
TSINGHUA SCIENCE AND TECHNOLOGY 
IS SN l l 1 0 0 7 - 0 2 1 4 l l 0 7 / 1 7 l l p p 4 1 - 5 0 
Volume 16, Number 1, February 2011 

 

Partition-Based Global Placement Considering Wire-Density  
Uniformity for CMP Variations* 

DONG Changdao (董昌道), ZHOU Qiang (周 强)**, CAI Yici (蔡懿慈), LIU Dawei (刘大为) 
 

Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, 
Tsinghua University, Beijing 100084, China 

 
Abstract: This paper presents a multilevel hypergraph partitioning method that balances constraints on not 

only the cell area but also the wire weight with a partition-based global placement algorithm that maximizes 

the wire density uniformity to control chemical-mechanical polishing (CMP) variations. The multilevel parti-

tioning alternately uses two FM variants in the refinement stage to give a more uniform wire distribution. The 

global placement is based on a top-down recursive bisection framework. The partitioning algorithm is used 

in the bisectioning to impact the wire density uniformity. Tests show that, with a 10% constraint, the parti-

tioning produces solutions with more balanced edge weights that are 837% better than from hMetis, 

1039.1% better than MLPart, and 762.9% better than FM in terms of imbalance proportion and that this 

global placement algorithm improves ROOSTER with a more uniform wire distribution by 3.1% on average 

with an increased wire length of only 3.0%. 

Key words: partitioning; placement; chemical-mechanical polishing (CMP); design for manufacturing (DFM); 

wire-density 

 

Introduction 

As nanometer technologies advance, the chemical-    
mechanical polishing (CMP) step in the copper metali-
zation (Damascene) process may cause some loss of 
interconnections. A non-uniform feature density dis-
tribution in one interconnect layer causes the CMP to 
over or under polish, so thickness variations may ac-
cumulate in each layer and finally be very signifi-
cant[1,2]. Dummy features are usually filled into layouts 
to restrict the variations in each layer[3]. However, 
dummy features may degrade interconnect perform-
ance and cause mask data explosion[4]. Therefore, to 

minimize the side effects of aggressive post-layout 
dummy filling, the wire density uniformity must be 
considered in the early design stages such as for the 
global placement. 

Several CMP-aware methods have been developed 
for the early design stages[5]. Cho et al.[6] proposed a 
predictive copper (Cu) CMP model to evaluate topog-
raphy variations to guide CMP-aware global routing. 
Chen et al.[7] proposed a wire density driven full-chip 
routing which considers not only the wire density in-
side a routing gcell but also its gradient between rout-
ing gcells. Chen et al.[8] proposed a metal-density 
driven placement algorithm based on an analytical 
framework which improves the metal-density uniform-
ity by 3% while increasing the wire length by 4% 
compared with a cell-density driven placement. Chen 
et al.[8] described a probabilistic routing model to esti-
mate the wire density and the metal density and thick-
ness using by the CMP model proposed in Cho et al.[6] 

   

 Received: 2009-04-27; revised: 2010-12-08 

* Supported by the National Natural Science Foundation of China
(Nos. 60876026 and 60833004) 

** To whom correspondence should be addressed. 
E-mail: zhouqiang@tsinghua.edu.cn; Tel: 86-10-62785564 



  Tsinghua Science and Technology, February 2011, 16(1): 41-50 

 

42 

The wire density distribution will determine the lay-
out pattern density[6], which closely correlates to the 
post-CMP dielectric thickness[4], so it is desirable to 
minimize the global variation of the wire density[7]. 
Since placement is a crucial design stage which 
strongly impacts the subsequent routing results, a uni-
formly distributed wire density during placement be-
comes very important for CMP variation control. The 
wire density is closely related to routing congestion, 
with many congestion driven placement algorithms 
proposed to improve routability. However, the wire 
density is not the same as routing congestion, so routa-
bility driven placement may only contribute modestly 
to the wire distribution uniformity. 

ROOSTER[9], a state-of-the-art congestion driven 
placement algorithm, recursively applies multilevel 
hypergraph partitioning, such as MLPart[10] and 
hMetis[11], to bisection large bins containing hundreds 
or more standard cells during the global placement 
stage. hMetis[11] is one of the most well-known multi-
level partitioning algorithms, which produces solutions 
with nearly minimized cut sizes. Of the three clustering 
methods evaluated by Karypis et al.[11], the FM variant 
using random vertex selection was used in the refine-
ment stage of the multilevel paradigm. MLPart[10] is 
another leading-edge multilevel partitioning algorithm 
comparable with hMetis. MLPart employs the PinEC 
scheme to speed up pin removal during vertice clus-
tering and CLIP[12] to improve the refinement during 
the initial partitioning and uncoarsening stage. Al-
though the wire distribution between the two sub-bins 
is largely determined after each bisection, its uniform-
ity is not a significant issue in traditional partitioning 
methods. MLPart and hMetis often produce solutions 
with highly unbalanced numbers of edges between the 
two blocks. 

