
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214ll01/14llpp613-622
Volume 15, Number 6, December 2010

Towards Efficient SPARQL Query Processing on RDF Data*

LIU Chang (刘 畅), WANG Haofen (王昊奋), YU Yong (俞 勇)**, XU Linhao (徐林昊)†

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
† IBM China Research Lab, Beijing 100094, China

Abstract: Efficient support for querying large-scale resource description framework (RDF) triples plays an

important role in semantic web data management. This paper presents an efficient RDF query engine to

evaluate SPARQL queries, where the inverted index structure is employed for indexing the RDF triples. A

set of operators on the inverted index was developed for query optimization and evaluation. Then a

main-tree-shaped optimization algorithm was developed that transforms a SPARQL query graph into the op-

timal query plan by effectively reducing the search space to determine the optimal joining order. The opti-

mization collects a set of RDF statistics for estimating the execution cost of the query plan. Finally the opti-

mal query plan is evaluated using the defined operators for answering the given SPARQL query. Extensive

tests were conducted on both synthetic and real datasets containing up to 100 million triples to evaluate this

approach with the results showing that this approach can answer most queries within 1 s and is extremely

efficient and scalable in comparison with previous best state-of-the-art RDF stores.

Key words: resource description framework (RDF) query engine; SPARQL; optimization

Introduction

With the fast growth of the semantic web, a large
amount of resource description framework (RDF) data
(e.g., DBpedia[1]) is being created and published for
knowledge sharing and integration in web applications.
Community efforts for interlinking the open RDF data
sources are being actively pursued by the linking open
data (LOD) project[2]. Data can be linked to produce
the knowledge, such as “finding the relationship of any
two people who worked with Paul Erdös”, by combin-
ing the desired RDF data sources together. Thus, the
semantic web technologies open new ways to address
complex information needs. However, an important
problem that confronts current semantic web data

management is efficient support for indexing and que-
rying large-scale RDF data.

SPARQL[3] is the standard query language for ac-
cessing RDF data, where the basic access pattern is
called the triple pattern. A triple pattern has the same
form as an RDF triple, but with variables. For example,
a customer may issue a SPARQL query such as shown
in Fig. 1, which returns offers for a given product that
fulfills the specific requirements. In the query, “?of-
fer :vendor ?vendor” is a triple pattern. Like the coun-
terpart of select-project-join queries in SQL, the

SELECT ?offer ?product
WHERE {

?offer ?product ?vendor.
?offer :vender ?vendor.
?offer rdf:type Offer.
?vendor rdf:type Vendor.
?vendor :country “cn”@en.
?product rdf:type Product.

}

Fig. 1 A SPARQL query

 Received: 2010-09-16; revised: 2010-10-08

* Supported by the Shanghai Jiao Tong University and IBM CRL
Joint Project

** To whom correspondence should be addressed.
E-mail: yyu@cs.sjtu.edu.cn; Tel: 86-21-54745879

 Tsinghua Science and Technology, December 2010, 15(6): 613-622

614

SPARQL query supports both conjunctions and dis-
junctions of the triple patterns. For instance, in Fig. 1
the two triple patterns “?offer :vendor ?vendor” and
“?offer rdf:type Offer” join on the variable ?offer.
Furthermore, the predicates in the SPARQL query can
also be variables (e.g., “?offer ?product ?vendor”),
which allows “predicate-agnostic”queries.

Thus far, relational databases (RDB) have been
widely used for RDF data storage with the SPARQL
queries translated into SQL statements for evaluation.
For example, Jena2[4] designs the property tables to
cluster together subjects with the same properties;
while SOR[5] uses multiple special-purpose tables, each
of which keeps a type of RDF terms. However, these
approaches involve many self-joins or cross-table-joins
when processing queries, which greatly slows the
query performance. For example, an equivalent SQL
query of the SPARQL query shown in Fig. 1 includes
five self-joins, as displayed in Fig. 2. To solve this
problem, Abadi et al.[6] proposed a vertical partitioning
based method to store and query RDF data. Though
many joins are still required to answer queries over
multiple predicates, linear merge joins can be used to
alleviate the joining cost as each table is sorted by
subject. However, predicate-unbound queries require a
large number of union operations on all tables.

SELECT T1.sub as offer, T1.pre as product
FROM TRIPLE T1, TRIPLE T2, TRIPLE T3,

TRIPLE T4, TRIPLE T5, TRIPLE T6
WHERE { T1.sub = T2.sub and T1.sub = T5.sub

and T1.pre = T4.sub and T1.obj = T3.sub
and T1.obj = T6.subj and T4.obj = ‘rdf:type’
and T2.obj = ‘Offer’ and T3.obj = ‘Vendor’
and T4.obj = ‘Product’ and T5.pre = ‘vender’
and T6.pre = ‘country’ and T6.obj = ‘cn’
and T2.pre = ‘rdf:type’ and T3.pre = ‘rdf:type’}

Fig. 2 A translated SQL query (TRIPLE is the triple table)

Unlike the RDB-based solutions, native RDF stores,
such as Hexstore[7], YARS2[8], and Semplore[9], are
designed for efficient RDF query processing or seman-
tic searches. Hexstore[7] uses a sixtuple indexing
method for fast merge-joins while YARS2[8] designed
the blocking index for fast triple retrieval and Zhang et
al.[9] employed the IR technique to index RDF triples.
However, compared with our approach, Zhang et al.[9]
can only process a unary tree shaped search query, so it
is not useful for SPARQL query processing. Further-
more, they do not do any query optimization.

