
organization). Sometimes, we use
“grid” to describe just the technology
used to build these electronic commu-
nities or organizations. We think of grid
technology as the cyberinfrastructure
(the US National Science Foundation)
or e-infrastructure (European Union)
that supports e-science, e-business, or,
in fact, e-more-or-less-any-enterprise.

In this article, I describe how to build
systems from service-oriented grids
that let you build new grids by com-
posing and adapting existing collections
(libraries) of grids. I also suggest some
best practices for deciding how to ar-
chitect services and package systems.

There is no firm consensus on the best
grid approach but most people would
use Web services. There is a vigorous
community debate on the “right” way to
do this and whether Web services need
enhancements to cope with a grid’s
large-scale, secure, managed distributed
services. In particular, there is much dis-
cussion on appropriate representation of
service state and its standardization. Ser-
vice state refers to the way the service
records its current definition; for exam-
ple, in an online shopping service, what
is in a shopping cart and whose cart it is.

The Web Service Resource Frame-
work (WSRF; www.globus.org/wsrf)
and the Web Service Grid Application

Framework (WS-GAF; www.neresc.
ac.uk/ws-gaf) are two important activ-
ities whose development and interac-
tion will have important implications
for Web services’ detailed structure
and the way state is specified. How-
ever, I’m talking here about aspects in-
dependent of these issues—namely, the
right size for a service and how to
package services and grids together.

Services
Often we consider grids as providing
seamless access to a set of resources. I
agree but also propose that the result-
ing grid architecture can consist of
many small grids. This reflects the
many different overlapping community
types and resource collections that nat-
urally form individual grids. Each indi-
vidual grid can have a seamless elegant
environment—this even could be a cri-
terion for defining basic grids—but a
composite grid would amalgamate
multiple subgrids and provide a resul-
tant heterogeneous environment. In
other words, we don’t want just a few
grids but a large number composed, di-
vided, and overlapped to support dy-
namic communities and requirements.

The service-oriented architecture
(SOA) that grids use today differs sub-
tly from earlier distributed systems

built with Component Object Model
(COM), Corba, and Java, and includes
enhancements, especially in interoper-
ability and scalability. Key Web-
services features in today’s grids include

• Architectures that choose, wherever
possible, message-based—not method-
or Remote Procedure Call (RPC)-
based—capabilities linkage. This pro-
duces lightweight, loosely coupled
services that can be distributed and
replicated to achieve needed perfor-
mance and functionality.

• Interfaces defined with XML-based
SOAP and Web Services Description
Language (WSDL) technologies,
which support a wide set of imple-
mentations that trade off perfor-
mance, ubiquity, and functionality.

Providing an accurate definition of
loose message-based coupling is not
easy. A traditional distributed object
model produces components that typi-
cally exchange messages with an RPC
or equivalent Java remote method in-
vocation (RMI). These coupled mes-
sages correspond to the distributed ver-
sion of a traditional method call and its
return. Loose coupling for services cor-
responds to a messaging strategy where
individual messages are not directly
coupled in pairs, and, if needed, re-
sponse messages are generated asyn-
chronously from the original commu-
nication. The second key services
feature—XML-based specifications of
the service interfaces and their associ-
ated messages—is important for inter-
operability but less distinctive in its ar-

84 Copublished by the IEEE CS and the AIP 1521-9615/04/$20.00 © 2004 IEEE COMPUTING IN SCIENCE & ENGINEERING

GRIDS OF GRIDS OF SIMPLE SERVICES
By Geoffrey Fox

I N PREVIOUS INSTALLMENTS, WE ADOPTED THE VIEW THAT

GRIDS REPRESENT THE SYSTEM FORMED BY THE DISTRIBUTED

COLLECTION OF ELECTRONIC CAPABILITIES MANAGED AND CO-

ORDINATED TO SUPPORT SOME SORT OF ENTERPRISE (A VIRTUAL

Editor: Geoffrey Fox, gcf@indiana.edu

WEB COMPUTINGW E B C O M P U T I N G

JULY/AUGUST 2004 85

chitectural implications; it roughly cor-
responds to a different specification
language from Corba’s Interface Defi-
nition Language (IDL) or Java’s RMI.

Choose any software problem facing
you today and imagine how it would look
in a traditional approach of a decade or
so ago. We would get a giant glob of soft-
ware in some language, such as C++ or
Fortran. The software problem would be
divided into methods or subroutines and
we would be browbeaten to build it in a
modular fashion using libraries and well-
defined interfaces. Today, we people
from the past have given up using GOTO
in Fortran and adopted better practices
for specifying control structures. As tech-
nologies developed, we added new lan-
guages, such as Java, and better software
engineering processes, which industry
adopted more broadly than academia.

As I already implied, distributed ob-
ject technology supported this para-
digm implementation across multiple
computers, with method or procedure
calls implemented as paired messages.
However, most software systems still
consisted of large globs, each of which
had multiple functionalities. You can
find many very useful and important
examples of this for Java at www.
apache.org.