The motivation of this work is to design a multilevel 
hypergraph partitioning algorithm that balances the 
wire distribution and then apply this algorithm to the 
recursive bisection in global placement to generate 
results with more uniformly distributed wire densities 
for better CMP variation control. The multilevel parti-
tioning method alternates between an FM variant ca-
pable of balancing edge weights between the two blocks 
and another FM variant capable of minimizing the cut 
size for tight edge weight constraints in the refinement 
stage. The first FM variant generates solutions     

satisfying the edge weight constraint and minimizes 
the imbalance with a time cost almost linearly related 
to the number of pins in the circuit. The second FM 
variant minimizes the cut size for the given edge 
weight constraint. The inheritance of edge weights by 
corresponding clusters is also considered in the coars-
ening stage. The global placement framework uses the 
wire weight balancing constraint in the partitioning. A 
multilevel hypergraph partitioning with dual balancing 
constraints on both the cell area and the wire weight is 
recursively performed in the global placement. The 
wire weight is assigned such that it estimates the wire 
distribution in each placement bin. Tests show that the 
algorithm is capable of generating solutions with more 
uniformly distributed wire densities and outperforms 
ROOSTER in terms of the standard deviation of the 
horizontal and vertical wire density of routing gcells, 
with a small increment in the total wire length. 

1  Preliminaries 
1.1  Hypergraph partitioning with constraints on 

the wire density balancing weight 

Formally, a hypergraph H = (V, E) is defined as a set 
of vertices V and a set of edges E, where each edge is 
also called a hyperedge and is a subset of the vertex set 
V. A vertex is said to be incident to an edge, if v∈e. 
Each vertex and edge has one or more weights associ-
ated with it. The hypergraph partitioning is a decom-
position of V into two disjoint subsets V1 and V2 , such 
that ∪Vi =

 V. Each subset is called one partitioning 
block. An edge e is said to be cut if 1{ |v v V v∈ ∩ ∈   

2} { | }e v v V v e≠ ∅ ∩ ∈ ∩ ∈ ≠ ∅. 
This analysis associates each vertex with a weight 

w(v) and each edge with two weights, the cut weight, 
wc (e), and the wire density balancing weight, wb (e). 
Define the cut set C = {e | e is cut} and the cut size of a 
partitioning c( ) ( )

e C
S C w e

∈
= ∑ . Given the set of in-

ternal edges of block Vi defined as ( ) { |iI V e e C= ∉ ∩    
(∃v s.t. v∈e ∩ v∈Vi)}, i = 1, 2, employ the concept of 
total wire density balancing weight of block Vi defined 
as 

b b
( )

( ) ( ) ( ) /2
i i c

E i i c
e I V e C

W V w e w e
∈ ∈

= +∑ ∑      (1) 

Similarly, the total vertex weight of block Vi is de-
fined as ( ) ( )

i
V i v V

W V w v
∈

= ∑ . Given the target vertex 



DONG Changdao (董昌道) et al.：Partition-Based Global Placement Considering … 

 

43

weight of the two blocks as 1 2( , )t t
V VW W , 1 2t t

V VW W+ =    
( ),VW V  the imbalance proportion is defined as 

VWδ =  

1,2

| ( ) |max
i

i

t
V i V

ti
V

W V W
W=

−  and  

1,2

( )( ) ( )
( )

max ( )( )
( )

E

V i
E i E

V
W i V i

E
V

W VW V W V
W V

W VW V
W V

δ
=

−
=       (2) 

A partitioning satisfies the C VWδ constraint on vertex 
weight if CV VW Wδ δ and satisfies the C EWδ constraint 
on wire density balancing weight if CE EW Wδ δ .  

The hypergraph partitioning problem with dual con-
straints is defined as follows. Given a hypergraph H = 
(V, E) with wire density balancing weight constraint 

C EWδ and vertex weight constraint C VWδ , compute a par-
titioning of V that satisfies both C EWδ and C VWδ and 
minimizes S(C). 

1.2  FM heuristic iteration 

The FM heuristic iteration is the fundamental algo-
rithm of most modern move-based partitioning meth-
ods. It starts with a random initial partition and moves 
vertices from one block to the other in several passes 
until the last pass fails to optimize the solution. During 
each pass, vertices are moved one by one in order with 
the vertex having the greater gain always preferred to 
move. After a vertex is moved, it is locked in the pass, 
with the unlocked vertices called free. The gain of a 
vertex g(v) is the direct reduction of S(C) if v moves 
from one block to the other. The methods for the gain 
calculation and to update the free vertices enable the 
algorithm to have a time consumption per pass that is 
linearly related to the size of the hypergraph. The 
analysis of the critical edges and the gain bucket  
structure makes this linear time consumption possible. 

1.3  Multilevel paradigm 

The multilevel paradigm is widely used in modern par-
titioning algorithms, such as hMetis and MLPart, 
which are capable of producing nearly minimized cut 
sizes for a given vertex weight balancing constraint. 
There are three stages in this paradigm. The first is the 
coarsening stage, during which the hypergraph size is 
successively decreased level by level with more tightly 
connected vertices clustered to one new vertex with a 

large weight. When the hypergraph size becomes small 
enough, the initial partitioning is performed, with a 
solution computed on the top level hypergraph. During 
the uncoarsening and refinement stage, the solution is 
successively refined as it is projected to larger graphs 
level by level.  

