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Abstract: The histogram of oriented gradient has been successfully applied in many research fields with 

excellent performance especially in pedestrian detection. However, the method has rarely been applied to 

face recognition. Aimed to develop a fast and efficient new feature for face recognition, the original HOG 

and its variations were applied to evaluate the effects of different factors. An information theory-based crite-

rion was also developed to evaluate the potential classification power of different features. Comparative ex-

periments show that even with a relatively simple feature descriptor, the proposed HOG feature achieves 

almost the same recognition rate with much lower computational time than the widely used Gabor feature on 

the FRGC and CAS-PEAL databases.  
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Introduction 

The intensity of an image contains discriminative in-
formation as well as noise, and in most cases, is the 
only source that can be used to still object recognition. 
However, what really matters is not the absolute value, 
but the relative value which reflects the structure in-
formation or texture variation of an object.  

Various feature extraction and selection methods 
have been widely used[1-5]. Besides holistic methods 
such as PCA and LDA, local descriptors have been 
studied recently. An ideal descriptor for the local facial 
regions should have large inter-class variance and 
small intra-class variance, which means that the de-
scriptor should be robust with respect to varying illu-
mination, slight deformations, image quality degrada-
tion, and so on. Information theory was used to    

develop a criterion to evaluate the potential classifica-
tion power of different features. 

Among the variety of different descriptors for the 
appearance of image patches that have been developed 
by the texture analysis community, local binary pattern 
features yield some of the best results when used to 
represent facial images. The idea of using a local bi-
nary pattern for facial descriptions is that faces can be 
seen as a composite of micro-patterns which are well 
described by this operator[6]. However, sometimes 
there are too many micro patterns so in practice a sys-
tem has to reduce the number of local regions or the 
number of possible scales to form a reasonable length 
feature vector.  

The Gabor wavelet[7], whose kernels are similar to 
the 2-D representative profiles of the mammalian cor-
tical simple cells, was first introduced by Gabor in 
1946. The Gabor transformation simultaneously en-
hances facial feature magnitude and orientation and 
has been widely used as an effective element in image 
processing and pattern recognition tasks. The Gabor 
wavelet is the most popular and successful feature ever 
used for face recognition. For example, it is used for 
face recognition in the dynamic link architecture 
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framework by Lades et al.[8] and in the elastic bunch 
graph matching method developed by Wiskott et al.[9] 

The use of orientation histograms also has many pre-
cursors. Freeman and Roth[10] used orientation histo-
grams for hand gesture recognition, Dalal and Triggs[11] 
presented a pedestrian detection algorithm with excel-
lent detection results using a dense grid of HOG. The 
HOG provides the underlying image patch descriptor 
for matching scale invariant keypoints when combined 
with local spatial histogramming and normalization in 
Lowe’s scale invariant feature transformation (SIFT) 
approach to wide baseline image matching[12]. How-
ever, few publications can be found which show a suc-
cessful application of this feature to face recognition. 

1  Histogram of Oriented Gradient 
1.1  Basic theory 

The basic idea of HOG features is that the local object 
appearance and shape can often be characterized rather 

well by the distribution of the local intensity gradients 
or edge directions, even without precise knowledge of 
the corresponding gradient or edge positions. The ori-
entation analysis is robust to lighting changes since the 
histogramming gives translational invariance. The 
HOG feature summarizes the distribution of measure-
ments within the image regions and is particularly 
useful for recognition of textured objects with de-
formable shapes. The method is also simple and fast so 
the histogram can be calculated quickly.  

As used in SIFT or the EBGM method, the original 
HOG feature is generated for each key point of an im-
age. The neighboring area around each key point is di-
vided into several uniformly spaced cells and for each 
cell a local 1-D histogram of gradient directions or edge 
orientations is accumulated over all the pixels of the 
cell. The histogram entries of all cells around one key 
point form the feature of that key point. The combined 
histogram features of all key points form the image 
representation. The whole process is shown in Fig. 1. 

