors started with Opera Show and
extended it to include XHTML (the XML-enabled HTML)
and Cascading Style Sheets (CSS), meaning that you can
now customize the slide background, paragraph styles, and
overall navigation using ordinary HTML and CSS markups.

Creating an S5 presentation is a straightforward process.
You simply use a text editor or HTML editor (Mozilla Com-

poser or Dreamweaver both work) to create your presenta-
tion. Then you link to the CSS for S5 and reference the CSS
slide class on each section of your document intended to be
a slide. S5 takes care of the rest, allowing you to switch be-
tween text and slideshow modes with straightforward
JavaScript. (You need not know one iota about JavaScript to
use S5 effectively.)

I think S5 and approaches based
on it are likely to become com-
pelling choices, especially for scien-
tific, mathematical, and technical
presentations. In my initial experi-
ments, S5 worked great for text and
code examples. It should also work
with Math Markup Language
(MathML) for rendering equations,
which is claimed to be part of the
next Mozilla Firefox release. To me,
the best part is being ale to make ef-
fective presentations—minus the
bloat—that work on all platforms in
a compelling way. It seems like a
clear win for everyone!

Soapbox: Open Source
Not Supported?
I attended a meeting with some fac-
ulty colleagues recently, in which I

overheard something interesting: “Free and open-source
software is not supported.” My first thought was to uninstall
Linux from my computer. It’s not supported, so I can’t possi-
bly rely on it for serious work. Who you gonna call? Linux-
busters?

Needless to say, there continues to be a perception that

SEPTEMBER/OCTOBER 2005 85

To internationalize our application, we can simply create
additional resource bundles with the same keys but transla-
tions of the original values to the target languages.

Validation of User Responses
Validation is a concern that arises in conjunction with user
response but that is actually handled within the controller.
As with several other things, we have a choice between pro-
grammatic and declarative along one dimension, and between
server-side and client-side along another. By default, valida-
tion of user responses occurs on the server, but you can do
it in the browser, using JavaScript, by inserting the element
<html:javascript/> in your JSP view source. If you
choose declarative validation in Struts, you can draw from
several predefined validation “recipes.” For example, we
would implement the range check in our scenario as

<field property=”x”

depends=”required,double,doubleRange”>

Figure 5. Screenshot. A bare-bones view component for
adding a point as seen in the browser.

commercial support doesn’t exist for Linux and other free or
open-source software (FOSS) solutions. In recent years, how-
ever, a sea change has apparently gone unnoticed. Unlike
the early FOSS years, in which there truly was limited com-
mercial support, we simply can’t say the same thing today.
Companies such as IBM have stepped in with consulting ser-
vices to provide support options for companies and organi-
zations with limited technical expertise. Smaller players have
a presence as well—LinuxCare, for example. Moreover, an
entire community is willing to help, especially when you ask
the right questions. I’ve found that’s the quickest and least
expensive option, even if it means I have to RTFM (Read the
“Bloody” Manual, according to The Hackers Dictionary).

Later in that same meeting, I also learned that Linux’s suc-
cess (or lack thereof) is intrinsically connected to its presence
on the desktop. Although I’m now using Linux almost exclu-
sively and find it to be great, the user experience clearly isn’t
for everyone. In my view, the desktop isn’t the central battle-
ground. I don’t see Windows going away anytime soon, nor
do I think this would be a necessarily good thing.

As you already know from reading CiSE, Linux has a huge
impact in the supercomputing cluster and center world,
but this isn’t an important arena for “regular” consumers
(which is where the real money is). Nevertheless, the tide is
slowly turning. Motorola announced recently that almost
all of its mid-range phones (the ones most of us actually
want) are going to run Linux. Most people who would not
otherwise switch to Linux have to do it now to accomplish
something besides desktop computing. Given the choice
between “successful and relatively unknown” or “known
not to be successful,” I’ll take the former.

Books as Living Works
Technical books, especially those covering open-source

technologies, become obsolete quickly. I wish I weren’t
speaking from experience, but I’ve been bitten by this very
phenomenon. The content in the two books I coauthored
remains relevant, but it’s no longer consistent with the soft-
ware and frameworks covered within. I find myself wishing
I could update the book—mostly for my own ego but also
to help my readers, many of whom use it to try to under-
stand the code available on my Web pages.

