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Abstract: Cayley graphs have many good properties as models of communication networks. This study ana-

lyzes the reliability of the Cayley graph based on the dihedral graph. Graph theory and analyses show that 

almost all Cayley graphs of the dihedral graph D2n are optimal super-λ . The number ( )GiN  of cutsets of 

size ′,λ i λi  is given as 
−⎛ ⎞
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The Cayley graph is an important class of graphs 
which is vertex-transitive and is used for communica-
tion networks. Reliability analysis is important when 
studying communication networks. For a connected 
graph ( , ),G V E  we denote the number of cutsets of 
size i  as ( ).iN G  Assuming that all vertices are per-
fectly reliable and all edges fail independently with the 
same probability ,ρ  then the probabilistic reliability 
measure ( )R G ρ,  of a connected graph G  is defined 
as the probability that G  remains connected when 
some edges fail,  
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Bauer et al.[1] and Esfahanian[2] introduced some 
important definitions and a useful proposition.  

Definition 1  A connected graph G  is said to be 
super-λ  if every cutset of size λ  isolates a vertex 
with the minimum vertex degree δ  of G.  

Definition 2  A set S  of edges of a connected 
graph G  is called a restricted cutset (RC) if G S−  is 
disconnected and G S−  contains no trivial component 

1K . The restricted edge connectivity ( )Gλ′  is the 

minimum size of an RC in G.  
The following proposition[3] and definition[4] are 

useful in this article.  
Proposition 1  If G  is a connected graph with at 

least four vertices and it is not a star graph 1 mK , , then 
( )Gλ′  is well defined and ( ) ( ) ( )G G Gλ λ ξ′ , 

where ( ) min{ ( ) ( ) ( ) 2 ( )G d e d x d y e x yξ = = + − : = , ∈     
( )}E G .  
Definition 3  A super-λ  graph G  is said to be 

optimal super-λ  if ( ) ( )G Gλ ξ′ = .   
In general, all values iN  of a graph are difficult to 

determine. In fact, Ball[5] showed that this problem is 
NP-hard. However a special class of regular graphs has 
some results. Boesch and Wang[6] gave the necessary 
conditions and determined that (2 4 3)iN k i k −  
for Harary graphs. These two results are as follows:  

Proposition 2  Every connected circulant is su-
per-λ  unless it is ( ; )G n a  or (2 ;G j 2,4, , 1, )j j−  
for 1j >  is odd.  

Proposition 3  Let ( ;1,2, , ), 2H G n k k n= < /  and 
let U  be a cutset of H  with size ,i 2 4 3k i k − ; 
then U  isolates exactly one vertex and  

2
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Furthermore Li and Li[4] proved the following    
proposition.  

Proposition 4  Every connected circulant 1( ; ,G n a    
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2 , , )ka a  is optimal super-λ  unless /2,ka n= g.c.d.( ,n    
1 2, , , ) 1ka a a >  and 2 1 2 4 4.k n k− < / < −   
This article studies the reliability of another class of 

Cayley graph based on dihedral groups. This kind of 
Cayley graph is more complicated than the circulant. 
Some initial definitions and propositions are given   
below.  

Definition 4  The dihedral group of order 2n  is 
the group of symmetries of a regular polygon with n  
sides, usually denoted as 2 ,nD  where 2 , 1,n

nD a b a= | =〈     
2 1 11, .b b ab a− −= = 〉   
Since 1 1,b ab a− −=  then s sba a b−= . Thus all the ele-

ments in 2nD  have the form i ja b (1 , 0 1i n j< = , ).  
Definition 5  Let G  be a group and S  be a 

subset S G⊂ ,  then the Cayley graph Cay( )G S,  is 
the digraph X  with vertex set G  and edge set 

1{( , ) }.x y yx S−: ∈   
Denote the Cayley graph based on the dihedral 

group 2Cay( , )nD S  as 2( , )nG D C  where 1S C C−= ∪  
and 1 2 1 1 2( , , , , , , )(1 /2,k ki ji i j

sC a a a a b a b i n= ).sia C∈  
An edge of the form ( , )si ii j ja b a b±  is called an sia -    
edge and each edge of the form ( ,i ja b 1)tj i ja b− +  is 
called a tja b-edge.  

A few lemmas for the Cayley graph 2( , )nG D C  are 
given first followed by a theorem.  

Some notations and propositions are given first.  
In graph 2( , )nG D C , let 0V  be the vertex set with 

the form .ia  Call the subgraph induced by V the 
a-part and let 1 0V V \V= . Then call the subgraph in-
duced by 1V  the b -part.  