You can convert that code into ser-
vices by specifying each of the inter-
faces in XML and providing a Web-
service wrapper. This activity is
important for jump-starting your ser-
vices collection, but it is an interim
step. For example, if you look at all the
different Apache projects, you will find
many related but different implemen-
tations of common subservices, such as
security and user profiles. Building a
system that combines several projects
often requires an integrated approach
to common services, which would be
relatively easy to do if each subservice
implementation were a separate grid

service with well-defined message-
based interfaces. However, with a tra-
ditional approach, a typical subservice
such as security might have an external
message-based interface but, unfortu-
nately, also many internal methods
linking the subservice to other parts of
the software glob. Thus, subservices
can’t be extracted from the glob, so
composing such traditional software
systems, even if they run smoothly and
efficiently with service interfaces, is
very hard.

Taking all this into consideration,
let’s identify a strategy for defining ser-
vices. Start by examining the different
capabilities of your systems. Services
are distributed components that have
distinct functionality—especially func-
tionality shared usefully among differ-
ent uses.

Services must achieve acceptable
performance when implemented with
message-based interfaces and distrib-
uted platforms. In an earlier install-
ment (“Making Scientific Applications
as Web Services,” vol. 6, no. 1, 2004,
pp. 93–96), we discussed the inevitable
latency differences between message-
and method-based interactions; mes-
sages could experience hundreds of
milliseconds in network latency down
to a millisecond or so for communica-
tion between nearby services.

We should build services that are as
small as possible given the performance
implications from decomposition. Ser-

vices are the package created by tradi-
tional programming models so lan-
guages apply. Rather than discussing
this aspect, however, we’ll look at a
higher level, with services as the atomic
unit whose management and packaging
into grids needs to be explored. I use
the term “simple service” in this arti-
cle’s title to refer to services con-
structed in this fashion to be as small as
possible given inevitable performance
and functionality constraints.

Packaging Services
and Resources into Grids
In this article, grids represent a pack-
aging and coupling approach that gen-
eralizes and distributes a familiar pro-
gression taken from the traditional
software hierarchy: lines of code →
methods (subroutines) → objects (pro-
grams) → packages (libraries). Figure 1
shows that we can consider grids this
way, using a service or a resource as the
basic building block. However, a given
grid is not the last word; it can be a
building block in a larger grid. Thus, I
propose building systems as grids of
grids, with single services or resources
viewed as a special case of (small) grids.

In Figure 1, I chose to separately
specify grids that correspond to re-
sources (made up of data repositories,
sensors, and CPUs) as well as those cor-
responding to functionalities (software
services). This can be confusing be-
cause every grid resource is represented

Methods Services

Clusters

Massively
parallel processors

Functional grids

Compute
resource grids

Federated
databases

CPUs

Databases

Sensor

Data
resource grids

Sensor nets

Overlay
and compose
grids of grids

Figure 1. Composing functionality and resources in a grid of grids. This figure
illustrates several different hierarchical packaging including those of traditional
software engineering, CPU clusters, federated databases, and sensor nets. The grid-
of-grids concept generalizes these ideas.

86 COMPUTING IN SCIENCE & ENGINEERING

W E B C O M P U T I N G

by a service. Thus, we could simplify all
this and just talk about services.

This approach provides some unifi-
cation of well-known concepts; for ex-
ample, an individual grid service could
correspond to a single database using
the Open Grid Service Architec-

ture–Data Access and Integration
(OGSA–DAI) technology described in
an earlier installment (“Integrating
Computing and Information on Grids,”
vol. 5, no. 4, 2003, pp. 94–96). A feder-
ated database then would correspond to
a database grid. As another example, an

individual CPU could have a grid ser-
vice interface; a cluster grid would cor-
respond to a cluster of CPUs aggregat-
ing the individual CPU simple services.

Let’s look at another example, this
time from education: science grids in
schools and universities. As Figure 2
shows, education involves many sepa-
rate communities and capabilities that
form independent electronic (virtual)
organizations supported by their own
grids. We create an education grid us-
ing a grid of grids by linking and adapt-
ing services in the component grids.

Traditional specialized educational
services are organized as a learning-
management grid. A digital library grid
could organize and deliver knowledge;
a campus grid offers digital registration
services; teacher–educator grids link
preservice (school of education) and
inservice teaching grids complemented
with museums via an informal educa-
tor grid. The learners, parents, and
other education stakeholders all natu-
rally form their own grids.

Finally, science education could be
addressed in this framework by linking
to research science grids such as that of
ServoGrid (Figure 3). These compo-
nent grids are interfaced and composed
with transformation services to form a
science education grid of grids. The re-
search grid includes databases, field
data, sensors, filters (to preprocess data
from sensors and databases), geograph-
ical information system (GIS) services
organized as their own grid, and discov-
ery and simulation services. Figure 3
also shows the needed portals and user
interfaces to the grid of grids. In a pre-
vious installment (“Grid Computing
Environments,” vol. 5, no. 2, 2003, pp.
68–72), we described grid portal archi-
tectures involving portlets that support
construction of portals for composite
grids from user interface components
for individual grids and services.

