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Abstract: Assembly line balancing involves assigning a series of task elements to uniform sequential sta-

tions with certain restrictions. Decision makers often discover that a task assignment which is optimal with 

respect to a deterministic or stochastic/fuzzy model yields quite poor performance in reality. In real environ-

ments, assembly line balancing robustness is a more appropriate decision selection guide. A robust model 

based on the α worst case scenario is developed to compensate for the drawbacks of traditional robust cri-

teria. A robust genetic algorithm is used to solve the problem. Comprehensive computational experiments to 

study the effect of the solution procedure show that the model generates more flexible robust solutions. 

Careful tuning the value of α allows the decision maker to balance robustness and conservativeness of as-

sembly line task element assignments.  
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Introduction 

The assembly line balancing problem (ALBP) is the 
problem of assigning basic assembly task elements to 
different stations, pursuing specific goals in compli-
ance with given constraints. Ever since Henry Ford’s 
introduction of the assembly line, the ALBP has been 
of significant industrial importance. Due to the high 
cost of building and maintaining an assembly line, 
manufacturers often simultaneously produce one 
model with different features or several models on a 
single line. Under these circumstances, the mixed 
model assembly line balancing problem (MALBP) 
arises to smooth the production and reduce the cost.  

According to Scholl[1], the MALBP can be      

distinguished into four versions with regard to the ob-
jective function. This paper considers MALBP-F 
which involves finding a feasible balance for a given 
number of stations and a given cycle time. This situa-
tion is very common in real assembly lines where the 
cycle time is typically chosen to provide the desired 
annual output rate and the number of stations is dic-
tated or constrained by the existing physical infra-
structure (such as facilities, conveyors, and workshops 
space etc.).  

Assembly line balancing is inherently strategic. 
Planners confronted with this kind of problem often 
long for an assignment that will have a permanent, 
productive life time. While the conditions for which an 
assembly line will operate may be known or estimated 
with some degree of certainty for a very short term, the 
long-term operating conditions are subject to consid-
erable uncertainties, with task processing times exhib-
iting noticeable variations from cycle to cycle and de-
mand for each product model changing from day to 
day. As a result, more and more researchers have stated 
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the ALBP with uncertain task times with most studies 
addressing the problem with stochastic task times[2,3]; 
while others use fuzzy task times[4,5]. Boysen et al.[6] 
gave a comprehensive survey of this field.  

Ample evidence exists in the research literature that 
for decision environments with significant uncertainty, 
neither the deterministic optimization nor the stocha-
sitc/fuzzy optimization approaches accurately repre-
sent the aim of the decision maker[7]. The uncertainty 
can be structured through scenario planning where 
each scenario corresponds to the assignment of plausi-
ble values to the model parameters. Robust analysis 
looks for solution in a context where it is impossible to 
attribute probabilities or possibilities to the outcomes 
of any decision. Unlike deterministic or stochas-
tic/fuzzy approaches which are aimed at determining 
the best solution for a certain instance of values (or 
scenario), robust approaches try to find a solution or a 
set of solutions that performs well across all scenarios 
with hedges against the worst possible scenarios.  

In combinatorial optimization problems like the 
MALBP, the most widely used robust criteria rely on 
the worst case, such as min-max, min-max regret, and 
min-max relative regret. These criteria were referred to 
as absolute robust criteria, robust deviation criteria, 
and relative robust criteria by Kouvelis and Yu[7]. 
However, use of these criteria often results in conser-
vative decisions, because they are based on the antici-
pation that the worst case will happen. Further more, 
no tolerance is considered in these criteria. These two 
drawbacks of the criteria resting on the worst case 
suggest considering alternative robust criteria. Kou-
velis et al.[8] introduced a measure called p-robustness. 
Daskin et al.[9] proposed a model called the α-reliable 
min-max regret model. Kalai et al.[10] defined a 
α-leximax relation and proposed an approach called 
lexicographic α-robustness.  

Generally, existing robust models can be distin-
guished into two families. The first family looks for 
solutions which optimize the objective function for the 
worst case scenario (e.g., min-max related approaches), 
whereas the second one imposes conditions that solu-
tions must satisfy to be considered as robust (e.g., 
p-robustness, α-reliable min-max regret model, and 
lexicographic α-robustness). This paper presents a 
lexicographic-order based robust approach which is 
similar to the first family of approaches where the    

objective function to be optimized is the α worst case 
scenario rather than the worst case scenario. 