 
Fig. 1  Image window divided into small spatial regions (“cells”). Local 1-D histograms of gradient directions or edge 
orientations are accumulated and concatenated to form the final histogram feature. 

 

1.2  Orientation representation 

Orientation can be represented as a single angle or as a 

double angle[13]. A single angle treats a given edge and 
a contrast reversed region as having opposite orienta-
tions. A double angle representation maps these into 
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the same orientation. The single angle representation 
may allow more patterns to be distinguished. This 
work used a single angle representation to allow more 
differentiation between patterns. Tests in part 4 show 
that the single angle representation performs much 
better than the double angle representation. Note that 
this differs from the classic Gabor feature, which uses 
a single angle representation instead of the double   
angle. 

If an image window I of a key point is uniformly    
divided into N cells, the image window can be repre-
sented as 

1

N
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where tC  is the set of all pixels belonging to the t-th 
cell. For any pixel p(x,y) of the image window I, the 
contrast is given by 
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If the orientation is divided into H bins, which 
means the histogram vector length for each cell is H, 
the histogram vector can be calculated as follows: 
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| |tC  denotes the size of set tC . 

1.3  Normalization 

For better invariance to illumination and noise, a nor-
malization step is usually used after calculating the 
histogram vectors. Four different normalization 
schemes have been proposed[11]: L2-norm, L2-Hys, 
L1-sqrt, and L1-norm. This analysis used the L2-norm 
scheme due to its better performance:  

2 2
2/ || ||t t t ε′ = +v v v               (6) 

where ε  is a small positive value used for some regu-
larization when an empty cell is taken into account. 

1.4  Fast computation 

Liu et al.[14] introduced methods for fast computations 
of histogram bin weights for pixels whose gradient 
orientations are not in the orientation bin centers. As 
shown in Fig. 2, gradient magnitude g is added to the 

nearest n-th and (n+1)-th bin centers as ng  and 1n+g , 
respectively. i

tb  of the histogram vector tv  of the 
t-th cell can be obtained by accumulating all the gra-
dient magnitudes in the i-th orientation center of the 
t-th cell. 
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Fig. 2  Projection of gradient magnitude to the near-
est orientation bin center by the parallelogram law[15] 

2  Overlapped HOG 

The accuracy of the eye location is very important for 
matching two facial images, however, 100% accuracy 
is impossible and the accuracy decreases dramatically 
when there are bad light conditions or motion blurring. 
The histogram itself provides some balance to this 
problem, but it is not enough. Thus the overlapped 
HOG feature was introduced to further overcome this 
problem. This was inspired by Dalal and Trigg’s[11] 
conclusion that ‘redundant’ information introduced by 
overlapping significantly improves the performance for 
pedestrian detection, although no reason was given. 

Before the overlapped HOG feature is introduced, 
the method for using the HOG feature must first be 
explained. The HOG feature is not generated for each 
key point here, but the entire facial image is uniformly 
divided into cells of the same size. The final feature of 
the facial image is obtained by first generating histo-
grams of each cell and then simply concatenating them 
altogether (Fig. 3a). The whole process is similar to 
what is usually done in LBP feature extraction. 

To generate an overlapped HOG feature, several of 
the original HOG features are first generated inde-
pendently with each HOG feature produced based on a 
unique HOG grid. These different grids may contain 
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(a) 

 
(b) 

Fig. 3  (a) Image window is uniformly divided into 
cells of the same size with local 1-D histograms of the 
gradient directions accumulated and concatenated to 
form the final histogram feature and (b) Parts of two 
different grids that overlapping each other. 

cells of different sizes (though in our experiments they 
were the same for simplicity), but they have to be 
placed in different locations. Thus, the cells in different 
HOG grids may overlap each other as in Fig. 3b. Then, 
either the features generated on each grid are concate-
nated altogether for a feature level fusion or similarity 
scores are calculated for the two facial images for the 
individual features for a score level fusion. 

