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Abstract: Efficient support for querying large-scale resource description framework (RDF) triples plays an 

important role in semantic web data management. This paper presents an efficient RDF query engine to 

evaluate SPARQL queries, where the inverted index structure is employed for indexing the RDF triples. A 

set of operators on the inverted index was developed for query optimization and evaluation. Then a 

main-tree-shaped optimization algorithm was developed that transforms a SPARQL query graph into the op-

timal query plan by effectively reducing the search space to determine the optimal joining order. The opti-

mization collects a set of RDF statistics for estimating the execution cost of the query plan. Finally the opti-

mal query plan is evaluated using the defined operators for answering the given SPARQL query. Extensive 

tests were conducted on both synthetic and real datasets containing up to 100 million triples to evaluate this 

approach with the results showing that this approach can answer most queries within 1 s and is extremely 

efficient and scalable in comparison with previous best state-of-the-art RDF stores. 
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Introduction 

With the fast growth of the semantic web, a large 
amount of resource description framework (RDF) data 
(e.g., DBpedia[1]) is being created and published for 
knowledge sharing and integration in web applications. 
Community efforts for interlinking the open RDF data 
sources are being actively pursued by the linking open 
data (LOD) project[2]. Data can be linked to produce 
the knowledge, such as “finding the relationship of any 
two people who worked with Paul Erdös”, by combin-
ing the desired RDF data sources together. Thus, the 
semantic web technologies open new ways to address 
complex information needs. However, an important 
problem that confronts current semantic web data 

management is efficient support for indexing and que-
rying large-scale RDF data.  

SPARQL[3] is the standard query language for ac-
cessing RDF data, where the basic access pattern is 
called the triple pattern. A triple pattern has the same 
form as an RDF triple, but with variables. For example, 
a customer may issue a SPARQL query such as shown 
in Fig. 1, which returns offers for a given product that 
fulfills the specific requirements. In the query, “?of-
fer :vendor ?vendor” is a triple pattern. Like the coun-
terpart of select-project-join queries in SQL, the 

 
SELECT ?offer ?product 
WHERE { 

?offer ?product ?vendor. 
?offer :vender ?vendor. 
?offer rdf:type Offer. 
?vendor rdf:type Vendor. 
?vendor :country “cn”@en. 
?product rdf:type Product. 

} 

Fig. 1  A SPARQL query 
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SPARQL query supports both conjunctions and dis-
junctions of the triple patterns. For instance, in Fig. 1 
the two triple patterns “?offer :vendor ?vendor” and 
“?offer rdf:type Offer” join on the variable ?offer. 
Furthermore, the predicates in the SPARQL query can 
also be variables (e.g., “?offer ?product ?vendor”), 
which allows “predicate-agnostic”queries. 

Thus far, relational databases (RDB) have been 
widely used for RDF data storage with the SPARQL 
queries translated into SQL statements for evaluation. 
For example, Jena2[4] designs the property tables to 
cluster together subjects with the same properties; 
while SOR[5] uses multiple special-purpose tables, each 
of which keeps a type of RDF terms. However, these 
approaches involve many self-joins or cross-table-joins 
when processing queries, which greatly slows the 
query performance. For example, an equivalent SQL 
query of the SPARQL query shown in Fig. 1 includes 
five self-joins, as displayed in Fig. 2. To solve this 
problem, Abadi et al.[6] proposed a vertical partitioning 
based method to store and query RDF data. Though 
many joins are still required to answer queries over 
multiple predicates, linear merge joins can be used to 
alleviate the joining cost as each table is sorted by 
subject. However, predicate-unbound queries require a 
large number of union operations on all tables.  

 

SELECT T1.sub as offer, T1.pre as product 
FROM TRIPLE T1, TRIPLE T2, TRIPLE T3, 

TRIPLE T4, TRIPLE T5, TRIPLE T6 
WHERE { T1.sub = T2.sub and T1.sub = T5.sub 

and T1.pre = T4.sub and T1.obj = T3.sub 
and T1.obj = T6.subj and T4.obj = ‘rdf:type’ 
and T2.obj = ‘Offer’ and T3.obj = ‘Vendor’ 
and T4.obj = ‘Product’ and T5.pre = ‘vender’ 
and T6.pre = ‘country’ and T6.obj = ‘cn’ 
and T2.pre = ‘rdf:type’ and T3.pre = ‘rdf:type’} 

Fig. 2  A translated SQL query (TRIPLE is the triple table) 

Unlike the RDB-based solutions, native RDF stores, 
such as Hexstore[7], YARS2[8], and Semplore[9], are 
designed for efficient RDF query processing or seman-
tic searches. Hexstore[7] uses a sixtuple indexing 
method for fast merge-joins while YARS2[8] designed 
the blocking index for fast triple retrieval and Zhang et 
al.[9] employed the IR technique to index RDF triples. 
However, compared with our approach, Zhang et al.[9] 
can only process a unary tree shaped search query, so it 
is not useful for SPARQL query processing. Further-
more, they do not do any query optimization.  