More recently, Stocker et al.[10] borrowed the con-
cept of the selectivity estimation from the traditional
database community for optimizing RDF query proc-
essing. However, their method only takes the basic
SPARQL graph patterns[3] into account and cannot im-
prove complex SPARQL query patterns. RDF-3X[11]
indexes RDF triples with a B+-tree and answers SPARQL
queries by transforming them into the equivalent rela-
tional algebra trees. As such, the traditional optimiza-
tion-like algorithm can be used to identify the optimal
joining order. Unlike Neumann and Weikum[11], the
current study indexes the RDF triples by an inverted
index structure as the IR engine organizes the same
types of RDF data on the disk[9]. This greatly facilitates
data retrieval and makes the implementation of the
linear merge join easy and efficient. Therefore, the
main object of the current work is how to efficiently
optimize SPARQL query evaluations.

Query optimization is the most important research
topic in the database area and has been well studied in
past decades, with methods such as access path selec-
tion[12], histogram[13], and algebraic space searching[14].
However, query optimization for RDF query process-
ing is still in its infancy. This paper presents an effi-
cient RDF query engine for SPARQL query optimiza-
tion and evaluation. A SPARQL query graph model is
defined that can effectively expresses the query se-
mantics. Then a set of operators is implemented on the
indexed triples for transforming the SPARQL query
graph into an optimal execution tree for evaluation. To
achieve this goal, a main-tree-shaped optimization al-
gorithm was developed to identify the optimal execu-
tion plan by effectively reducing the search space to
determine the optimal joining order. The optimization
uses a set of RDF statistics to estimate the execution
cost of the query plan. Finally, the optimal execution
plan is evaluated.The contributions of this work are as
follows.
z An efficient RDF query engine is given which

stores and indexes triples using inverted indices. Op-
erators are developed for query optimization and
evaluation to analyze search costs with their imple-
mentation significantly contributing to the query
performance.
z A main-tree-shaped optimization algorithm was

developed that transforms a SPARQL query graph into
the optimal query plan by effectively reducing the

LIU Chang (刘 畅) et al.：Towards Efficient SPARQL Query Processing on RDF Data

615

search space. The optimization was a set of RDF sta-
tistics to estimate the query plan execution cost.
z Extensive tests on both synthetic and real datasets

show that this approach is extremely efficient and
scalable in comparison with state-of-the-art RDF
stores.

1 Problem Statement

A SPARQL query graph, G = {V, E}, is composed of a
vertex set, V, and an edge set, E. All vertices in V are
divided into two disjoint subsets, Vn and Vt (i.e., V =

n tV V∪ and n tV V∩ =∅). All vertices in nV are
named normal vertices and all vertices in Vt are called
triple vertices (introduced in the next paragraph). Each
normal vertex nv V∈ represents a variable with one or
several constraints. The constraints determine the an-
swers bound with the variable node. A constraint could
be either a concept constraint or a relationship con-
straint. A concept constraint is in the form of con-
cept(:c) that represents the triple pattern <?v,rdf:
type,:c>; while a relationship constraint could be in the
form of Rs(:p,:o), Rp(:s,:o), and Ro(:s,:p) that represent
the triple patterns <?v,:p,:o>, <:s,?v,:o>, and <:s,:p,?v>
respectively. Notice that if one normal vertex or edge
has multiple constraints, the relationship between these
constraints is conjunctive according to the SPARQL
semantic. In addition, a normal vertex nv V∈ is iden-
tified as selected if it appears in the select clause of the
query. Figure 3 shows four normal vertices with their
constraints.

Fig. 3 Normal vertices with their constraints

All the edges in E are classified into two disjoint
subsets, En and Et (i.e., n tE E E= ∪ and n tE E∩ =∅).
All edges in En are named normal edges and all edges
in Et are called triple edges. Each normal edge ne E∈
links two normal vertices and is associated with one or
several constraints (i.e., constant values) which indi-
cate the relationship between variables. For example,
for <?s,?p,:o> shown in Fig. 4a, :o is represented as the
constraint of an edge that connects two vertices ?s
and ?p. Each triple edge te E∈ connects with a triple
vertex tv V∈ and a normal vertex nw V∈ . As such,
three normal vertices linked by three triple edges and

one triple vertex constitute a triple pattern <?s,?p,?o>
whose subject, predicate, and object are all variables.
Figure 4b shows how three triple edges and one triple
vertex (dark node) connect with three normal vertexes.
Note that both triple edges and triple vertices do not
have any constraints.