3  Measurement of Feature  
Classification Ability 

According to Devuver[16], the Bayesian distance, error 
probability, and logarithmic information measure are 
related by 

e
11 ( | ) ( | )
2

P B X Y H X Y−        (10) 

where eP  is the Bayesian error probability, ( | )B X Y  
is the Bayesian distance, and ( | )H X Y  is the loga-
rithmic information measure.  

From information theory, 

e
1 [ ( ) ( | )]
2

P H X I X Y−          (11) 

Equation (11) indicates that a larger mutual informa-
tion ( | )I X Y  will reduce eP . Let E  denote the 
identity space and F  denote the feature space. Since 
the entropy ( )H E  is a constant for a given classifica-
tion problem, the mutual information ( | )I E F  can be 
used to evaluate the potential classification power of 
different features. With the homoscedastic assumption 
and the Gaussian distribution assumption of total scat-
ter, ( | )I E F  can be written as 
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where wS  is the within-class matrix, bS  is the between-  
class matrix, and tS  is the total scatter matrix. λ  is 
the associated generalized eigenvalue for the general-
ized eigenvalue problem used to find the Fisher basis 
vectors and K is the number of remaining dimensions.   

The ( | )I E F  for the different features are then 
compared for the classification. 

4  Experimental Results 

Various tests were used to study different variations of 
the HOG feature and to compare the potential classifi-
cation power of the different features as well as their 
actual recognition rates on the FRGC v2.0 database 
and the CAS-PEAL database. 

The FRGC v2.0 database[17] (Fig. 4) has more than 
10 000 frontal images of 222 subjects in the training 
set and more than 32 000 frontal images of 466 sub-
jects in the validation set. 10 images of each subject in 
the training set were randomly selected for training. 
The validation used the images of all 466 subjects that 
have expression and illumination variations. The query 
set was the same as that used in the standard Experi-
ment 4 in FRGC ver2.0, which consists of 8014 single 
uncontrolled still images. The target set consisted of 
466 single controlled still images, one for each subject, 
which is a little different than the target set in the stan-
dard Experiment 4 in FRGC because most practical 
applications do not have multiple target images for 
each subject, while multiple query images for each 
subject are common.  

The CAS-PEAL database[18] (Fig. 5), obtained from 
the Chinese Academy of Science, was also used to 
evaluate the face recognition system. This database has 
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also been used for eye detection, facial pose estimation, 
and facial expression recognition. The released 
CAS-PEAL database contains 30 864 images of 1040 
subjects (595 males and 445 females of Asians) with 

varying pose, expression, accessory, and lighting 
(PEAL). After the exclusion of large pose variations 
(larger than 45°), 22 020 images of all 1040 subjects 
were used. 

 
Fig. 4  Controlled and uncontrolled images in the FRGC v2.0 database 

 
Fig. 5  Images in the CAS-PEAL database 

Before the feature extraction process, all images in 
the FRGC or CAS-PEAL databases were cropped to 
smaller images having sizes of 160×130 pixels. The 
distances between the eyes were normalized to 60 pix-
els. The illuminations were normalized by simply us-
ing the arithmetic mean intensely of each image patch 
to normalize all the gray intensities within that patch. 

The dimension of the original feature is very large 
(typically more than 2000). As much useful informa-
tion as possible was retained to eliminate the effect of 
noise. PCA was used first to reduce the feature dimen-
sion. LDA was then used to extract discriminate in-
formation[5]. Finally, the nearest neighbor classifier 
was used for the classification due to its simplicity. In 
practice, if the original feature dimension is too high, 
the PCA eigenvalue problem might not yield a solution 
since the total scatter matrix may be too large. These 

tests had an original feature dimension limit of 6500, 
which means that the LBP feature could not be created 
with a very small cell size, since small cells would re-
sult in an LBP feature with many local histograms. 
Similarly, the HOG feature could not be created with a 
very large number of orientation bins, and the Gabor 
feature could not be created with many scales, even 
though those factors would lead to better performance. 
This is a tradeoff between performance and original 
feature length. 