1  Robust MALBP 
1.1  Problem statement 

First outline some assumptions that apply for most 
practical mixed model assembly lines. 

(1) The line is connected by a conveyor belt which 
moves at a constant speed. Consecutive workpieces are 
equispaced on the line by launching each after a cycle 
time.  

(2) The cycle time, number of stations and models to 
be assembled within the decision horizon and their 
own precedence graphs are predetermined.  

(3) The operating time of every task and the demand 
for each model are not exactly known, and no prob-
abilities or possibilities can be attached to them. How-
ever, a set of realizable scenarios can be given for these 
uncertainties by the decision makers or domain    
experts.  

(4) Precedence graphs for all models can be accu-
mulated into a single combined precedence graph, with 
similar operations for different models having different 
operating times; zero operating time indicates that an 
operation is not required for a model.  

(5) Every task should be assigned to exactly one sta-
tion, and common tasks between models must be as-
signed to the same stations.  

The notations used in this paper are as follows: 
C, cycle time; 
K, number of stations; index: 1,2, , ;k K=  
M, number of models; index: 1,2, , ;m M=  
J, number of tasks; index: 1,2, , ;j J=  
P, combined precedence relation matrices corre-

sponding to the combined precedence graph. 1ijp =  
means task i should be finished before task j starts; 

S, number of potentially realizable input data sce-
narios over a pre-specified planning horizon; index s= 
1,2, , ;S  

,s
mjt  operating time for task j for one unit of model m 

for scenario s; 
,s

mkT   workload (i.e., station time, total task time) for 
model m on station k for scenario s; 

,s
mq  demand for model m for scenario s; 

qs, total demand for all models for scenario s; 
,s

kTM  average workload for all models on station k 
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= ∑ ) for scenario s; 

X, vector of decision variables, i.e., task assign-
ments. 1 2( , , , ),JX x x x=  xj means task j is assigned to 
the station with index xj; 

,sX ∗  optimal decision for scenario s. 
The MALBP-F has basically two objectives for 

smoothing the station workload as horizontal balancing 
(which means smoothing varying station times caused 
by different models) and vertical balancing (which 
means smoothing station times over all stations of the 
line). Emde et al.[11] presented a series of objective func-
tions for workload smoothing with numerical evalua-
tions. In this paper, according to the requirement of the 
real projects, we choose vertical balancing. One of the 
measurements for vertical balancing called workload 
variance, ( ),sWV X  for a given decision X for scenario, 
s, is straightforward and is thus employed in this study,  

2

1 1

( )
sK K

s i
s k

k i

TMWV X TM
K= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑       (1) 

Maximizing the vertical workload smoothness is 
equivalent to minimizing workload variance. This 
methodology can easily be applied to other objective 
functions.  

1.2  α worst case scenario-based robust MALBP 
model 

Since the reasoning and results are valid for workload 
variances and for regrets and relative regrets, the term 
“observation” is used here with the notation f for all 
three. For the original workload variance,  

( ) ( )s sf X WV X=               (2) 
for the workload variance regret,  

*( ) ( ) ( )s s s sf X WV X WV X= −          (3) 
and for the workload variance relative regret,  

*

*

( ) ( )( )
( )

s s s
s

s s

WV X WV Xf X
WV X

−
=          (4) 

Definition 1  The α worst case scenario is the sce-
nario for which the system performs equally or better 
than for α×100% of all scenarios.  

Here α ( 0 1α< ) is a tolerance threshold that is 
specified by the decision maker (for 1α = , the α worst 
case scenario is none other than the worst case    
scenario).  

For a given solution X, rearrange the observations in 
non-decreasing order to obtain [1] [2] [ ].Sf f f  

Then, [ 1]Sf α× +l m  is the observation for the α worst case 
scenario. Here, Sα ×l m  means the largest integer less 
than Sα × .  

With Definition 1, the α worst case scenario-based 
robust MALBP model can be formulated as follows. 