Other techniques are also employed by modern mul-
tilevel algorithms, such as the multi-start and the 
V-cycle paradigms. The multi-start paradigm selects 
the best solution from those of the previous stage as 
the input to next stage. The V-cycle paradigm performs 
multiple coarsening and uncoarsening phases to seek 
better solutions. 

1.4  Top-down min-cut placement 

Top-down placement algorithms decompose a given 
placement instance into smaller instances by recur-
sively subdividing the placement regions, cutting the 
netlist and then assigning the modules to subregions. 
Min-cut placers generally use either bisection or 
quadrisection to divide the placement area and the net-
list. Each placement instance is induced from a bin, 
which contains a placement region with allowed mod-
ule locations in which a collection of circuit modules 
are to be placed. Fixed modules and pins outside a bin 
that are adjacent to modules inside this bin are called 
terminals. 

ROOSTER[9] is a state-of-the-art congestion driven 
placement framework based on Capo[13], which em-
ploys a Steiner-Tree to better predict the wire length 
after global routing and performs cut-line shifting 
guided by the prediction of a probabilistic congestion 
map[14] to further minimize the peak congestion. 

2  Multilevel Partitioning with Dual 
Constraints (MLDC) 

The MLDC algorithm satisfies dual constraints on both 
the vertex weight and the wire density balancing 
weight while maintaining the small cut size. Average 
test results on ISPD-98[15] benchmarks are listed in 
Table 1 when solutions are constrained to 10% C EWδ  
in the present algorithm and 10% C VWδ  in all of the 
algorithms and the target 1t

VW  is equal to 2t
VW . In  

Table 1, wb(e) is simply set to the degree of edge e in 
the present algorithm and δPN is the imbalance on the 
number of pins in the two blocks. The results show that  



  Tsinghua Science and Technology, February 2011, 16(1): 41-50 

 

44 

Table 1  Comparisons of the present algorithm with 
hMetis, MLPart, and FM on the IBM01-18 databases 
solutions are constrained to 10% 

EWδC  in the present 
algorithm and 10% 

VWδC  in all of the algorithms. 

Number 
of IBM 

Algorithm δWE δPN Cut Time (s)

hMetis 32.403 29.726  238.667   19.780
MLPart 74.086 68.528  217.250   40.078

FM 70.182 65.007  261.167   30.072
01 

Present  8.655  7.695  278.583   46.646
hMetis 87.389 87.845  705.167   43.512
MLPart 87.813 88.316  710.083   99.233

FM 50.335 50.942 1447.000   66.755
03 

Present  8.883  7.800  988.500  228.530
hMetis  5.757  5.525 1724.500   70.450
MLPart  5.579  5.010 1730.580  139.488

FM  6.905  5.585 2467.330  147.823
05 

Present  6.634  6.311 1725.830  221.013
hMetis 32.548 30.371  749.333  110.572
MLPart 40.222 37.880  756.667  179.623

FM 38.592 36.393 1049.500  172.508
07 

Present  8.828  7.084 1012.920  238.989
hMetis 13.826 15.415  523.167  108.188
MLPart 13.978 15.527  532.500  169.458

FM 19.332 20.307 1280.170  178.416
09 

Present  1.571  2.191  664.500  259.494
hMetis 30.159 31.781  698.833  172.009
MLPart 31.702 33.291  726.083  164.084

FM 28.232 28.224 2439.750  375.005
11 

Present  9.020  9.998  987.833  429.029
hMetis  2.938  1.164  884.917  220.097
MLPart  6.010  4.033  869.417  348.829

FM 16.695 15.392 1460.580  337.701
13 

Present  5.477  4.003  914.083  548.614
hMetis 44.333 43.845 1907.250  641.516
MLPart 44.287 43.981 2031.420  788.930

FM 22.295 22.141 5593.580  671.946
15 

OUR  7.817  7.817 3042.670 1167.130
hMetis 10.985 10.896 2323.920 1158.360
MLPart 15.619 15.959 2243.830  968.930

FM  9.102  9.048 3880.170 1165.370
17 

Present  8.981  8.961 2411.330 1033.410
hMetis  8.372  6.156    0.775    0.478
MLPart 10.391  7.556    0.779    0.618

FM  7.629  5.377    1.423    0.696
Avg. 
ratio 

Present  1.000  1.000    1.000    1.000
      

 

hMetis and MLPart do not strongly consider the wire 
distribution between the two blocks, which is much 
more balanced in the present algorithm. 

2.1  Minimization of edge weight imbalance 

Randomly generated initial solutions may satisfy the 
vertex balancing constraint but violate the edge weight 
balancing constraint. Thus, an edge weight balancing 
FM variant (FMEB) was used to minimize the edge 
weight imbalance with the time cost being almost line-
arly related to the hypergraph size. 

This algorithm minimizes the imbalance between 
the edge weights between the two partitioning blocks. 
Given the constraint δc , define the cost function as  

1 2Cost(EB) | ( ) ( ) |E EW V W V= − − 1 2 c[ ( ) ( )]E EW V W V δ+  
           (3) 

The algorithm uses the FM heuristics to iteratively 
move a vertex block to block and to select the vertex 
with the greatest gain to move given the vertex weight 
balancing constraint in one pass. The gain reduction in 
Cost(EB) by moving a vertex is calculated based on 
the edge weight balancing gain (EBGain) calculation. 
Algorithm 1 computes the initial EBGains for each 
free vertex vf . 