More recently, Stocker et al.[10] borrowed the con-
cept of the selectivity estimation from the traditional 
database community for optimizing RDF query proc-
essing. However, their method only takes the basic 
SPARQL graph patterns[3] into account and cannot im-
prove complex SPARQL query patterns. RDF-3X[11] 
indexes RDF triples with a B+-tree and answers SPARQL 
queries by transforming them into the equivalent rela-
tional algebra trees. As such, the traditional optimiza-
tion-like algorithm can be used to identify the optimal 
joining order. Unlike Neumann and Weikum[11], the 
current study indexes the RDF triples by an inverted 
index structure as the IR engine organizes the same 
types of RDF data on the disk[9]. This greatly facilitates 
data retrieval and makes the implementation of the 
linear merge join easy and efficient. Therefore, the 
main object of the current work is how to efficiently 
optimize SPARQL query evaluations. 

Query optimization is the most important research 
topic in the database area and has been well studied in 
past decades, with methods such as access path selec-
tion[12], histogram[13], and algebraic space searching[14]. 
However, query optimization for RDF query process-
ing is still in its infancy. This paper presents an effi-
cient RDF query engine for SPARQL query optimiza-
tion and evaluation. A SPARQL query graph model is 
defined that can effectively expresses the query se-
mantics. Then a set of operators is implemented on the 
indexed triples for transforming the SPARQL query 
graph into an optimal execution tree for evaluation. To 
achieve this goal, a main-tree-shaped optimization al-
gorithm was developed to identify the optimal execu-
tion plan by effectively reducing the search space to 
determine the optimal joining order. The optimization 
uses a set of RDF statistics to estimate the execution 
cost of the query plan. Finally, the optimal execution 
plan is evaluated.The contributions of this work are as 
follows. 
z An efficient RDF query engine is given which 

stores and indexes triples using inverted indices. Op-
erators are developed for query optimization and 
evaluation to analyze search costs with their imple-
mentation significantly contributing to the query   
performance. 
z A main-tree-shaped optimization algorithm was 

developed that transforms a SPARQL query graph into 
the optimal query plan by effectively reducing the 
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search space. The optimization was a set of RDF sta-
tistics to estimate the query plan execution cost. 
z Extensive tests on both synthetic and real datasets 

show that this approach is extremely efficient and 
scalable in comparison with state-of-the-art RDF 
stores.  

1  Problem Statement 

A SPARQL query graph, G = {V, E}, is composed of a 
vertex set, V, and an edge set, E. All vertices in V are 
divided into two disjoint subsets, Vn and Vt (i.e., V = 

n tV V∪  and n tV V∩ =∅ ). All vertices in nV  are 
named normal vertices and all vertices in Vt are called 
triple vertices (introduced in the next paragraph). Each 
normal vertex nv V∈  represents a variable with one or 
several constraints. The constraints determine the an-
swers bound with the variable node. A constraint could 
be either a concept constraint or a relationship con-
straint. A concept constraint is in the form of con-
cept(:c) that represents the triple pattern <?v,rdf:    
type,:c>; while a relationship constraint could be in the 
form of Rs(:p,:o), Rp(:s,:o), and Ro(:s,:p) that represent 
the triple patterns <?v,:p,:o>, <:s,?v,:o>, and <:s,:p,?v> 
respectively. Notice that if one normal vertex or edge 
has multiple constraints, the relationship between these 
constraints is conjunctive according to the SPARQL 
semantic. In addition, a normal vertex nv V∈  is iden-
tified as selected if it appears in the select clause of the 
query. Figure 3 shows four normal vertices with their 
constraints. 

 
Fig. 3  Normal vertices with their constraints 

All the edges in E are classified into two disjoint 
subsets, En and Et (i.e., n tE E E= ∪  and n tE E∩ =∅ ). 
All edges in En are named normal edges and all edges 
in Et are called triple edges. Each normal edge ne E∈  
links two normal vertices and is associated with one or 
several constraints (i.e., constant values) which indi-
cate the relationship between variables. For example, 
for <?s,?p,:o> shown in Fig. 4a, :o is represented as the 
constraint of an edge that connects two vertices ?s 
and ?p. Each triple edge te E∈  connects with a triple 
vertex tv V∈  and a normal vertex nw V∈ . As such, 
three normal vertices linked by three triple edges and 

one triple vertex constitute a triple pattern <?s,?p,?o> 
whose subject, predicate, and object are all variables. 
Figure 4b shows how three triple edges and one triple 
vertex (dark node) connect with three normal vertexes. 
Note that both triple edges and triple vertices do not 
have any constraints. 