Minimize y                  (5) 

[ 1]s.t.       Sy f α× += l m             (6) 

1,  ij i jp x x∀ =              (7) 

1 , ,  ,  are integersi j i jx x K x x       (8) 
1 , ,   ,  are integersi j J i j        (9) 

The objective function (5) minimizes the objective 
value y, which is defined in constraint (6). Constraint 
set (7) ensures that the precedence relations are ful-
filled. Constraint sets (8) and (9) guarantee that every 
task is assigned to exactly one station. The criteria in 
the model (5)-(9) are called α-min-max, α-min-max 
regret, and α-min-max relative regret corresponding to 
min-max, min-max regret, and min-max relative regret 
in the traditional robust model.  

2 Robust Genetic Algorithm 

The mathematical complexity of the ALBP for a given 
scenario is NP-complete in the strong sense because 
the NP-complete bin-packing problem can be easily 
transformed to this in polynomial time[4]. The model 
(5)-(9) is even more complicated due to the considera-
tion of decision robustness.  

Many algorithms have been developed to solve the 
ALBP. One well-known method is Jackson’s algorithm, 
which enumerates possible combinations of operations 
based on their precedence relationships. Another 
method is the Branch and Bound method which cuts 
combinations having performance index values lower 
than some bound value. Other methods include integer 
programming and dynamic programming. However the 
ALBP is difficult to solve by these traditional methods 
for problems involving large numbers of tasks and sta-
tions, so these methods are mainly applied to get the 
minimum number of stations for a given cycle time. 
Heuristic algorithms have also been applied to the 
ALBP. They are very practical; however, they can not 
guarantee the optimal solution. In recent years, nu-
merous research efforts have been directed towards the 
development of intelligent algorithms to provide an 
alternative to traditional optimization techniques, such 
as neural networks, simulated annealing (SA), and     
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genetic algorithms (GA). Hashimoto et al.[12] applied 
the Hopfield neural network to the ALBP, and showed 
that moderate scale ALBP can be solved efficiently. 
McMullen and Frazier[13] developed simulated anneal-
ing algorithms to solve the MALBP. Scholl and 
Becker[14], Becker and Scholl[15], and Boysen et al.[6] 
surveyed various ALBP solution procedures. 

The GA is a stochastic search method for optimiza-
tion problems based on the mechanics of natural selec-
tion and natural genetics (i.e., survival of the fittest). 
When the objective functions to be optimized are mul-
timodal or the search spaces are particularly irregular, 
the algorithms need to be very robust to avoid getting 
stuck in a local optimal solution. The advantage of the 
GA is that it can easily obtain the global optimal solu-
tion. During the past three decades, the GA has dem-
onstrated considerable success in providing good solu-
tions to many combinational optimization problems, 
such as the travelling salesman problems, flow-shop 
and job-shop scheduling problems, and so on. The GA 
has also been applied to the MALBP[16-18]. The major 
difference between all these studies and the present 
work is the consideration of decision robustness.  

A GA integrating traditional robust criteria has al-
ready been used to solve the robust mixed model as-
sembly line balancing problem[19]. Here, this algorithm 
will be applied to the new robust model (5)-(9) which 
is based on the α worst case scenario. To be self-con-
tained and to avoid unnecessary repetition, we only 
briefly outline the main steps with details available 
from Xu and Xiao[19]. 

Step 1  Initialize chromosomes.  
Step 2  Calculate the objective values for all chro-

mosomes.  
Step 3  Compute the fitness of each chromosome 

by rank-based evaluation function based on their ob-
jective values.  

Step 4  Select the chromosomes by spinning the 
roulette wheel.  

Step 5  Update the chromosomes by crossover and 
mutation operations.  

Step 6  Repeat Steps 2 to 5 a given number of 
times or until a suitable solution is found.  

For the α-min-max criterion, the objective value is 
equal to the workload variance for the α worst case 
scenario; while for the α-min-max (relative) regret cri-
terion, it is equal to the (relative) regret for the α worst 

case scenario. In addition, for the last two criteria, the 
optimal solution for each scenario is needed in advance, 
which can be obtained using this GA or other ap-
proaches mentioned in the beginning of this section.  

3 Computational Experiments 
3.1 Experiments on test problems 

The desirability of this methodology is assessed using 
five combined precedence relation metrics from the 
standard ALBP lib[20]: the 21-task problem 
MITCHELL(21), the 35-task problem GUNTHER(35), 
the 45-task problem KILBRID(45), the 58-task prob-
lem WARNECKE(58), and the 83-task problem 
ARC(83).  