After each vertex movement, the EBGains are stored 
in sorted buckets to be updated. All the gains in the 
EBGain algorithm will change if the block with the 
greatest edge weight changes. The EBGain update al-
gorithm should then again calculate the gains of all 
free vertices. 

 

Algorithm 1  Calculate EBGain of vf 
VF ⇐ the block containing vf 

VT ⇐ the other block 
WE,temp(VF) ⇐ WE(VF) 
WE,temp(VT) ⇐ WE(VT) 
For all edge e adjacent to vf  do 
  NF ⇐ number of vertices on e in VF 
  NT ⇐ number of vertices on e in VT 
  If  NT = 0 or NF = 1 then 
     WE,temp(VF) ⇐ WE,temp(VF) − wb(e) / 2 
     WE,temp(VT) ⇐ WE,temp(VT) + wb(e) / 2 
  End if 
End for 
EBGain(vf) ⇐ | WE (VF)− WE (VT) | − | WE,temp(VF) − WE,temp(VT) | 

 

If the block with the greatest edge weight does not 
change when a vertex is moved, which is the most 



DONG Changdao (董昌道) et al.：Partition-Based Global Placement Considering … 

 

45

likely situation, only the vertices adjacent to the moved 
vertex must be updated. The six situations to be con-

sidered for vertices in a critical edge are illustrated in 
Fig. 1. 

 
                 (a)             (b)           (c)             (d)            (e)            (f) 

Fig. 1  Situations considered by the EBGain update. Each black vertex is to be moved (vm ) and each grey vertex is a free 
vertex (vf) to be considered. 

Let the amount of EBGain for free vertex vf contrib-
uted by edge e be GC(vf , e), and GC(vf , e) has oppo-
site values depending on whether WE (VF) > WE (VT). 
The following analysis assumes that WE (VF) > WE (VT). 
In Figs. 1a and 1b, GC(vf , e) is wb(e) or −wb(e) before 
the movement and remains the same after the move-
ment, so there is no need to update EBGain(vf). In Figs. 
1c and 1d, GC(vf , e) is wb(e) or −wb(e) before the 
movement and becomes 0 after the movement, so   
EBGain(vf) should be updated by −wb(e) or wb(e). In 
Figs. 1e and 1f, GC(vf , e) is 0 before the movement, 
and becomes −wb (e) or wb (e) after the movement, so   
EBGain(vf) should be updated by −wb (e) or wb (e). If 
WE (VF) < WE (VT), all the EBGain updates should be 
reversed.  

Algorithm 2 updates the EBGains for the free    
vertices.  

Algorithm 2  Update EBGains after movement vm 
VF ⇐ the block containing vm 

VT ⇐ the other block 
If the block with the greater EW changes then 
  For all free vertex vf in VF or VT do  
    Apply algorithm 1 to vf 
  End for 
Else if WE (VF) ⇐ WE (VF) then 
  For all edge e adjacent to vm do 
    NF ⇐ number of vertices on e in VF 
    NT ⇐ number of vertices on e in VT 
    If NF + NT > 2 then 
      If NT = 0 then 
        For all free vertex vf on e in VF do 
          EBGain(vf) ⇐ EBGain(vf) − wb(e) 
        End for 
      End if 
      If NT = 1 then 
        For all free vertex vf on e in VT do 
          EBGain(vf) ⇐ EBGain(vf) + wb (e) 
        End for 

      End if 
      If NF = 1 then 
        For all free vertex vf on e in VT do 
           EBGain(vf) ⇐ EBGain(vf) − wb(e) 
        End for 
      End if 
      If NF = 2 then 
        For all free vertex vf on e in VF do 
          EBGain(vf) ⇐ EBGain(vf) + wb(e) 
        End for 
      End if 
    End if 
  End for 
Else 
  Update corresponding EBGain in the opposite direction 

when WE (VF) > WE (VF) 
End if 
The FMEB iteration contains several passes and 

stops when the Cost(EB) is no longer reduced or when 
it becomes negative. Since the final goal of the FMEB 
algorithm is to produce a solution with a negative 
Cost(EB), it stops within one vertex movement pass 
once the goal is achieved. There may exist a vertex v 
such that EBGain(v) > | WE (V1) > WE (V2) | after per-
forming Algorithm 2 for the EBGain update with this 
large EBGain not the real gain of Cost(EB) reduction 
because Cost(EB)before − EBGain(v) ≠ Cost(EB)after . In 
this situation, if EBGain(v) < 2δCWE |WE (V1) + WE (V2) |, 
the pseudo Cost(EB) still satisfies δCWE , and the pass 
should still stop immediately after moving v, otherwise, 
Cost(EB) violates δCWE and stopping the pass should be 
decided according to the hypergraph size. For large 
hypergraphs size, the algorithm stops within one pass 
once the Cost(EB) becomes negative even if it is the 
pseudo event because this situation does not often oc-
cur. For small hypergraphs, this pseudo terminating 
condition should be avoided, however. Since all FMEB 
operations are proportional to FM in one pass when the 



  Tsinghua Science and Technology, February 2011, 16(1): 41-50 

 

46 

block with the greatest edge weight does not change, 
which happens in most cases, the time consumption of 
FMEB is almost linearly related to the hypergraph 
size[16]. 