The Plone Live book project by Michel Pelletier and
Munwar Shariff demonstrates a new approach that effec-
tively combines print and Web media. (We covered the
essence of Plone and content management systems in an
earlier column, “Plone and Content Management,” Com-
puting in Science & Engineering, vol. 6, no. 4, pp. 88–95.)
Pelletier and Shariff make regular content additions and in-
corporate corrections based on “bug reports,” which iden-
tify something bad that happened to a good sentence or a
code-related issue. At any given time, it appears that a rea-
sonably current version of the book can be purchased in
printed form—what a great idea!

Years ago, when I was working in the research center at a
major Chicago-based printing company at the advent of the
World Wide Web, the interest in on-demand printing was
significant. It strikes me that the economics for publishers
and authors would work out a lot better if you could pur-
chase a book that is relevant, timely, and accurate, at any
given time. Publishers could produce books in shorter-run
formats, with subsequent runs serving as snapshots of the
latest live book. Readers are more likely to purchase a printed
book or, heck, even a subscription to a magazine, with the
understanding that the work will be kept up to date with
some frequency. Although the margins would certainly be
lower in this new publishing world, I think this could be a
win-win-win for authors, publishers, and readers alike.

86 COMPUTING IN SCIENCE & ENGINEERING

<arg0 key=”pointForm.fieldName.x”/>

<arg1 name=”doubleRange” key=”${var:min}”

resource=”false”/>

<arg2 name=”doubleRange” key=”${var:max}”

resource=”false”/>

<var>

<var-name>min</var-name>

<var-value>-10</var-value>

</var>

<var>

<var-name>max</var-name>

<var-value>+10</var-value>

</var>

</field>

This application-specific validation descriptor ensures that
the coordinates of a point are doubles that fall within the
range –10 … +10.

Finishing up the Interface
To finish up our user interface, we need to add consistent nav-
igation, layout, and visual styles. A Web page layout and dec-

oration framework such as SiteMesh (www.opensymphony.
com/sitemesh/) can help. SiteMesh lets you specify decorators
declaratively without having to touch the original views at all.
It just needs a servlet filter entry in the Web application de-
ployment descriptor (web.xml), which enables it to apply
SiteMesh decorators in response to certain sets of requests.

Consistent Navigation
For consistent navigation, we can simply add the following
navigation snippet to our overall layout decorator (shown in
the next subsection):

<table>

<tr>

<th>

<fmt:message key=”navigation.

heading”/>

</th>

</tr>

<tr>

<td>

<html:link action=”/list”>

S C I E N T I F I C P R O G R A M M I N G

<jsp:root

xmlns:jsp=”http://java.sun.com/JSP/Page”

.../>

<jsp:directive.page

contentType=”text/html”/>

<html:xhtml/>

<html:html locale=”true”>

<head>

<title><fmt:message key=”add.title”/>

</title>

<html:base/>

</head>

<body>

<h1>

<fmt:message key=”global.heading”/>

<jsp:text> </jsp:text>

<fmt:message key=”add.heading”/>

</h1>

<html:errors/>

<html:form action=”/addSubmit”>

<table class=”addedit”>

<tr>

<td>

<fmt:message

key=”pointForm.prompt.x”/>

</td>

<td><html:text property=”x”/></td>

</tr>

<!— similarly for property y —>

<tr>

<td>

<fmt:message

key=”pointForm.prompt.color”/>

</td>

<td>

<html:select property=”color”>

<html:options property=”colors”/>

</html:select>

</td>

</tr>

<tr>

<td>

<html:submit>

<fmt:message key=”add.submit”/>

</html:submit>

</td>

</tr>

</table>

</html:form>

</body>

</html:html>

</jsp:root>

Figure 6. Code from Figure 5. The Java Server Page source of a bare-bones view component defines the (X)HTML form for
adding a point.

SEPTEMBER/OCTOBER 2005 87

<fmt:message key=”navigation.link.

list”/>

</html:link>

</td>

</tr>

<!— ...other navigation links... —>

</table>

Now we can easily make global changes to the navigation by
modifying this section of the layout decorator.

Consistent Layout
The layout decorator puts our original views in the middle of
a table that adds a logo and lines up the various view panels.
Once again, we aren’t touching the original plain JSP/JSTL
views at all. Figure 7 shows the layout decorator’s source.