Since G  is connected, then C  is the generated 
subgroup of 2nD , and it is easy to find the following 
proposition.  

Note 1  Let 1 2 1 1 2( , , , , , , ),k ki ji i jC a a a a b a b=  1n =  

11 2g.c.d.( , , , , ),kn i i i  and 2 g.c.d.( (mod ) :r sn j j n= −     
, , ),sr jja b a b C r s∈ ≠ then 2( , )nG G D C=  is connected 

if and only if 2 11 1k n= , =  or 2 1 21 g.c.d.( ) 1k n n> , , = .   
Let ( , )G V E= be a graph. For ,X V⊆ ( ,H X=     

)V X−  denotes the set of edges with one end in X  
and the other not in ,X  and ( )G Xδ  denotes the 
number of edges in ( , )X V X− . The following is a 
known result about ( )G Xδ [7]:  

Proposition 5  ( ) ( ) ( ) ( )G G G GX Y X Y X Yδ δ δ δ∩ + ∪ +  
for any , ( )X Y V G⊆ .  

Every cutset of size λ  (or every restricted cutset of 
size λ′ ) always has the form ( )H X V X= , −  and 

both of the induced subgraphs [ ]G X  and [ ]G V X−  
are connected.  

Lemma 1  Let 2( , )nG D C  be a connected Cayley 
graph, 1 2 1 1 2 2{ , , , , , , , }k ki ji i j jC a a a a b a b a b= and ( ,H X=     

)V X−  be an RC  of size .λ′  If 3X m| |= > , then 
there exists an i ja b C∈  such that the induced sub-
graph [ ]G X  contains at least two -i ja b edges.  

Proof  If not, there is at most one -i ja b edge in 
[ ]G X  for each ,i ja b C∈  then suppose there are 1δ  

elements in C  whose order is bigger than 2, and 2δ  
elements in C  with order 2 then ( )G X Xλ δ′= | |∙     

1 2 1 2 1 22( ) (2 ) 2( )mδ δ δ δ δ δ δ− + = + − +∙ .  
 

1 2 1 2 1 2

1 2

(2 ) 2( ) 2(2 ) 2
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λ δ δ δ δ δ δ ξ
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′ + − + − + + + =
− + − + + >

 

Thus a contradiction occurs. This ends the proof of the 
lemma.   

Lemma 2  Let 2( , )nG D C  be a connected graph and 
let ( , )H X V X= −  be an RC  with ( ) ,G Xδ λ′= X n| |  
and X  is minimal. If for some (or )i ia a b C∈ , there 
are at least two (or )i ia a b C∈  edges in [ ]G X , then 

(or )i iX a X a b X= ⋅∙ .  
Proof  Let (or ).i iX a X a b X′ = ∙ ∙  Since 2( , )nG D C  

is vertex symmetric, then X ′  is minimal RC  with 
( ) .G Xδ λ′ ′= So ,X X n′| |=| |  and we have that V| −     

( ) 2.X X n′∩ |  As there are at least two (or )i ia a b ∈  
C edges in [ ],G X so 2,X X ′| ∩ | 2 X X ′| ∪ | =    

2 2X X X X n′ ′| |+ | |−| ∩ | −  and ( ) 2.V X X ′| − ∪ |  
Thus, if [ ]G X X ′∩  or [ ],G V X X ′− ∩ say [ ],G X X ′∩  

has a trivial component 1K , one of these two cases 
will occur: if [ ]G X X ′∩  has at least two trivial com-
ponents, then ( ) 2 ,G X Xδ δ δ δ ξ λ′ ′∩ + = > else 

[ ]G X X ′∩  has only one trivial component, then 
( )G X Xδ λ δ λ′ ′ ′∩ + > ; otherwise, ( )G X Xδ λ′ ′∩ .  
Similarly, if [ ( )]G V X X ′− ∪  has a trivial component 
1,K then ( ) ;G X Xδ λ′ ′∪ >  otherwise ( ) .G X Xδ λ′ ′∩   
Therefore, if [ ]G X X ′∩  or [ ( )]G V X X ′− ∩  or 
[ ( )]G V X X ′− ∪  has a trivial component 1K , then 
( ) ( ) ( ) ( )G G G GX X X X X Xδ δ λ λ δ δ′ ′ ′ ′ ′∩ + ∪ > + = + ,  

which contradicts Proposition 5, so each of the three 
induced subgraphs [ ]G X X ′∩  or [ ( )]G V X X ′− ∩  or 

[ ( )]G V X X ′− ∪  has no trivial component 1.K Hence, 
( )G X Xδ λ′ ′∩  and ( )G X Xδ λ′ ′∪ . By Proposi-

tion 5, we have  
( ) ( )

( ) ( ) .
G G

G G

X X X X
X X

λ λ δ δ
δ δ λ λ

′ ′ ′ ′+ ∩ + ∪
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Thus, ( ) ( ) .G GX X X Xδ δ λ′ ′ ′∩ = ∪ =  Since X is    
minimal, then X X X′∩ = , i.e., .X X ′= The lemma is 
proved.   