4.1  Performance of HOG feature 

There are many factors that have different effects on 
the performance of the HOG feature for face recogni-
tion. Not all these factors affect the HOG’s perform-
ance the same way as in pedestrian detection[11]. Sev-
eral experiments were designed to evaluate which   
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factors are critical and how they affect the recognition 
rate. These considered variations of the cell size, scales, 
orientation bins, angle representation, overlapping, etc. 
The cumulative recognition rates for different condi-
tions are compared to evaluate the effects. 
4.1.1  Angle representation 
For pedestrian detection, inclusion of signed gradients 
(double angle representation) in the HOG descriptor 
decreases the performance, since “the wide range of 
clothing and background colors presumably makes the 
signs of contrasts uninformative”[11]. This is not the 

case for face recognition. As shown in Fig. 6a, the 
double angle representation leads to better perform-
ance than single angle representation. Because in face 
recognition, features are usually generated within a 
facial mask region, which eliminates the presence of 
background information. Inclusion of the signed gra-
dients, more detailed information of face appearance 
could be obtained. Except for the way of angle repre-
sentation, the HOG features in Fig. 6a were calculated 
with a cell size of 8×5 pixels, 12 orientation bins, one 
scale only, and no overlap.  

 
 (a) Effect of the angle representation (b) Effect of the number of orientation bins 

 
  (c) Effect of the cell size and number of scales (d) Effect of overlap 

Fig. 6  Effects of various factors on the recognition rate. (a) Including “signed” gradients (double angle representation) 
significantly improves the performance, (b) increasing the number of orientation bins increases performance, (c) increas-
ing the number of scales has little effect on the performance; better performance could be achieved with relatively 
smaller cell size, and (d) employing overlapped cells improves the performance greatly. 

4.1.2  Orientation binning 
Orientation binning and votes accumulation introduce 
the fundamental nonlinearity to the HOG descriptor. 
The orientation bins are evenly spaced over 0°-360°. 
Each pixel calculates a weighted vote based on the 
orientation of the gradient element and accumulates it 
into the neighboring bins using the algorithm described 
in Section 2 over the cell the pixel belonged to. The 
more orientation bins, the finer structure of face pattern 

could be revealed by the descriptor. As shown in 
Fig. 6b, increasing the number of orientation bins im-
proves performance significantly up to about 16 bins, 
but makes little difference beyond this. HOG1 has the 
following properties described below: 8×8 pixel cells, 
three scales, no overlapping. HOG2 is with 10×10 
pixel cells, one scale only, and overlapping. HOG3 is 
the same with HOG1 except for its 10×10 cell size. 
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4.1.3  Scales and cell size 
The original HOG descriptor itself did not include the 
concept of scaling. Inspired by the conception of mul-
tiresolution histograms[19], we tried to extract more 
information from face images by extending the original 
HOG descriptor to a multi-scale version. However, as 
seen in Fig. 6c, no obvious improvements are shown as 
the number of scales increases. Similar to orientation 
binning, with the smaller size of each cell, the finer 
structure of a face pattern could be revealed by the de-
scriptor. As shown in Fig. 6c, significant improvements 
could be achieved as the cell size diminished. However, 
the tolerance of intra class variance, as well as the es-
timation of mini-pattern probability distribution also 
decreased as the cell size decreased, especially when 
there was a large number of orientation bins. In Fig. 6c, 
HOG4 had 16 orientation bins, 8×8 pixel cells, and no 
overlapping. HOG5 and HOG6 were the same with 
HOG4, except that they had 10×10 and 16×13 pixel 
cells, respectively. 
4.1.4  Overlapping 
These tests used overlapped cells using the method 
described in Section 2, with weighted impact of each 
pixel contributing to the histograms of at least two 
(could be more) cells. This brings redundant informa-
tion into the HOG descriptor; however, the information 
is far from useless. With the overlapping, the HOG 
feature is more robust to small variances caused by 
pose or expression, at the cost of a larger feature length. 
Figure 6d shows that overlapping significantly increases 
the performance regardless of the other parameters for 
the HOG feature. HOG7 had 10×10 pixel cells, 12 

orientation bins, and three scales. HOG8 had 10×10 
pixel cells, 16 orientation bins, and only one scale. 
HOG9 was the same as HOG8 with 16×13 pixel cells. 