When performing FMEB, the total cut size S(C) usu-
ally increases. To prevent S(C) from increasing too fast, 
the FMEB iteration is run in two phases. During the 
first phase, the maximum increment of S(C) is limited, 
and only vertices satisfying both this limit and the ver-
tex weight balancing constraint δCWV are allowed to 
move. If the first phase ends with a positive Cost(EB), 
the second phase is performed. During the second 
phase, all vertices satisfying δCWV are allowed to move 
to finally get a negative Cost(EB) and generate a solu-
tion satisfying the edge weight balancing constraint 
δCWE . This two phase iteration is alternated with the 
other FM variant to satisfy the dual constraints in the 
multilevel paradigm described in the next section. 

2.2  Multilevel partitioning for dual constraints 

The two phase FMEB and FMDC algorithm is inte-
grated into a multilevel paradigm which includes 
multi-start and V-cycle schemes. The multilevel para-
digm is shown in Fig. 2 with some changes added to 
improve the algorithm. 

 
Fig. 2  Multilevel hypergraph bipartition paradigm[11] 

During the coarsening stage of the multilevel algo-
rithm, the size of the original hypergraph is succes-
sively decreased level by level from bottom to top by 
vertex clustering. The PinEC scheme[10] is used for the 
clustering to encourage removal of more pins and dis-
courages merging of large clusters. 

At levels other than the bottom level, some edges 

will disappear in the coarsened hypergraph if they are 
totally contained in a cluster, so considering only the 
edge weights in the coarsened hypergraph will not ac-
curately evaluate the edge weight imbalance propor-
tion of the original hypergraph and refinement on these 
coarsened hypergraphs may achieve the wrong objec-
tive. To solve this problem, the algorithm uses edge 
weight inheritance of the vertices wi(v). Let vp be one 
new cluster vertex and vc1, vc2, …, vcm be the m chil-
dren clusters to be clustered into vp during clustering 
and ec1, ec2, …, ecn be the n edges connecting these 
children clusters and which are totally contained in vp . 
Then assign  

1 1
( ) ( ) ( )

m n

i p i ck b cj
k j

w v w v w e
= =

= +∑ ∑         (4) 

so that the edge weights are inherited recursively level 
by level. 

Algorithm 3 computes the EBGains in FMEB and is 
adapted from Algorithm 1. 

 

Algorithm 3  Calculate EBGain of vf with edge 
weight inheritance 
VF ⇐ the block containing vf 

VT ⇐ the other block 
WE,temp(VF) ⇐ WE (VF) − wi (vf) 
WE,temp(VT) ⇐ WE (VT) + wi (vf) 
For all edge e adjacent to vf do 
  NF ⇐ number of vertices on e in VF 
  NT ⇐ number of vertices on e in VT 
  If  NT = 0 or NF = 1 then 
     WE,temp(VF) ⇐ WE,temp(VF) − wb(e) / 2 
     WE,temp(VT) ⇐ WE,temp(VT) + wb(e) / 2 
  End if 
End for 
EBGain(vf) ⇐ | WE (VF) − WE (VT) | − | WE,temp (VF) − WE,temp(VT)| 

 

Note that, as long as the blocks with the greatest 
edge weight does not change, the EBGain update is 
only affected by the critical edges and there is no need 
to adjust the update algorithm; otherwise, all the EB-
Gains of free vertices should be recomputed as in the 
similar to gain computing algorithm and the inherited 
weights should be considered as well.  

The current FM variant FMDC is similar to LIFO-    
FM[17] with the only difference being the moving ver-
tex selection scheme. In FMDC, the vertices are ex-
amined before selection, and ones whose movement 
violates δCWV or δCWE are not allowed to move. Note 
that the FMDC input produced by FMEB may not sat-
isfy the dual constraints during the uncoarsening stage 



DONG Changdao (董昌道) et al.：Partition-Based Global Placement Considering … 

 

47

at levels other than the bottom level, so vertices whose 
movements reduce the edge weight imbalance are also 
allowed to move for the purpose of minimizing the 
imbalance proportion. 

The initial multilevel partitioning stage and un-
coarsening stage alternates between the two phase 
FMEB and the FMDC. The top level first performs the 
procedure with constraints looser than the given con-
straints to expand the search space and allow vertices 
with large clustering weights to move. After the initial 
partitioning, the solution may still violate the edge 
weight constraint δCWE because of the existence of ver-
tices with large inherited weights or those connected to 
edges with extremely large weights, so the two phase 
FMEB is always performed before the FMDC to en-
sure that the final solution satisfies δCWE .  

3  Wire Density Driven Global  
Placement 

MLDC is used in this top-down global placement 
framework to produce the wire density uniformity. The 
hyperedge weights are designed to better estimate the 
contribution of its corresponding circuit net to the wire 
density of each subregion of a bin’s bisection. 