Each problem assumes that 50 scenarios are outlined 
by decision makers in advance. Each scenario is com-
posed of the demand for every model and the process-
ing times for every task. Four different values of α are 
used (i.e., 0.5, 0.7, 0.9, 1.0), and the corresponding 
expectation model (viz., all scenarios have the same 
probability to appear) is also used to compare the 
long-term performance of solutions from the model. 
Due to space considerations, this section only illus-
trates results for the α-min-max criterion. The other 
two criteria (i.e., α-min-max regret and α-min-max 
relative regret) generate similar results. 

Box plots[21] are used to graphically compare the 
work variances in the 50 scenarios with the best solu-
tion found for each approach. Box plots are used as a 
convenient way of depicting groups of numerical data 
through their five-number summaries: the smallest ob-
servation, lower quartile, median, upper quartile, and 
largest observation. These will indicate which observa-
tions, if any, might be outliers.  

The results are shown in Figs. 1-5. In these figures, 
0.5, 0.7, 0.9, and 1.0 denote the robust model results 
for different values of α, and EXP denotes the results 
for the expectation model. The results show that the α 
worst case scenario based robust model can hedge 
against the risk of poor system performance in bad 
scenarios. α=1.0, which is equivalent to the original 
min-max robust criterion, always obtains the best 
worst case scenario performance, but sometimes it may 
be too conservative. Relatively optimistic solutions are 
found for smaller α.  
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Fig. 1  Box plot for MITCHELL (21) 

 
Fig. 2  Box plot for GUNTHER (35) 

 
Fig. 3  Box plot for KILBRID (45) 

 
Fig. 4  Box plot for WARNECKE (58) 

 
Fig. 5  Box plot for ARC (83) 

With respect to long-term (expected) performance, 
robust solutions always generate less fluctuant system 
performance with an insignificant sacrifice in its value. 
As α increases from 0.5 to 1, the fluctuations of the 
workload variance between each scenario become 
smaller and smaller. Table 1 lists the means and stan-
dard deviations of the work variances for each problem 
to detail these findings.  

3.2  Experiments on real problems 

This section applies the approach to a real assembly 
line of an automobile producer in Beijing. There are 28  

Table 1  Means (and standard deviations) of work variances for each test problem 

Mean (SD) 
α 

MITCHELL (21) GUNTHER (35) KILBRID (45) WARNECKE (58) ARC (83) 
0.5 9.07 (4.89) 32.62 (5.08) 14.97 (7.77) 43.92 (1.53) 55.12 (4.79) 
0.7 10.00 (3.04) 32.13 (3.16) 15.47 (5.11) 43.68 (1.44) 56.31 (4.47) 
0.9 10.16 (2.86) 32.59 (2.56) 16.89 (2.72) 44.29 (1.28) 56.88 (2.08) 
1.0 10.47 (2.45) 32.40 (1.94) 19.41 (1.80) 45.23 (1.23) 57.99 (1.57) 

EXP 8.95 (4.55) 32.11 (4.11) 12.68 (4.07) 43.16 (1.79) 54.66 (4.00) 
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stations in the line and the assembly tasks are divided 
into 97 elements by the engineers. The processing 
times of each task element and the number of cars of 
each model to be produced are uncertain.  

Like for the tests in Section 3.1, four different values 
of α (i.e., 0.5, 0.7, 0.9, 1.0) with the corresponding ex-
pectation model (i.e., EXP) also considered to compare 
long-term performance. The resulting box plot shown 
in Fig. 6 indicates similar conclusions as for the tests in 
the previous section.  

 
Fig. 6  Box plot for the real automobile assembly line 
problem 

4 Conclusions 

This paper considers the robust mixed model assembly 
line balancing problem with uncertain task processing 
times and demands. The scenario planning technique is 
employed to describe these uncertainties. A robust 
model based on the α worst case scenario is used in-
stead of focusing on the worst case scenario to com-
pensate for the conservativeness of traditional robust 
approaches. A robust GA is then designed to solve this 
model.  

Tests show that as α approaches 1, the model gener-
ates more and more robust solutions and degenerates to 
the traditional model when α=1 with the most robust 
solutions. For smaller α, the model generates less ro-
bust but more optimistic solutions. Thus, careful tuning 
of α enables decision makers to balance the robustness 
and conservativeness of the assembly line task ele-
ments assignments.  
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