 
Fig. 4  Normal and triple edges 

Example 1  Figure 5 shows the graphical repre-
sentation of the query displayed in Fig. 1. In Fig. 5, the 
double-cycled nodes ?product and ?offer are selected 
since they appear in the SELECT clause. 

 
Fig. 5  A SPARQL query graph 

Problem statement  Given a SPARQL query 
graph and a large set of RDF triples, the problems are 
(1) how to efficiently index all triples and design op-
erators for query optimization and evaluation, and (2) 
how to effectively transform the query graph into an 
optimal execution tree for processing. 

2  Index Structure and Operators 

This section first describes the index structure for in-
dexing RDF triples and then defines the operators for 
query optimization and evaluation.  

2.1  Index structure 

Mapping RDF terms to IDs  First assign a unique 
ID to each indexed RDF term because storing IDs oc-
cupies less disk space and comparison of IDs costs less 
time. Since the IR engine generates a unique docID for 
each document, create a document for each RDF term 
and then treat the docID as its ID. Specifically, first 
create the ID field for the inverted index; then for each 
RDF term, t, we insert t into the term list of the ID 
field and then we insert the docID into the document 
list of term t. An RDF term’s ID is obtained using the 
term query <ID,term> to the IR engine, where term is 
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the string value of the RDF term. Figure 6 shows the 
ID field optimization. 

 
Fig. 6  ID and stat fields 

Indexing statistics  The system defines nine types 
of statistical information for each RDF term (see Sec-
tion 4 for details). First encode the value of each type 
of statistic as a 4-byte little endian. The statistics of 
RDF term t are stored by creating a stat field for the 
inverted index and then inserting t’s ID into the term 
list of the stat field. Finally a 36-byte binary string is 
added into the document list of term t. The statistics of 
RDF term t are obtained using t’s ID with the docu-
ment (i.e., the string value of the statistics) of the term 
then returned by a term query <stat,ID>. Figure 6 il-
lustrates the organization of the stat field. 

When new RDF triples are loaded, the statistics of 
all RDF terms appearing in these RDF triples should 
be updated. First obtain its statistics of each RDF term 
in the newly-loaded triples; then update the corre-
sponding statistic and replace the old value with the 
new one. Similarly, when deleting RDF triples, the 
same method is used to update the statistics of all RDF 
terms appearing in the deleted RDF triples. 

Indexing RDF triples  Index any triple <t,rdf:type,     
c> whose predicate is rdf:type based on the type field. 
First insert c’s ID into the term list of the type field, 
then add a document whose ID is equal to t’s ID into 
the document list of term c. The term query <type,c> is 
used to retrieve all associated RDF terms that are the 
instances of the RDF concept c. 

All triples whose predicates are not rdf:type are in-
dexed with six fields: spo, sop, pso, pos, osp, and ops. 
Taking the pso field as an example, for each triple 
<s,p,o>, treat s as the document and p as the term, then 
put the term p into the term list of the pso field, and 
add o into the position list of document s. Then a   
term query <pso,p> can transverse all triples whose 

predicate is p in the order of s and o. The query returns 
the document list of p with each document represent-
ing a subject s. For each document s, the query then 
retrieves its position list and each position represents 
an object o. The other five fields are organized simi-
larly and can be used to access all triples in different 
orders. Notice that, both the document list and the po-
sition list in these fields are sorted as the IR engine 
stores the IDs on the disk in ascending order. This al-
lows implementation of a cheap linear merge join on 
the indexed triples. Table 1 lists the symbols. 

Table 1  Symbols 

Symbol Description 
{ , }S SS B V= A binding set 

,S SB V  A binding list and a variable list 
, ( )vβ β A binding and a bound value of the variable v 

t, t{β } A triple pattern and an answer to the triple pattern
U The whole triple set 

2.2  Operators 

Binding set is used to represent the intermediate and 
final results. A binding set { , }S SS B V=  is composed 
of a binding list, ,SB  and a variable list, .SV  A bind-
ing SBβ ∈  is a mapping from SV  to IDs that are the 
internal representation of the RDF terms. ( )vβ  is 
used to indicate the bound value of variable v. Let U be 
the whole triple set and t be a triple pattern, then re-
placement of all variables V in t with their bound val-
ues ( )Vβ  is denoted as { }t β . If { }t Uβ ∈  is true, 
then the bound value ( )Vβ  is an answer of t. In addi-
tion, given two binding sets S1 and S2, and two bind-
ings 

11 SBβ ∈  and 
22 ,SBβ ∈ 1 2( ) ( )V Vβ β=  if for each 

variable ,v V∈  1 2( ) ( ),v vβ β= where 
1 2S SV V V= ∩ . All 

symbols used in this section are listed in Table 1. 
Index scan t fπ ( )  Given a triple pattern t with 

only one variable v and an index field f, return S =   
{ ,{ }}SB v  where for each , { } .SB t Uβ β∈ ∈ As men-
tioned before, ( )t fπ  can be easily implemented with 
the term query; thus, its cost is equal to the cost of se-
quentially reading the index. 