3.1  Wire density weight model of hyperedge 

In traditional partition-based placement, the vertex 
weights w (v) are set equal to be the area of the corre-
sponding circuit modules, and the cut weight of a hy-
peredge wc(e) is designed to take into account the ter-
minal propagation so that minimizing of the hyper-
graph partitioning cut size minimizes the total wire 
length for the circuit placement. The wire density hy-
peredge balancing weight wb(e) used in this partition-
ing has dual constraints. Satisfying constraint δcEW 
means that the average wire weight per area is bal-
anced between the two subregions of each bisection; 
thus, the recursive bisection based on the wire density 
balancing during the top-down placement will result in 
a uniform wire distribution throughout the entire   
layout. 

The key factor is to determine wb(e) such that it is 
closely related to the circuit net contribution to the 
wire density of the subregion after routing. A net is 
called a bin’s internal net if all the modules on the net 
will be placed inside the bin; otherwise, it is called the 
bin’s external net. Figure 3 shows that both the internal 

and external nets of each subregion can cause an un-
balanced wire density distribution. Thus, the wire hy-
peredge density weight during bisection of a bin is set 
as wb(e) = ww(e)∙wl (e) , where ww (e) represents the 
width factor of the corresponding circuit net and wl (e) 
reflects the predicted wire length of each net in a 
subregion after bisection of a bin. Let PN(e) be the 
number of pins of a hyperedge inside the bin to be bi-
sected, then the wire length factor is 

l ( ) PN( ) ( )w e e eα ε= +             (5) 
where ε(e) is 0 if e represents the bin’s internal net or a 
non-zero number β, if e represents the bin’s external 
net. α and β are empirical factors. PN(e) appears in the 
length weight factor because a net adjacent to more 
modules in a bin has greater probability to be longer 
after routing and a pin in a net represents at least one 
wire connected to other pins. However, the pin density 
alone cannot reflect the wires lengths between a bin’s 
inside modules and its terminals, so ε(e) is add to ac-
count for external nets. 

  
(a)                         (b) 

Fig. 3  (a) Unbalanced wire distribution caused by internal 
nets in a subregion. (b) Unbalanced wire distribution caused 
by external nets for a subregion. The final wire density of 
the upper subregion is greater that for the other. 

3.2  Top-down global placement framework 

During a bin’s bisection in top-down global placement, 
a hypergraph is produced from its inside modules and 
terminals, with partitioning then performed on the hy-
pergraph to determine the modules to be placed in each 
subregion. In MLDC, wc(e) and wb(e) are assigned to 
each hyperedge e. The present wire density weight 
model is combined with the Steiner-Tree minimization 
scheme of ROOSTER for the edge weight assignment. 
For each net, w1 is calculated as the Steiner-Tree 
weight when all the inside modules are placed in 
subregion 1, as w2 when all are placed in subregion 2 



  Tsinghua Science and Technology, February 2011, 16(1): 41-50 

 

48 

and as w12 when they are in both subregions. Two cor-
responding hyperedges are created in the partitioning 
hypergraph with one new hyperedge having wc (e) = 

w12 − max(w1, w2) and wb(e) = wwidth(e)∙αPN(e) which 
connects all the bin’s inside modules on the net, which 
the other new hyperedge has wc(e) = |w1 − w2| and   
wb(e) = wwidth(e)∙ε(e) which connects all the bin’s in-
side modules on the net to the propagated terminal in 
subregion 2 if w1 > w2 or to the terminal in subregion 1 
if w1 < w2 .  

For large bins with hundreds of modules, MLDC is 
used to seek a more uniform wire distribution. For bins 
with less than 100 modules, flat FM partitioning is 
used. Recursive partitioning is performed until a bin is 
small enough, followed by detailed placement. Algo-
rithm 4 illustrates the top-down global placement 
framework.  

Algorithm 4  Wire density driven top-down global 
placement  

Enqueue(top-level placement bin)  
while queue not empty do  
  bin ⇐ Dequeue()  
  if bin small enough then 
    Process bin with end-case placer  
  else  
    Choose a cut-line for the bin  
    Build a partitioning hypergraph from the bin  
    for all net adjacent to a module in the bin do  
      Add proper wc(e) and wb(e) to hyperedges  
    end for  
    if bin very large then  
      Apply MLDC  
    else  
      Apply flat FM partitioning  
    end if  
    Bisect the bin into two child bins  
    Enqueue (each child bin)  
  end if  
end while  

 

4  Test Results 
4.1  Measurement of wire density uniformity 

The wire distribution uniformity of a placement solu-
tion should be measured after routing. The results are 
evaluated using FGR[18], a global router which won 
first place in the ISPD 2007 Global Routing Contest.  

For a global routing gcell c, the horizontal wire  

density Dh(c) is defined as the ratio of the number of 
horizontal nets crossing the gcell to the horizontal ca-
pacity of the two sides. h

Dδ  denotes the standard de-
viation of Dh(c) for all the routing gcells. The defini-
tions of Dv(c) and v

Dδ  for vertical nets are similar.    
The uniformity of the wire distribution can be meas-
ured by  h

Dδ   and  v
Dδ , when small values imply greater   

uniformity. 