The results show that for HOG features with uni-
formly distributed cells on the entire image, fine scale 
gradients, fine orientation binning, relatively small 
spatial binning, and overlapped cells are all important 
for good face recognition performance.  

4.2  Comparison of different features 

This section compares the cumulative recognition rate 
as well as the computing time for HOG, Gabor, and 
LBP features.  
4.2.1  Comparison of actual recognition rate 
Considering the results in Section 4.1 as well as the 
feature length limit, the final HOG feature used for the 
comparisons had a 10×10 pixel cell size, 16 orientation 
bins, one scale, and overlapped cells. The Gabor fea-
ture used 30 filters corresponding to five different 
scales and six orientations. The LBP descriptor used 
the uniform LBP(8,1) (i.e., a neighborhood with eight 
samples and a radius of one) with a cell size of 16×13 
pixels. A series of tests on the FRGC v2.0 database 
gave the cumulative recognition rates for the three 
features over a wide range of PCA and LDA dimen-
sions (the PCA dimension ranged from 200 to 1600 
with an interval of 100, the LDA dimension ranged 
from 80 to 220 with an interval of 20). Only the curve 
for the highest recognition rate of each feature is 
shown in Fig. 7a. 

 
 (a) Cumulative matching curves (b) Cumulative mutual information curves 

Fig. 7  (a) Cumulative matching curves for the Gabor, HOG, and LBP features and (b) cumulative mutual information 
curves for the Gabor, HOG, and LBP features 

The results in Fig. 7a show that the HOG feature 
achieves almost the same performance as Gabor and 

performs much better than the LBP feature on the 
FRGC v2.0 database. The computational time for the 
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same condition on an Intel Pentium 4, 3 GHz CPU 
with 1 GB RAM was 0.005 s for HOG, 0.055 s for 
Gabor, and 0.014 s for LBP to extract the feature for 
one subject on average. 
4.2.2  Comparison of potential classification power 
The classification powers of the different features were 
compared based on the mutual information for differ-
ent features calculated according to Eq. (12). Since the 
FRGC v2.0 database was already used for the recogni-
tion rate comparison in Section 4.2.1, the CAS-PEAL 
database was used here to calculate the mutual infor-
mation. Figure 7b shows the cumulative mutual infor-
mation for different features for cut-off dimensions 
ranging from 0 to 500. The results show that the classi-
fication power of the Gabor feature is slightly stronger 
than that of HOG, and much stronger than that of LBP. 
This conclusion is in accord with the conclusions from 
the comparison of these actual recognition rates in Sec-
tion 4.2.1, even though the CAS-PEAL and FRGC 
v.2.0 databases are very different (e.g., one having only 
Asian facial images while the other mainly consists of 
western facial images). This validates the criterion de-
veloped to evaluate the classification power of the dif-
ferent   features.  

5  Conclusions 

As a relatively simple local descriptor, the HOG fea-
ture is widely used in applications like pedestrian de-
tection and tracking, but has rarely been used in face 
recognition. A fast computational method was devel-
oped and many different factors that affect the HOG’s 
performance were evaluated to develop a HOG de-
scriptor with fine-scale gradients, fine orientation 
binning, relatively small spatial binning (cell size), and 
overlapped cells over the entire image which suc-
ceeded in achieving almost the same performance but 
with a lower time cost compared to the Gabor descrip-
tor, and better accuracy than the LBP descriptor.  

The use of mutual information as a general meas-
urement of potential classification power for different 
features may be more theoretically important here than 
the successful application of the HOG feature in face 
recognition. The mutual information enables compari-
son among different kinds of features regardless of the 
specific application environment. 

This in-depth exploration of the HOG features in 
face recognition will be extended in future work   

concentrating on the fusion of the HOG feature with 
other features, since extra features improve robustness 
with correct matches, and do little harm other than 
their cost of computation. Relatively simple but effec-
tive features like the HOG features are the best choices 
for fusion tasks. 
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