Intersection λ(S1, S2)  Given two binding sets S1 
and S2 whose 

1 2
{ },S SV V v= =  return 

1 2 1
{ , }S S SS B B V= ∩ . 

As 
1SB  and 

2SB  are sorted, use the merge-sort algo-
rithm to implement 1 2( , )S Sλ  whose cost is 1(| |O S +     

2| |)S . 
Selection t Sσ ( )  Given a binding set S and a triple 
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pattern t, return a binding set { , }S SS B V′′ =  where for 
each , { } .SB t Uβ β′′∈ ∈  This system first enumerates 
each SBβ ∈  and then checks if { } ,t Uβ ∈  which 
requires an index lookup. Thus, its cost is 

(| | | |)O S S′+ . 
Aggregation V Saggr ( )   Given a binding set S and 

a variable set ,SV V⊂ return a binding set { , }SS B V′′ = , 
where for each 

SBβ ′′∈  there is 
SBβ∈  satisfying ( )Vβ ′ =  

( )Vβ . This system first inserts all ( )Vβ′  that equals 
to ( )Vβ  into SB ′  for each ;SBβ ∈  then sorts SB ′  and 
removes all duplicates in .SB ′ Thus, its cost is 

(| | log | |)O S S . 
Binary join t S S1 2( , )®   Given two binding sets S1 

and S2, and a triple pattern t with V the set of all vari-
ables in t, then return a binding set 

1 2
{ ,S S SS B V V′′= ∪ ∪    

}V  satisfying the conditions: (1) , { } ,SB t Uβ β′′ ′∀ ∈ ∈  
(2) 

1 1 11 1, ( ) ( ),S S SB V Vβ β β ′∃ ∈ = and (3)
22 ,SBβ∃ ∈   

22 ( )SVβ =
2

( ).SVβ ′  
Triple join t S S S1 2 3( , , )®   Given three binding 

sets S1, S2, and S3, and a triple pattern t with V the set 
of all variables in t, then return a binding set S ′ =  

1 2 3
{ , }S S S SB V V V V′ ∪ ∪ ∪  satisfying the conditions:   

(1) , { } ,SB t Uβ β′′ ′∀ ∈ ∈ (2)
1 1 11 1, ( ) ( ),S S SB V Vβ β β ′∃ ∈ =    

(3) 
2 2 22 2, ( ) ( )S S SB V Vβ β β′∃ ∈ = , and (4) 

33 ,SBβ∃ ∈  

3 33 ( ) ( )S SV Vβ β ′= . 

3  Query Optimization 

Section 2 described how to transform a SPARQL query 
graph into an equivalent query tree. Efficiently evalua-
tion of a SPARQL query graph involves finding a 
minimal cost execution tree for the query processing. 
The challenges are to effectively reduce the search 
space for determining the optimal joining order and to 
determine which type of statistics should be collected 
for estimating the cost of the execution tree. This sec-
tion first formally defines the cost model and the sta-
tistics for the cost estimate, and then presents the opti-
mization algorithm. 

3.1  Cost model 

Given a SPARQL query graph, the main goal is to find 
the optimal execution tree with the minimal cost. The 
execution cost is measured by defining a cost model of 
the execution tree. For simplicity, use Cost(opi) to in-
dicate the cost of the i-th operator opi in tree T, where 
opi is one of the operators listed in Section 3.2. Thus, 

the total cost of execution tree T is 

op

Cost( ) Cost(op )
i

i
T

T
∈

= ∑ . 

Section 2.2 showed that the cost of each operator 
depends on the size of both the input and the output. 
However, the exact cardinalities of the input and out-
put of each operator are not known beforehand. Rela-
tional databases use histograms to solve this prob-
lem[13]. The current system uses a similar idea for the 
cardinality estimation.  

Definition 1 (Concept statistic) Let c be a concept, 
then its concept statistic, IND(c), is the number of dis-
tinct instances v where <v, rdf: type, c>∈U. 

Definition 2 (Domain statistic)  Let v be a subject, 
then its domain statistic, DOMs (v), is the number of 
distinct predicates p where <v, p, *>∈U, where * indi-
cates that the position can be replaced by any value. 
Let v be a predicate, then DOMp (v) is the number of 
distinct subjects s where <s, v, *>∈U. Let v be an ob-
ject, then DOMo (v) is the number of distinct subjects s 
where <s, *, v>∈U. 

Definition 3 (Range statistic) Let v be a subject, 
then its range statistics, RNGs(v), is the number of dis-
tinct objects o where <v, *, o>∈U. Let v be a predicate, 
then RNGp (v) is the number of distinct objects o where 
<*, v, o>∈U. Let v be an object, then RNGo (v) is the 
number of distinct predicates p where <*, p, v>∈U. 