4.2  Comparison to ROOSTER 

The algorithm was implemented in C++ based on 
UMPack[19], a well-known suite of open source physi-
cal design tools including ROOSTER. The test envi-
ronment was a GNU/Linux server with a Xeon 3.0 
GHz CPU and 5.9 GB memory. The IBMv2 placement 
benchmark suite[20] is used, with the routing configura-
tions given in the FGR website as shown in Table 2. 
Since these placement benchmarks lack information on 
the width of the nets, the wire width factor was simply 
set to one in the current. The wire density balancing 
constraint δcEW for the multilevel partitioning was set to 
5%. The parameters α and β were set to 1 and 2. The 
FGR maximum runtime was limited to one hour. 

Table 2  Configurations of IBM benchmarks for 
global routing 

Circuit Grids V/H cap 
IBM01 64×64 1214 
IBM02 80×64 2234 
IBM07 192×64 2136 
IBM08 192×64 2132 
IBM09 256×64 1428 
IBM10 256×64 2740 
IBM11 256×64 1435 
IBM12 246×64 2448 

The results for the current algorithm are compared 
to ROOSTER for the IBMv2 placement benchmarks in 
Table 3. The column labeled rWL is the total wire 
length after the global routing, and o.f. is the routing 
overfill. The run time is the time cost of the placement. 
The results show that our algorithm is capable of pro-
ducing solutions with a more uniformly distributed 
wire density, outperforming ROOSTER by 3.1% and 
2.3% on average in terms of the minimization of the 
standard deviation of the routing gcell horizontal and 
vertical wire densities, i.e., h

Dδ  and v
Dδ . The total wire 

length increment is 3.0% and the overfill is limited. 



DONG Changdao (董昌道) et al.：Partition-Based Global Placement Considering … 

 

49

The placement time consumption increase is 18% on 
average. Figure 4 shows the horizontal and vertical 
wire density maps after applying FGR to the solutions 
from ROOSTER and the current work on the IBM01 

hard benchmark. Gcells with higher wire densities are 
scattered more uniformly throughout the layout in Fig. 
4b than in Fig. 4a due to the effectiveness of the cur-
rent global placement framework.  

 
(a) (b) (c) 

 
(d) 

Fig. 4  Horizontal and vertical wire density maps for the IBM01-hard benchmark after applying FGR. (a) , (c) are from 
the placement by ROOSTER and (b), (d) are from the current framework. 

Table 3  A comparision of present results to ROOSTER on the IBMV2 benchmarks 

Current ROOSTER 
Circuits 

rWL o.f.
h
Dδ  v

Dδ  Time (s) rWL o.f.
h
Dδ  v

Dδ  Time (s) 

IBM01e  61 247    0 0.264 0.275   2691  58 602    0 0.268 0.290   2346 
IBM01h  62 013    0 0.263 0.275   2894  58 319    0 0.273 0.289   2451 
IBM02e 171 658    0 0.277 0.283   7259 168 581    0 0.287 0.290   5290 
IBM02h 172 317    0 0.274 0.273   7837 168 536    0 0.277 0.281   5548 
IBM07e 465 846 3604 0.278 0.246 16 175 435 927    0 0.273 0.242 13 015 
IBM07h 424 382    0 0.268 0.260 14 792 409 857    0 0.280 0.257 10 978 
IBM08e 463 243 3423 0.236 0.230 16 880 459 866  348 0.233 0.243 15 219 
IBM08h 449 007  907 0.240 0.245 15 024 447 991   17 0.237 0.252 10 686 
IBM09e 424 726    0 0.246 0.244 15 649 415 361    0 0.260 0.253   9854 
IBM09h 425 865    0 0.243 0.239 15 184 414 625    0 0.261 0.256 11 076 
IBM10e 673 145  206 0.251 0.196 22 162 637 910  201 0.261 0.185 17 591 
IBM10h 664 770    0 0.246 0.194 19 084 636 352   77 0.267 0.189 18 346 
IBM11e 548 291  904 0.257 0.207 16 370 538 611  577 0.261 0.196 15 191 
IBM11h 547 386  674 0.249 0.201 16 279 535 042  603 0.261 0.209 14 179 
IBM12e 788 856    0 0.251 0.166 20 415 761 381    0 0.260 0.172 17 272 
IBM12h 855 833 2695 0.251 0.180 19 977 845 815 2799 0.261 0.200 20 295 

Ratio 1.000  1.000 1.000 1.000 0.970  1.031 1.023 0.818 
 
 

5  Conclusions 

A wire density driven top-down global placement al-
gorithm was developed that is capable of producing 
solutions with more uniformly distributed wire densi-
ties for better CMP variation control. A multilevel hy-
pergraph partitioning satisfying dual constraints on 
both the vertex weight and the wire density weight is 
performed recursively in the top-down global place-
ment framework. Two flat FM variants, a two-phase 
FMEB to generate more balanced solutions and an 
FMDC to minimize the cut size for dual constraints, 
are iterated in the initial partitioning stage and the   

refinement stage of the multilevel algorithm.  
Tests show that the partitioning algorithm produces 

solutions with much more balanced edge weights be-
tween two partitioning blocks than the leading-edge 
hMetis and MLPart with only a small increment in the 
cut size and run time. The algorithm also outperforms 
FM in terms of both the edge weight balancing and the 
cut size minimization. The partitioning algorithm en-
ables this global placement algorithm to produce more 
uniform wire density distributions than ROOSTER 
with only a small increase in the total wire length and 
run time. 