Consistent Visual Styles
To finish up the user interface, we still need to add some vi-

sual styles, but we want them to be consistent across our ap-
plication. This is where Cascading Style Sheets (CSS) really
help. This fragment of our sample CSS applies style attrib-
utes to certain (X)HTML elements:

BODY {

background: orange;

font-family: sans-serif;

color: black;

}

H1, H2, H3, H4, H5, H6 { color: maroon;

}

The remaining challenge is to associate the style sheet
with our views without touching them. We achieve this by
adding a top-most SiteMesh decorator that simply adds a
link to the CSS to every view:

<html>

<jsp:root

xmlns:jsp=”http://java.sun.com/JSP/Page”

.../>

<jsp:directive.page

contentType=”text/html”/>

<html>

<head>

<title><decorator:title/></title>

<decorator:head/>

</head>

<body>

<table>

<tr>

<td class=”left”>

<table>

<tr>

<td class=”logo”>

<c:url value=”/images/logo.gif”

var=”logo”/>

</td>

</tr>

<tr>

<td class=”navmenu”>

<!— navigation gets inserted here —>

<page:applyDecorator name=”panel”

page=”/WEB-

INF/decorators/navmenu.jspx”/>

</td>

</tr>

</table>

</td>

<td class=”right”>

<table>

<tr>

<td class=”header”>

<fmt:message key=”header.text”/>

</td>

</tr>

<tr>

<td class=”content”>

<!— original view gets inserted here —>

<decorator:body/>

</td>

</tr>

<tr>

<td class=”footer”>

<fmt:message key=”footer.text”/>

</td>

</tr>

</table>

</td>

</tr>

</table>

</body>

</html>

</jsp:root>

Figure 7. Layout decorator. The source of this decorator contains the (X)HTML elements for the overall layout and navigation
placed on top of the plain views.

88 COMPUTING IN SCIENCE & ENGINEERING

<head>

<title>

<fmt:message key=”global.title”/>

<jsp:text> </jsp:text>

<decorator:title/>

</title>

<decorator:head/>

<link rel=”stylesheet”

href=”${pageContext

.request.contextPath}/cise.css”/>

</head>

<body>

<page:applyDecorator name=”layout”>

<decorator:body/>

</page:applyDecorator>

</body>

</html>

Figure 8 shows the final result, with the visible table struc-
ture resulting from the layout decorator.

W e started in the middle of our architecture and
made it all the way to the top by using a combina-

tion of technologies to separate and confine our various is-
sues into small, manageable, clean architectural layers. Such
a separation of concerns facilitates modular development
and helps produce more maintainable software.

Next time, we’ll head for the bottom, looking at how
object-relational mappings and lightweight containers can
ease the burden of storing our data persistently.

Acknowledgments
I thank Igor Stoyanov, now at ThoughtWorks, for out-
standing contributions as a student, challenging discussions,
and keeping me informed on emerging technologies.

Konstantin Läufer is a professor of computer science and an associate

dean of the graduate school at Loyola University Chicago. His research

interests include programming languages, software architecture and

frameworks, and educational technology. Läufer has a PhD in computer

science from the Courant Institute at New York University. Contact him

through www.cs.luc.edu/users/laufer.

S C I E N T I F I C P R O G R A M M I N G

Further Reading

A ll developers have personal favorite development
environments, ranging from vi or Emacs to Eclipse

or IntellijIDEA. I’ve had good experiences with a combina-
tion of tools:

• Eclipse (www.eclipse.org)
• Sysdeo Tomcat plug-in (www.sysdeo.com/eclipse/

tomcatPlugin.html)
• XMLBuddy (www.xmlbuddy.com)
• CSS Editor plug-in (http://csseditor.sourceforge.net)
• Spring IDE (www.springide.org/project/)
• Tomcat (http://jakarta.apache.org/tomcat/)
• Concurrent Versions System (CVS; www.cvshome.org)

Interested in some of the technologies described in this
article? Check out these links:

• Struts (http://struts.apache.org)
• Java Server Pages (http://java.sun.com/products/jsp/)

• Java Standard Tag Library (http://java.sun.com/products/
jsp/jstl/)

• SiteMesh (www.opensymphony.com/sitemesh)
• Cascading Style Sheets (www.w3.org/Style/CSS/)
• Spring (www.springframework.org)
• Hibernate (www.hibernate.org)

I’ve also found the following references to be extremely
useful:

• R. Johnson and J. Höller, Expert One-on-One J2EE Develop-
ment without EJB, Wrox, 2004

• Core J2EE Patterns (http://java.sun.com/blueprints/
corej2eepatterns)

• AppFuse (http://appfuse.dev.java.net), a more industrial-
strength Web application blueprint

Finally, for your enjoyment, you can use anonymous CVS
to check out the complete code of the linear regression
example (module LinearRegression) from :pserver:
anonymous@cvs.cs.luc.edu:/root/laufer/cise.

Figure 8. Visible table structure of a decorated view. The
decorators add a logo and navigation on the left, and a
header and footer on the right (in the middle of the right
table column).