These statistics are collected while loading the tri-
ples into the repository. While loading a triple, the type 
of each RDF resource is checked and its statistics are 
updated if it exists. Otherwise, the missing statistics 
are created. These statistics are used to build a set of 
small equal-width histograms for each type of statisti-
cal information. As new triples are added or existing 
triples are removed, the statistics will change (see Sec-
tion 2.2). The histograms are refreshed, when the 
number of changes of the indexed statistics exceed a 
predefined threshold η. 

Since all the leaf nodes are index scans, their cost 
can be estimated based on the input cardinality. For 
example, given a triple pattern <?s, rdf: type, c>, find 
the bucket that contains c’s ID and then use the bucket 
frequency to estimate their cost. Similarly, for single 
triple patterns such as <?s, p, o>, identify the buckets 
that contain p and o and then choose the minimum 
frequency of these buckets as their costs. For complex 
triple patterns involving joining such as the binary join 
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(its cost is 1 2 ( )
Cost(| | | | | | | ( ( ))|)

x
S S S L x

β
β′+ + +∑  

where | |S′  is the output cardinality), their costs de-
pend on both the input and output cardinalities. In 
general, | |S′  is estimated by 1 2| || |mc S S×  where 1| |S  
and 2| |S  are the size of the input binding sets 1S  
and 2S  and cm is the merge factor. The many ap-
proaches[15] for estimating the cardinality of the joining 
results | |S ′  are not covered here. 

3.2  Optimization algorithm 

There are two cases for query optimization of a 
SPARQL query. The first case has a tree query graph, 
while the second case has a graph query graph. The 
solution for the first case gives an optimal query   
tree while the second case uses a main-tree-shaped 
algorithm. 

Case 1  A tree-shaped SPARQL query requires two 
steps to find the optimal execution tree. The first step 
translates every node into the execution subtree. How-
ever, if there are multiple index scans, the algorithm 
must determine their optimal joining order using a 
greedy algorithm which first estimates the cost of each 
index scan (see Section 3.1) and then joins the two 
index scans with the minimum costs by an intersection. 
Then, the intersection with the next lowest cost is 
joined with the index scan by another intersection until 
all the index scans are joined together. 

The second step enumerates all the execution trees 
by treating each node as the root node and then choos-
ing the tree with the minimum execution cost as the 
optimal execution plan. Specifically, let v be a root 
node with k subtrees 1, , kt t  (i.e., the trees generated 
by the first step). Assume that the optimal execution 
tree of each subtree ti is denoted as .

it
e  Then, recur-

sively join the tree made of the root node v with the 
subtree tree

it
 with the minimum cost among 

1
tree ,t  

, tree
kt
 until all the subtrees are joined together.  

Case 2 The graph-shaped SPARQL query uses a 
heuristic approach based on the concept of the bicon-
nected graph to produce the optimal tree. A bicon-
nected graph[16] is a connected graph with no cutting 
vertices. A cutting vertex is a vertex whose removal 
increases the number of connected components. Here, 
each biconnected subgraph is treated as a virtual tree 
node which has two advantages for query optimization: 
(1) the query graph can be transformed into a tree 

(called main execution tree) and (2) identification of 
the optimal execution tree for each biconnected sub-
graph is cheaper than directly optimizing the entire 
query graph. 

The optimization first uses a depth-first-search (DFS) 
algorithm to identify all the biconnected subgraphs. 
Then a dynamic programming algorithm is used for 
each biconnected subgraph to find its optimal subtree. 
Finally, all the optimal execution trees of the bicon-
nected subgraphs are merged into the main execution 
tree by cutting vertexes. The greedy algorithm devel-
oped in the first case can be used to determine the op-
timal joining order between all nodes in the main exe-
cution tree (the cost of the entire optimal subtree for 
each biconnected subgraph is used as the cost of the 
virtual node). The key step in the second case is to 
transform a biconnected subgraph into an optimal 
execution tree. 

For each biconnected subgraph, a dynamic pro-
gramming (DP) based optimization algorithm is de-
signed to calculate its optimal tree in |V| phases, where 
|V| is the number of vertexes in the query graph. Ini-
tially, the algorithm seeds the DP table with the vari-
able set S containing only one variable (i.e., the vertex 
in the query graph). At the j-th phase, the algorithm 
supposes the variable set S includes j variables, and 
adds a variable v S∉  into S, which is linked with 
some variable(s) in S by either normal or triple edges. 
Then compute the best execution tree for { }S v∪ . Let 
the edges linking v with S be E, the algorithm trans-
lates each edge e E∈  into a corresponding join op-
eration depending on to the edge type that connects the 
execution tree of S and v together. The other edges 