  Tsinghua Science and Technology, February 2011, 16(1): 41-50 

 

50 

Acknowledgements 

The author thanks the contributors of the UMPack open source 
physical design tool, on which the experiments of this work is 
based, and the contributors of FGR who helped evaluate the 
results. 

References 

[1] Park T H. Characterization and modeling of pattern de-
pendencies in copper interconnects for integrated circuits 
[Dissertation]. Department of EECS, MIT, USA, 2002. 

[2] Tian R, Wong D F, Boone R. Model-based dummy feature 
placement for oxide chemical-mechanical polishing manu-
facturability. In: Proceedings of the International Confer-
ence on Computer Aided Design. Los Angeles, California, 
USA, 2000: 667-670. 

[3] Leung K S. Spider: Simultaneous post-layout ir-drop and 
metal density enhancement with redundant fill. In: Pro-
ceedings of the International Conference on Computer-   
Aided Design. San Jose, California, USA, 2005: 33-38. 

[4] Chen Y, Gupta P, Kahng A B. Performance-impact limited 
area fill synthesis. In: Proceedings of the International 
Conference on Computer Aided Design. Anaheim, Califor-
nia, USA, 2003: 22-27. 

[5] Pan D Z, Cho M. Synergistic physical synthesis for manu-
facturability/variability in 45 nm designs and beyond. In: 
Proceedings of the Asia and South Pacific Design Automa-
tion Conference. COEX, Seoul, Korea 2008: 220-225. 

[6] Cho M, Pan D Z, Xiang H, et al. Wire density driven 
global routing for cmp variation and timing. In: Proceed-
ings of the International Conference on Computer-Aided 
Design. New York, NY, USA, 2006: 487-492. 

[7] Chen H Y, Chou S J, Wang S L, et al. Novel wire density 
driven full-chip routing for CMP variation control. In: 
Proceedings of the International Conference on Computer 
Aided Design. San Jose, California, USA, 2007: 831-838. 

[8] Chen T C, Cho M, Pan D Z, et al. Metal-density driven 
placement for cmp variation and routability. In: Proceed-
ings of the International Symposium on Physical Design. 
New York, NY, USA, 2008: 31-38. 

[9] Roy J A, Lu J F, Markov I L. Seeing the forest and the 
trees: Steiner wirelength optimization in placemen. In: 
Proceedings of the International Symposium on Physical 
Design. New York, NY, USA, 2006: 78-85. 

[10] Caldwell A E, Kahng A B, Markov I L. Improved algo-
rithms for hypergraph bipartitioning. In: Proceedings of the 
Asia and South Pacific Design Automation Conference. 
New York, NY, USA, 2000: 661-666. 

[11] Karypis G, Aggarwal R, Kumar V, et al. Multilevel hyper-
graph partitioning: Application in VLSI domain. In: Pro-
ceedings of the International Conference on Design Auto-
mation. New York, NY, USA, 1997: 526-529. 

[12] Dutt S, Deng W. VLSI circuit partitioning by clus-
ter-removal using iterative improvement techniques. In: 
Proceedings of the International Conference on Com-
puter-aided Design. San Jose, California, USA, 1996: 
194-200. 

[13] Caldwell A E, Kahng A B, Markov I L. Can recursive bi-
section alone produce routable placements? In: Proceed-
ings of the Design Automation Conference. Bergen, Nor-
way, 2000: 477-482. 

[14] Westra J, Bartels C, Groeneveld P. Probabilistic congestion 
prediction. In: Proceedings of the International Symposium 
on Physical Design. New York, NY, USA, 2004: 204-209. 

[15] Alpert C J. Partitioning Benchmarks for the VLSI CAD 
Community. http://vlsicad.ucsd.edu/UCLAWeb/cheese/   
ispd98.html. 2010. 

[16] Fiduccia C M, Mattheyses R M. A linear-time heuristic for 
improving network partitions. In: 25 Years of DAC: Papers 
on Twenty-Five Years of Electronic Design Automation. 
New York, NY, USA, 1988: 241-247. 

[17] Hagen L, Huang D, Kahng A. On implementation choices 
for iterative improvement partitioning algorithms. IEEE 
Transactions on Computer-Aided Design of Integrated 
Circuits and Systems, 1997, 16(10): 1199-1205. 

[18] Roy J A, Markov I L. High-performance routing at the 
nanometer scale. In: Proceedings of the International Con-
ference on Computer-Aided Design. Piscataway, NJ, USA, 
2007: 496-502. 

[19] Adya S N, Caldwell A E, Kahng A B, et al. UMICH Physi-
cal Design Tools. http://vlsicad.eecs.umich.edu/BK/   
PDtools. 2010. 

[20] Yang W, Choi B K, Sarrafzadeh M. Routability driven 
white space allocation for fixed-die standard-cell place-
ment. In: Proceedings of the International Symposium on 
Physical Design. New York, NY, USA: ACM, 2002: 42-47. 

 


