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Abstract: Mutual information (MI) is a basic concept in information theory. Therefore, estimates of the MI are 

fundamentally important in most information theory applications. This paper provides a new way of under-

standing and estimating the MI using the copula function. First, the entropy of the copula, named the copula 

entropy, is defined as a measure of the dependence uncertainty represented by the copula function and 

then the MI is shown to be equivalent to the negative copula entropy. With this equivalence, the MI can be 

estimated by first estimating the empirical copula and then estimating the entropy of the empirical copula. 

Thus, the MI estimate is an estimation of the entropy, which reduces the complexity and computational re-

quirements. Tests show that the method is more effective than the traditional method. 
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Introduction 

Since the seminal paper by Shannon[1], information 
theory has been widly used in many branches of sci-
ence. In information theory, entropy and mutual infor-
mation (MI) are two different fundamental concepts[2]. 
Entropy is defined as the measure of uncertainty asso-
ciated with random variables and with multivariate MI 
as a measure of the mutual dependence of random 
variables defined as follows: 
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where 1[ , , ] N
Nx x= ∈x R  are random variables, H is 

the entropy, and I  is the MI. Unlike traditional statis-
tical measures of dependence, such as correlation (i.e. 
second-order statistics) and higher-order statistics[3], 
MI is a measure of all orders of dependence. 

Another branch of study, copula theory[4,5], concerns 
the representation of dependence between random 
variables. Theoretically, copula is a function that 

represents the dependence between random vari-
ables[4,5]. Such a representation is guaranteed by the 
Sklar theorem[6]. Let P  be a joint distribution func-
tion with margins { , 1, , }iF i N= . The Sklar theorem 
states that P  can be represented as copula function 
C  with F  as its arguments: 

1 1( ) ( ( ), , ( ))N NP C F x F x=x         (2) 
If the random valuables F are separated with margins 
from the joint distribution function, the copula has   
all the dependence information of the random     
variables. 

This paper investigates the relation between the 
measure of dependence, MI, and the representation of 
the dependence, the copula function. De la Peña et al.[7] 
studied the properties of MI and other measures of de-
pendence with the copula represented as U-statistics. 
Davy and Doucet[8] studied the relation between copula 
and Cohen-Posch theory, but with little mention of 
bivariate copula and MI. Jenison and Reale[9] discussed 
how to model neural populations with copula. This 
paper shows that MI is actually a kind of entropy, de-
fined as the copula entropy. A method developed to 
estimate the MI is then easier to use than the previous 
methods. 
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1  MI and Copula Entropy 

Before analyzing the relation between MI and copula, 
a definition of the copula entropy is introduced.  

Definition 1  Copula entropy Let N∈x R  be 
random variables with marginal functions 

1[ , , ]NF F=u  and copula density ( )c u . Copula en-
tropy of x  is defined as: 
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As contrast, the margin entropy is defined as    
follows. 

Definition 2  Margin entropy Let N∈x R  be 
random variables with marginal functions 1[ , , ]Np p . 
The margin entropy is defined as 
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where 1, , .i N=  
Theorem 1  The mutual information of random 

variables is equivalent to their negative copula entropy: 
c( ) ( )I H= −x x               (5) 
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Theorem 1 can be interpreted as MI exactly meas-
uring the dependence uncertainty of random variables. 
This provides a new way of understanding MI as 
shown in Fig. 1. As defined in Eq. (1), MI used to be 
understood as the intersection of margin entropies. 
However, in Eq. (5), MI as copula entropy has no in-
tersection with the margin entropy of each random 
variable because the independence between copula and 
margins means that (1) the variations of random vari-
ables can have different margin entropies that have no 
effect on the copula entropy and that (2) the same ran-
dom variables can have the same margin entropy, but 
different types of copula functions, i.e., different types 
of dependent relationships, hence, different copula   
entropies.  

The following corollary shows the relationship    

between the entropy of x , the margin entropy, and the 
corresponding copula entropy. 

 
Fig. 1  A new way of understanding mutual informa-
tion. Left: the traditional way of understanding MI[2]. 
Right: the representation of MI as copula entropy with 
the copula entropy at the center surrounded by margin 
entropies. 

Corollary 1  The entropy of joint random variables 
is composed of margin entropies and the copula   
entropy. 
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Corollary 1 indicates that the entropy of random 
variables is composed of N margin entropies and the 
copula entropy, i.e., entropy of their interrelations. This 
relationship is illustrated in Fig. 2 which gives insight 
into the inner relationship between MI and copula as a 
connection between information theory and copula 
theory. 

 
Fig. 2  The relationship between the entropy of random 
variables, margin entropies, and the copula entropy 

2  Estimating Mutual Information via 
Copula 

MI estimates are a common problem in many scientific 
fields. All traditional methods are based on Eq. (1) 
which leads to analyses of both margin entropy and the 
entropy of all the variables[10,11]. Theorem 1 shows that 
the entropy estimation and the MI will be the same if 
the copula can be estimated. Such estimates can be 
achieved with empirical copula. 
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Given independent identical distribution samples 
1{ , , }T TX X=X  generated from an N dimensional 

N∈x R , the MI, ( )I x , can be estimated as: 
 

Input: 1{ , , }T TX X=X  
Output: ( )I x  
Step 1  Determine the empirical copula density ˆ

TU  from 
.TX  

Step 2  Estimate the entropy of ˆ
TU  as ( )I x . 

 

The empirical copula density, ˆ
TU , can be deter-

mined using the empirical functions:  
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where 1, ,i N=  and 1  is an indicator function. 
Step 1 can use other methods, such as analytical or 
kernel methods[12]. The empirical method is the easiest 
option because it is intuitive and easily calculated, 
since it can be solved as sorting problem. The selection 
of an estimation method depends on many factors, 
such as the background information, accuracy re-
quirements, or personal preferences, etc. There have 
been many methods developed for entropy estimates, 
so the entropy of ˆ

TU  in Step 2 can be estimated using 
many well-established methods[10,11,13]. 

The present method is non-parametric so all previ-
ous methods for estimating the MI can be transformed 
to this method which only needs the entropy estimate. 
Thus, the MI estimates can be achieved by simply es-
timating one entropy instead of many as in Eq. (1). 
This improvement is very significant since MI    
estimates are both widely-used and computationally 
burdensome.  

3  Simulations 

The effectiveness of the estimation method was evalu-
ated using a typical case with two correlated standard 
Gaussian variables with covariance ρ , for which the 

MI can be calculated as 21 log(1 )
2

ρ− − . The tests used 

ρ  from 0.0 to 0.9 with steps of 0.1 with a 1000 sam-
ple set generated for each value. The copula entropy 
was estimated using the KNN methods[10]. The MI es-
timation method in Kraskov et al.[10] was also used on 
the sample sets. The results in Fig. 3 show that both 
methods give very good estimates. The present method 
provides a competitive estimate of MI that is much less 
computationally intensive. 

 
Fig. 3  Mutual information estimates. The solid line 
represents the analytical value of MI between two Gaus-
sians, the dotted line represents the methods in Ref. [10], 
and the dashed line represents the current method. 

4  Conclusions 

This paper proves that MI is essentially a kind of en-
tropy, named the copula entropy, to provide a new way 
of understanding MI with the theoretical relationship 
between information theory and copula theory. A non-    
parametric method is then developed to estimate the 
MI, which is simple and less computationally burden-
some than all the previous methods based on the clas-
sical understanding of MI. This simple MI method is 
very useful since MI is a core concept in information 
theory and estimates of the MI are of fundamental im-
portance in many applications of information theory. 
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