Lemma 3  Let 2( , )nG D C  be a connected graph 
and let ( , )H X V X= −  be an RC  with ( )G Xδ λ′=  
and X  is minimal. If 3 X n< | |  and for some 

(or )i ia a b C∈  there is an (or )i ia a b -edge in [ ]G X , 
then (or )i iX a X a b X= ∙ ∙ .  

Proof  To prove this lemma, three cases will occur:  
Case 1  There is an -ia b edge in [ ].G X Let ( , )ix a b x∙  

be an edge in [ ]G X , let iX a b X′ = ∙ , x  and ia b x∙  
are both in .X ′  Then 2.X X′| ∩ |  Similar to the 
proof of Lemma 2, we have iX a b X= ∙ .  

Case 2  There are only -ia edges in [ ].G X  By 
Lemma 1 and Lemma 2, there exists an ia C∈  such 
that ,iX a X= ∙  suppose ( , )jx a x∙ ( )j i≠  is an edge 
in [ ]G X . Since both ia x∙  and i ja a x∙ ∙  are in 

[ ],G X ( , )i j ia x a a x∙ ∙ ∙ ( )i j j ia a x a a x=∙ ∙ ∙ ∙  is also an 
edge in [ ]G X , then by Lemma 2, .ja X X=∙   

Case 3  There are both -ia edges and -ja b edges 
in [ ].G X  By Case 1, ,jX a b X= ∙ suppose ( )ix a x, ∈∙      

[ ],G X then [ ],j j ia b x a b a x G X, ∈∙ ∙ ∙ and thus ( ja b∙     
, )i ja x a b x∙ ∙  is also an -ia edge in [ ],G X so X =    

.ia X∙   
Lemma 4  Let 2( , )nG D C  be a connected Cayley 

graph, 1 2 1 1 2 2{ , , , , , , , }k ki ji i j jC a a a a b a b a b=  and ( ,H X=   
)V X−  be an RC of size λ′  with minimal X  and 

.X n n′| | = If 3,n′ > then 2n n′ | and  let { i jT a b C= ∈ :  
there is at least one -i ja b edge in [ ]},G X  then one of 
the following two cases will occur:  

(1) If there is an -ja b edge in [ ],G X  then X =  
{ 0,1, , /2 1} { 0,1, , /2 1}id id la i n a b i n+′ ′: = − ∪ : = −  and 
the induced subgraph [ ]G X  is isomorphic to a con-
nected graph ( , )nG D C′ ′  where { }s d sC a a T/′= : ∈ ∪    
{ }t d ta b a b T/ : ∈l m ;  

(2) If there are only ja -edges in [ ],G X  then X =      
{ : 0,1, , 1}ida i n′= −  and [ ]G X  is isomorphic to a 
circulant of order n′  with { / : }lC l d a T′ = ∈ .  

Proof  Without loss of generality, suppose 1 X∈ . 
First of all, prove that X is a subgroup of 2nD . Let 

{ :i jT a b C= ∈  there is at least one -i ja b edge in [ ]}.G X  
Consider X  and T  as the subsets of 2nD . Let T〈 〉  be 
the subgroup of 2nD  generated by ,T since 1 ,X∈  
then T X⊆〈 〉  by Lemma 3. On the other hand, for any 

,x X∈ since [ ]G X  is connected, there is a path joining 
e  and x  which consists of a sequence of ,l ma b T∈  
thus, x T∈〈 〉. Since T X⊆〈 〉 , then T X=〈 〉 . Therefore 

X is a subgroup of 2nD .  
The following proves the rest of the lemma.  
Case 1  There exists an ia b  edge in [ ]G X . For 