Geographical
information

systems

Repositories
Federated databases Sensors

Streaming data Field-trip data

Data
filter

services

Research
simulations Analysis and

visualization portal

Research ServoGrid Education grid

?
Discovery
services

Customization
services

from research
to education

Education grid
computer farm

Figure 3. Geoscience research and education grids. ServoGrid is a science research grid
built by a team led by the Jet Propulsion Laboratory and aimed at solid Earth research.
Research activities are on the left and a geoscience education grid is on the right.

Campus or
enterprise

administrative
grid

Digital
library
grid

Learning
management
or LMS grid

Science grids
(bioinformatics,
Earth science...)

Publisher
grid

Student–parent and
other community

grids

Informal
education
(museum)

grid

Grids for
inservice teachers,

preservice teachers,
school of education,
and teacher educator

Education grid

Typical science grid
service such as research
database or simulation Transformed by

grid filter to a form
suitable for education

Figure 2. Science education as a grid of grids. One approach to building an
education grid that exploits relevant resources and communities that we’d expect to
be independently organized into grids.

JULY/AUGUST 2004 87

Figures 2 and 3 illustrate the key idea
of using transformations or filters to
adapt services in old component grids
to the new education grid. This ap-
proach could take research simulation
or database services and simplify them
for use in education. The resulting ed-
ucation grid would consist of three ser-
vice types: those unique to education,
such as educational metacontent (lesson
plans and objectives), online knowledge
bases, and grading and homework ser-
vices. These education-specific services
are delivered by learning-management
and digital library grids. The second
category of service in an education grid
of grids is illustrated by services like
collaboration, which are essentially the
same as those developed for other grids;
the third category includes the trans-
formed grid resources developed for re-
search but transformed to directly sup-
port teaching and learning.

Thus, we first should build the simple
services discussed earlier and then pack-
age them into atomic (building-block)
grids covering core functionalities and
services; geoscience, digital libraries,
and learning-management systems are
example atomic grids. Figure 3 shows a
geoscience grid that uses a geographical
information system (GIS) grid as a com-
ponent. After defining the basic grids,
we can build most operational grids by
linking component basic grids and cus-
tomizing them by adding services to fil-
ter or transform their services. Thus,
our end result is a grid of grids.

Figure 4 shows another grid-of-grids
example. It illustrates how we can build
grids to support a national critical in-
frastructure (CI). The US Department
of Homeland Security identified sev-
eral such infrastructures: agriculture
and food, water, health, industrial and
defense, telecommunications, energy,
transportation, banking and finance,
chemical industry and hazardous ma-

terials, and postal and shipping.
In this case, the critical atomic grids

include sensors, GIS, visualization,
computing, and collaboration. Figure
4 also shows the core grid services we
need, such as registries, databases,
metadata, security, notification, work-
flow, and messaging. These core ser-
vices and atomic grids are composed
with infrastructure-specific services to
form a particular CI grid of grids.

Figure 4 also shows how we can reuse
atomic grids in all CI grids and illustrates
important interoperability principles
with which grids are built. These CI
grids are, in turn, customized, composed,
and overlaid with other grids (such as
weather, census data, and so on) for dif-
ferent CI communities. Thus, we can
generate grids aimed at public health,
emergency response (command and con-
trol), or crisis management, infrastruc-
ture planning, education (schools), and
training (managers and first responders).
We can apply the grid-of-grids concept
recursively and dynamically.

M y approach builds grid systems
hierarchically—using traditional

software engineering to describe the

structure of individual simple services—
and aggregates them into atomic grids
that perform core functionalities. Atomic
grids are composed into higher-function
grids of grids. Using transformation ser-
vices in this integration of component
grids distinguishes this packaging ap-
proach from that common to libraries.

Although a lot of research on work-
flow technology supports the composi-
tion of services (www.extreme.
indiana.edu/groc/ggf10ww/index.html),
it seems that no one has given much
consideration to the capabilities of
modern integrated development envi-
ronments for traditional software mod-
els or to use them for the higher level
of integration necessary in grids of
grids. In fact, it is hard to support my
suggestion to make services as small as
possible given the poor support for
managing them. I expect the ideas de-
scribed here will receive increasing at-
tention in the future with the growing
importance of software engineering
and its extension to services.

Geoffrey Fox is director of the Community

Grids Lab at Indiana University. Contact him at

gcf@indiana.edu; www.communitygrids.iu.

edu/IC2.html.

Flood-critical
infrastructure grid

Gas-critical
infrastructure grid

Flood services
and filters

Gas services
and filters

Data access–storageRegistry

Security Notification Workflow Messaging

Metadata

Core grid services

Physical network

Collaboration grid

Sensor grid Geographical
information systems grid

Compute grid

Visualization gridPortals

Electricity-critical
infrastructure grid... ...

Figure 4. Critical infrastructure (CI) grids built in a composite fashion. A nation’s CIs,
such as water and electrical or natural gas power, can be organized hierarchically as
a set of component grids. The latter include collaboration, visualization, sensor, GIS
(geographical information system), and computing grids.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