{ }E e−  are translated as selection operators and se-
quentially put on top of the join operation. The output 
binding set then includes all the variables { }S v∪  
and the selection only needs to be executed after join. 
The triple pattern for each selection is determined by 
the edge constraint. However, the order of the selection 
operations must also be considered. A greedy strategy 
is used to choose the selection with the smallest cost 
on the join and then the next lowest cost selection, and 
so on. Finally, if any variable can be removed at a tree 
node w, then an aggregation operator is added for node 
w. The algorithm repeats these steps until all variables 
in the subgraph are added into S. The optimal execu-
tion tree of the subgraph is obtained after the |V|-th 
variable is put into S.  
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This algorithm does not consider all possible query 
plans, but only the left-deep tree. This reduces the com-
plexity of the optimization algorithm whose cost is 
O(e2v), where v is the number of nodes and e is the num-
ber of edges in the subgraph, and reduces the calcula-
tions for the selection on the join as discussed in Sec-
tion 3.2 (the actual index lookup for the selection can 
be saved which the output binding set of the join is 
sorted).  

Disjunctive queries  This algorithm mainly fo-
cuses on how to optimize conjunctive SPARQL queries. 
However, SPARQL also support UNION and OP-
TIONAL clauses for disjunctive queries[3]. For UNION, 
the algorithm first treats all its triple patterns as nested 
sub-queries. Then the nested sub-queries are trans-
formed into optimal subtrees and merged into the main 
execution tree by the UNION operator. For OP-
TIONAL, first all the triple patterns outside the OP-
TIONAL clause are copied into the OPTIONAL clause 
based on its semantic and then the optimal subtrees are 
selected for these triple patterns. Finally, the subtrees 
are merged into the main execution tree by the left 
outer join operator. The union and left outer join are 
described in detail in Liu et al.[17] 

4  Performance Study 

A prototype system named Airstore was built using 
Lucence 2.4[18] to evaluate this approach. The algo-
rithm was implemented in the Java SDK 1.6 and com-
pared with the state-of-the-art RDF stores Allegro-
Graph[19], Sesame[20], YARS2[8], SOR[5], and RDF-    
3X[11]. The first four systems were implemented in 
Java, while RDF-3X was developed using C++. The 
IBM DB2 v9.1 was used as the backend storage of the 
SOR. All tests were ran on a PC with an Intel Duo 
Core 6700@2.66 GHz processor, 2.0 GB RAM, and a 
140 GB 7200 RPM IDE driver, while the operating 
system is Ubuntu 8.0.4. The synthetic and real datasets, 
LUBM[21] and DBpedia[1], were used for performance 
testing and all tests were repeated 10 times to calculate 
the average results.  

Since the LUBM benchmark queries are designed 
for ontology reasoning, they were not used as bench-
mark queries. Instead SPARQL queries (Q1-Q7) were 
developed with five typical access patterns, point, star, 
tree, graph, and hybrid. Table 2 lists all the benchmark 
queries. Each access pattern tested the efficiency of a 

particular access method with Q1 and Q2 used to 
evaluate the efficiency of data retrieval with vertex 
constraints, while Q3 and Q4 were designed for testing 
joinings with edge constraints. Two graph-shaped que-
ries, Q5 and Q6, were used to study the effectiveness 
of the cost estimation algorithms. Finally, Q4 and Q6 
were combined using the union operation to evaluate 
the efficiency of different RDF stores on multiple 
query graphs. Seven other SPARQL queries (Q8-Q14) 
were designed for the DBpedia dataset[17]. 

Table 2  SPARQL benchmark queries 

ID Query Shape

Q1
SELECT distinct ?x WHERE {  
?x ub:researchInterest. ub:Research18. 
?x rdf:type ub:FullProfessor.} 

Point

Q2
SELECT distinct ?x WHERE {  
?x rdf:type ub:UndergraduateStudent.} Point

Q3

SELECT distinct ?x ?y1 ?y2 ?y3 
WHERE { ?x ub:worksFor ub:University0.  
?x ub:name ?y1. 
?x ub:emailAddress ?y2. ?x ub:telephone ?y3. } 

Star 

Q4

SELECT distinct ?x ?z WHERE { ?x
ub:advisor ?y. 
?y ub:worksFor ?z. 
?a ub:memberOf ?z. ub:Publication5  

ub:publicationAuthor ?a.} 

Tree 

Q5

SELECT distinct ?x ?y ?z WHERE {  
?x rdf:type ub:GraduateStudent. 
?y rdf:type ub:University. ?x ub:memberOf ?z.  
?z ub:subOrganizationOf ?y. 
?z rdf:type ub:Department.?x  

ub:undergraduateDegreeFrom ?y. } 

Graph

Q6
SELECT distinct ?x ?z WHERE {  
?x rdf:type ub:Department. ?x ?y ?z. } Graph

Q7 Q4 union Q6 Hybrid
 

The system performance was evaluated based on 
metrics for the time for data loading and indexing, ac-
curacy of cost estimation and query time. The first 
metric evaluates the efficiency of the RDF stores for 
loading and indexing triples. The accuracy of cost es-
timation was used for testing the effectiveness of the 
query optimization algorithm (i.e., to what degree the 
optimization algorithm can speed up SPARQL query 
processing). The query time is of most interest to 
end-users since it determines both the usability and 
scalability of the RDF stores. 