X as a subgroup of 2nD , then X is a group with order 
n′  and 2 .n n′ |  Moreover, by Lemma 3, iX a b X= ∙ , so 
2 .n′| Let 2 / ,d n n′= then { : 0,1, , / 2 1}idX a i n′= = − ∪    
{ : 0,1, , / 2 1id la b i n+ ′= − }(where la b  is an arbitrary 
element in ).T ( [ ]) {( ) } {( ,id idE G X x a x a T x= , : ∈ ∪∙   

: )}jd l jd la b x a b T+ + ∈∙ . Let ( )nG G D C′′ ′= ,  be a con-
nected graph of order n′  where { }s d sC a a T/′ = : ∈ ∪    
{ }t d ta b a b T/ : ∈l m . The bijection ( [ ]) ( )f V G X V G′: →  
defined by ( ) ,id if a a= ( ) ( 1,2, ,jd l jf a b a b i+ = =    

/2 1)n′ −  is an isomorphism between [ ]G X  and .G′   
Case 2  There exists no ia b  edge in [ ]G X . For 

X  as a subgroup of 2nD , then X  is a group with 
order n′  and 2 .n n′ |  Let / ,d n n′=  then { idX a= :     

0,1, , 1}.i n′= − ( [ ]) {( , ) }.id idE G X x a x a T= : ∈∙ Let G′  
be a circulant of order n′  with { }lC l d a T′ = / : ∈ . 
Then, the bijection ( [ ]) ( )f V G X V G′: →  defined by 

( )idf a i= ( 0,1, , 1)i n′= −  is an isomorphism be-
tween [ ]G X  and G′ . The lemma is proved.  

Theorem 1  Let 2( , )nG G D C=  be a connected 
graph with 1 2 1 1 2 2{ , , , , , , , }k ki ii i i iC a a a a b a b a b=  then  

(1) G is optimal super- λ , namely, ( ) ( )G Gλ ξ′ = .  
(2) Every cutset of size i , 1iδ ξ − , isolates 

exactly one vertex and  
( 1)

( )i

n
N G n

i
δ

δ
−⎛ ⎞

= .⎜ ⎟−⎝ ⎠
 

Except for the four kinds of graphs given below:  
(1) 1 20, 2;k k= =   
(2) 1 1{ , , , }kii jC a a a b= ,

11g.c.d.( , , , ) 1kn i i =  and 
2nδ > / ;   

(3) 11 2 1 1 1 2 22 22 2 2/2{ , , , , , , , , }k ki j ji i j j jnC a a a a a b a b a b++= , 
1 2nδ − > /  and 2n /  is an odd;  

(4) 1 1 1 ( 1)1 1 1 2 1 1 1 1 2 2{ , , , , , , , ,k kn i j n jn i n i j j n jC a a a a b a b a b−++=  
}ja b , such that 1 1g.c.d.( , ) 1,j j n− =  11 .n nδ − > /   

Proof  Since 2 2,ξ δ= −  we have ξ δ>  unless 
2.δ  And 2δ  means one of the following cases 

happens:  
• 1 20 and 2k k= = , which corresponds to the first 

kind of graph given in the theorem.  
• 2

1 2, 1, and 1,na C k k/ ∈ = =  which results in G  be-
ing disconnected which contradicts the hypothesis.  

In other cases ξ δ λ> .  So if we can prove that 
,λ ξ′ =  then .λ λ′ >  By the definition of λ′  and 

super-λ graph, we know λ λ′ >  means that the   
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graph is super- .λ  Also, we know λ ξ′ . Thus to 
prove the first item of the theorem, we need only to 
prove that all the graphs are λ ξ′  except for the 
four kinds of graphs given in the theorem. Let 

( ,H X= )V X−  be an RC of size ,λ′ 2X n| | / , 
and X  is minimal.  

If 2m=  then [ ]G X  is isomorphic to 2 ,K  so .λ ξ′=   
If 3m =  then there are at most 3  edges in [ ],G X  

thus 6mλ δ′ −  and  
( 2) 4 (2 2) 4mλ δ δ ξ δ ξ′ − − + − + − + .  

So λ ξ′  unless 4δ < .  A few cases with 4δ <  are:  
• 2na C/ ∈ :  1 21, 1,2.k k= =   
• 2na C/ ∈ :/  1 20, 1,2,3k k= = ; or 1 21, 1k k= = .  