4.1  Time for data loading and indexing 

The first test evaluates the time used for loading and 



  Tsinghua Science and Technology, December 2010, 15(6): 613-622 

 

620 

indexing the LUBM, datasets LUBM20, LUBM40, 
LUBM60, LUBM80, and LUBM100, where the num-
ber of triples varies from 2.8 million to 14 million. All 
the baseline systems were also ran on these LUBM 
datasets to measure the scalability.  

The results in Fig. 7 show that the performances of 
airstore, AllegroGraph, RDF-3X, and SOR were simi-
lar with increasing data volume with all four systems 
significantly outperforming Sesame and YARS2. The 
results show that the IR indexing technique can be 
used to manage the RDF data since the scalability of 
airstore is as good as that of the B+-tree-based RDF 
stores, such as RDF-3X and SOR. 

 
Fig. 7  Time for data loading and indexing 

4.2  Accuracy of cost estimation 

The accuracy of the cost estimates of the query opti-
mization algorithm was then evaluated by calculating 
the costs of all possible query plans (including the ac-
tual optimal plan) and then comparing their execution 
times. The accuracy of the cost estimate, ACE, is de-

fined as c

o

qtimeACE
qtime

= , where cqtime  indicates the 

execution time of a candidate query plan and oqtime  
refers to the execution time of the optimized query plan 
selected by the algorithm. Thus, larger ACE indicates 
slower execution trees and, therefore, more accurate 
execution cost estimates by the algorithm. Only the re-
sult of Q5 on LUBM1000 that contains more than 100 
million triples is reported due to space limitations[17]. 

The results in Fig. 8 show that the execution times 
for the first four query plans are close to the chosen 
plan, while those for the next seven query plans are 
1.2-7 times slower. The execution times of the last 
seven query plans were 1200 times slower than for 

Airstore. In the figure, the first plan is the actual opti-
mal plan. These results show that this algorithm very 
effectively identifies the optimal plan in the restricted 
searching space. 

 
Fig. 8  Accuracy of cost estimation 

4.3  Query time 

Finally, the query times for the different RDF stores 
were measured for both the LUBM and DBpedia data-
sets. The query time for airstore includes both the 
query optimization time and the query execution times. 
Six indices were used for Sesame with the full 24 in-
dices used for AllegroGraph with the SOR’s perform-
ance tuned with the IBM DB2 design advisor to get the 
best results. The two sets of tests on the LUBM data-
sets tested the query time for different RDF stores and 
the scalability for different data volumes (LUBM20, 
LUBM40, LUBM60, LUBM80, and LUBM100). Then 
airstore was evaluated using the two large RDF data-
sets LUBM1000 and DBpedia. 

Performance on the LUBM datasets  Figure 9 il-
lustrates the query times for all the RDF stores on the 
LUBM100. The results on LUBM20, LUBM40, 
LUBM60, and LUBM80 were similar. The results in 
Fig. 9 show that the query times for Airstore and RDF-    
3X were the best with very efficient performance in 
comparison with AllegroGraph, Sesame, YARS2, and 
SOR. Airstore outperformed RDF-3X on all the que-
ries except for Q5. Airstore outperforms RDF-3X on 
most queries mainly because the sequential index 
reading on the inverted index is more efficient than the 
scanning B+-tree. For example, for Q2, Airstore only 
needs to read all the documents with the term Under-
graduateStudent to obtain all the answers and with the 
inverted index, all the documents with the same term 
are placed near to each other on the disk. For Q5, 
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RDF-3X pipelines the operators to produce the final 
result while Airstore does not use such a pipeline and 
has to maintain the binding sets for the intermediate 
results of the binary and triple joins, which costs more 
time. In this case, RDF-3X outperforms airstore. 

 
Fig. 9  Query time on LUBM datasets 

Thus the Airstore performance on most queries is 
better than that of RDF-3X, even though RDF-3X was 
implemented using C++. Therefore, the results show 
that this RDF storage scheme greatly improves query 
performance and the IR technique very efficiently in-
dexes the RDF triples. 

The scalability of Airstore as indicated by the query 
time was then evaluated by varying the data volume. 
The results in Fig. 10 show that the query time for each 
SPARQL query increases linearly with increasing 
amount of the triple, which shows the good scalability 
of Airstore relative to the RDF data population.  

 
Fig. 10  Airstore query time for large datasets 

Performance on large RDF datasets  The final 
tests evaluated the Airstore query performance on two 
large RDF datasets LUBM1000 with 140 million tri-
ples and DBpedia with 120 million triples.  

The results in Fig. 11 show that Airstore took only 

4.4 s to execute the most expensive query, Q5, with all 
other queries finishing within 1 s. The results in Fig. 12 
show that the slowest query time on the DBpedia 
dataset was less than 120 ms. Thus, these results show 
that airstore is scalable and efficient in terms of the 
data population to be queried. Comparison of Figs. 11 
and 12 also show that the performance difference of 
airstore between the LUBM1000 and DBPedia datasets 
is mainly caused by the difference in their data distri-
bution and the query selectivity. 

 
Fig. 11  Airstore query time on LUBM1000 

 
Fig. 12  Airstore query time on DBPedia 

5  Conclusions 

This paper presents an RDF query engine for efficient 
SPARQL query processing. The algorithm includes an 
IR based solution for indexing triples and a set of 
highly-efficient operators for query optimization and 
evaluation, a set of RDF statistics for estimating the 
execution cost of the query plan, and a main-tree-   
shaped optimization algorithm for identifying the    
optimal query plan. Tests show that this approach is 
very efficient and scalable for querying large-scale 
RDF triples. Current work focuses on the query opti-
mization problem on SPARQL basic graph patterns, 
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and union and optional patterns. Future work will   
extend this approach to support the filter clause and 
named graphs in the SPARQL[3] by extending the ex-
isting statistics, indexing scheme and operators. 

References 

[1] DBpedia. http://dbpedia.org/, 2010. 
[2] Bizer C, Heath T, Idehen K, et al. Linked data on the web. 

In: Proc. of World Wide Web. Beijing, China, 2008: 
1265-1266. 

[3] SPARQL query language for RDF. http://www.w3.org/    
TR/rdf-sparql-query/, 2008. 

[4] Wilkinson K. Jena property table implementation. In: Proc. 
of SSWS. Athens, Georgia, USA, 2006. 

[5] Ma L, Wang C, Lu J, et al. Effective and efficient semantic 
web data management on DB2. In: Proc. of SIGMOD: In-
ternational Conference on Management of Data. Vancouver, 
Canada, 2008. 

[6] Abadi D J, Marcus A, Madden S R, et al. Scalable seman-
tic web data management using vertical partitioning. In: 
Proc. of Very Large Database. Vienna, Austria, 2007. 

[7] Weiss C, Karras P, Bernstein A. Hexastore: Sextuple in-
dexing for semantic web data management. In: Proc. of 
Very Large Database. Auckland, New Zealand, 2008. 

[8] Harth A, Umbrich J, Hogan A, et al. Yars2: A federated 
repository for querying graph structured data from the web. 
In: Proc. of International Semantic Web Conference. Pusan, 
South Korea, 2007. 

[9] Zhang L, Liu Q, Zhang J, et al. Semplore: An IR approach 
to scalable hybrid query of semantic web data. In: Proc. of 
International Semantic Web Conference. Pusan, South Ko-

rea, 2007. 
[10] Stocker M, Seaborne A, Bernstein A, et al. SPARQL basic 

graph pattern optimization using selectivity estimation. In: 
Proc. of World Wide Web. Beijing, China, 2008. 

[11] Neumann T, Weikum G. Rdf-3x: A RISC-style engine for 
RDF. In: Proc. of Very Large Database. Auckland, New 
Zealand, 2008. 

[12] Selinger P G, Astrahan M M, Chamberlin D D, et al. Ac-
cess path selection in a relational database management 
system. In: Proc. of SIGMOD: International Conference on 
Management of Data. Boston, Massachusetts, USA, 1979: 
23-34 

[13] Ioannidis Y. The history of histograms. In: Proc. of Very 
Large Database. Berlin, Germany, 2003. 

[14] Ioannidis Y E. Query optimization. ACM Computing Sur-
veys, 1996, 28(1): 121-123. 

[15] Florin R, Alin D. Sketches for size of join estimation. ACM 
Transaction on Database System, 2008, 33(3): 1-46. 

[16] Biconnected graph. http://mathworld.wolfram.com/Bi-
connectedGraph.html, 2010. 

[17] Liu C, Xu L, Wang H, et al. Towards efficient SPARQL 
query processing on RDF data. http://apex.sjtu.edu.cn/apex 
wiki/Papers, 2009. 

[18] Apache Lucene. http://lucene.apache.org/, 2010. 
[19] AllegroGraph RDFStore. http://agraph.franz.com/allegro-

graph/, 2010. 
[20] OWLIM semantic repository. http://ontotext.com/owlim/, 

2010. 
[21] Guo Y, Pan Z, Heflin J. LUBM: A benchmark for owl 

knowledge base systems. Journal of Web Semantics, 2005, 
3(2): 158-182. 

 