Therefore if 2
1 2, 1, 1na C k k/ ∈ = =  or /2

1, 0,na C k∈ =/  
2 1k =  then G  is disconnected, and 1 20 and 2k k= =  

is the first kind of graph.  
Next consider the remaining three cases. If 
2

1, 1,na C k/ ∈ =  and 2 2.k =  Since 3,m =  there is at 
most one -ja b edge in [ ],G X  and 2 ,na C/ ∈  so there 
is at most one -ia edge in [ ],G X  thus there are at 
most two edges in [ ].G X  So 4 3 4mλ δ δ′ − = × −     

2δ ξ− + .  Therefore, since λ ξ′ >  contradicts the 
fact that ,λ ξ′  these cases can not occur. If 

2
1, 0,na C k/ ∈ =/  and 2 3k =  then there are at most 

two ja b -edges in [ ],G X  so similarly, λ ξ′ >  and 
this also can not occur. If 2

1, 1,na C k/ ∈ =/  and 2 1k =  
and there are three edges in [ ]G X , this implies that 

3n =  which belongs to the second kind of graph 
given in the theorem. If 3n >  there are two edges in 

[ ],G X  then λ ξ′ >  and this can not occur. Thus if 
3m =  then λ ξ′  except for the first two kinds of 

graphs given in the theorem.  
If 3m > , by Lemma 4, [ ]G X  is isomorphic to a 

circulant or ( )mG D C′, . The following discusses the 
problems in these two cases:  

Case 1  [ ]G X  is isomorphic to a circulant of or-
der m  with X sδ = (the valency of [ ]),G X  thus 

1s m − . For convenience, let aδ  be the number of 
the -ia edges of a vertex and let b a 2kδ δ δ= − =  be 
the kinds of -ja b edges in G .  

Then  
a b a b

a b

a b

( ) 2( ) 2
( 2)( ) 2 2

( 2)( ) 2( 2)

m s
m s s

m s m

λ δ δ δ δ ξ
δ δ ξ

δ δ ξ

′ = + − − + + + =

− + − − + +

− + − − − + =

 

a b( 2)( 2)m sδ δ ξ− + − − + .  

Therefore λ ξ′  unless a sδ =  and b 1δ =  in which case 
2( 1) 2 .m sλ ξ′= − + + − If λ ξ′ <  then 2s m> / .  The 

-a part is connected because b 2 1kδ = = , so m n=  for 
a .sδ =  This corresponds to the second kind of graph 

given in the theorem.  
Case 2  [ ]G X  is isomorphic to a Cayley graph of 

a dihedral graph with X s lδ = + ( s  is the number of 
-ia edges of a vertex and l is the number of -ja b edges 

of a vertex in [ ]G X ), 2 1s m / −  and 2.l m /  
Therefore,  

a b a b( ) 2( ) 2m s lλ δ δ δ δ ξ′ = + − − − + + + =  

a b( 2)( ) 2( ) 2m s l s lδ δ ξ− + − − − + + +  

a b( 2)( 2) .m s lδ δ ξ− + − − − +  
If 

a b 2,s lδ δ+ − −  then .λ ξ′ Thus λ ξ′ <  if and only 
if a 1,sδ = + b lδ =  and 2s l m+ > /  or a b, 1s lδ δ= = +  
and 2s l m+ > / .   

For the first instance, since a 1sδ = + , 2 ,na C/ ∈  and 
2

2Cay( , \ )n
nG D C a /′ =  is disconnected. Suppose there 

are t (t | n) connected components in each part of G′ 
then g.c.d.( , / 2) 1t n =  and as a consequence /2n  is 
odd and 2t = .  So m n= .  Thus 1 22 22{ i inC a a a/= , , , ,     

11 1 1 2 22 22 },k ki j jj j ja a b a b a b++, , , , 1 2,nδ − > /  and 2n /  
is odd. This is the third kind of graph given in the   
theorem.  

Similarly, in the second instance suppose there is no 
-ja b edge in [ ]G X ( ).ja b C∈ Let 2Cay( ,nG D′ =    

\ )jC a b  then G′  is disconnected too and if there are 
t  connected components in ,G′  then 2m n t= /  and 

1 1 1 ( 1)1 1 1 2 1 1 1 1 2 2{ , , , , , , , , },k kn i j n jn i n i j j n j jC a a a a b a b a b a b−++=  
such that 1 1g.c.d.( , ) 1,j j n− =  11 n nδ − > /  which is 
the fourth kind of graph given in the theorem.  

In conclusion, λ ξ′  in all the graphs except for 
the four kinds mentioned in the theorem, so they are all 
optimal super-λ. As a consequence, for each 

,iδ ξ<   
( 1)

( )i

n
N G n

i
δ

δ
−⎛ ⎞

= .⎜ ⎟−⎝ ⎠
 

This ends the proof.   
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