Fig. 4 Normal and triple edges

Example 1 Figure 5 shows the graphical repre-
sentation of the query displayed in Fig. 1. In Fig. 5, the
double-cycled nodes ?product and ?offer are selected
since they appear in the SELECT clause.

Fig. 5 A SPARQL query graph

Problem statement Given a SPARQL query
graph and a large set of RDF triples, the problems are
(1) how to efficiently index all triples and design op-
erators for query optimization and evaluation, and (2)
how to effectively transform the query graph into an
optimal execution tree for processing.

2 Index Structure and Operators

This section first describes the index structure for in-
dexing RDF triples and then defines the operators for
query optimization and evaluation.

2.1 Index structure

Mapping RDF terms to IDs First assign a unique
ID to each indexed RDF term because storing IDs oc-
cupies less disk space and comparison of IDs costs less
time. Since the IR engine generates a unique docID for
each document, create a document for each RDF term
and then treat the docID as its ID. Specifically, first
create the ID field for the inverted index; then for each
RDF term, t, we insert t into the term list of the ID
field and then we insert the docID into the document
list of term t. An RDF term’s ID is obtained using the
term query <ID,term> to the IR engine, where term is

 Tsinghua Science and Technology, December 2010, 15(6): 613-622

616

the string value of the RDF term. Figure 6 shows the
ID field optimization.

Fig. 6 ID and stat fields

Indexing statistics The system defines nine types
of statistical information for each RDF term (see Sec-
tion 4 for details). First encode the value of each type
of statistic as a 4-byte little endian. The statistics of
RDF term t are stored by creating a stat field for the
inverted index and then inserting t’s ID into the term
list of the stat field. Finally a 36-byte binary string is
added into the document list of term t. The statistics of
RDF term t are obtained using t’s ID with the docu-
ment (i.e., the string value of the statistics) of the term
then returned by a term query <stat,ID>. Figure 6 il-
lustrates the organization of the stat field.

When new RDF triples are loaded, the statistics of
all RDF terms appearing in these RDF triples should
be updated. First obtain its statistics of each RDF term
in the newly-loaded triples; then update the corre-
sponding statistic and replace the old value with the
new one. Similarly, when deleting RDF triples, the
same method is used to update the statistics of all RDF
terms appearing in the deleted RDF triples.

Indexing RDF triples Index any triple <t,rdf:type,
c> whose predicate is rdf:type based on the type field.
First insert c’s ID into the term list of the type field,
then add a document whose ID is equal to t’s ID into
the document list of term c. The term query <type,c> is
used to retrieve all associated RDF terms that are the
instances of the RDF concept c.

All triples whose predicates are not rdf:type are in-
dexed with six fields: spo, sop, pso, pos, osp, and ops.
Taking the pso field as an example, for each triple
<s,p,o>, treat s as the document and p as the term, then
put the term p into the term list of the pso field, and
add o into the position list of document s. Then a
term query <pso,p> can transverse all triples whose

predicate is p in the order of s and o. The query returns
the document list of p with each document represent-
ing a subject s. For each document s, the query then
retrieves its position list and each position represents
an object o. The other five fields are organized simi-
larly and can be used to access all triples in different
orders. Notice that, both the document list and the po-
sition list in these fields are sorted as the IR engine
stores the IDs on the disk in ascending order. This al-
lows implementation of a cheap linear merge join on
the indexed triples. Table 1 lists the symbols.

Table 1 Symbols

Symbol Description
{ , }S SS B V= A binding set

,S SB V A binding list and a variable list
, ()vβ β A binding and a bound value of the variable v

t, t{β } A triple pattern and an answer to the triple pattern
U The whole triple set

2.2 Operators

Binding set is used to represent the intermediate and
final results. A binding set { , }S SS B V= is composed
of a binding list, ,SB and a variable list, .SV A bind-
ing SBβ ∈ is a mapping from SV to IDs that are the
internal representation of the RDF terms. ()vβ is
used to indicate the bound value of variable v. Let U be
the whole triple set and t be a triple pattern, then re-
placement of all variables V in t with their bound val-
ues ()Vβ is denoted as { }t β . If { }t Uβ ∈ is true,
then the bound value ()Vβ is an answer of t. In addi-
tion, given two binding sets S1 and S2, and two bind-
ings

11 SBβ ∈ and
22 ,SBβ ∈ 1 2() ()V Vβ β= if for each

variable ,v V∈ 1 2() (),v vβ β= where
1 2S SV V V= ∩ . All

symbols used in this section are listed in Table 1.
Index scan t fπ () Given a triple pattern t with

only one variable v and an index field f, return S =
{ ,{ }}SB v where for each , { } .SB t Uβ β∈ ∈ As men-
tioned before, ()t fπ can be easily implemented with
the term query; thus, its cost is equal to the cost of se-
quentially reading the index.

Intersection λ(S1, S2) Given two binding sets S1
and S2 whose

1 2
{ },S SV V v= = return

1 2 1
{ , }S S SS B B V= ∩ .

As
1SB and

2SB are sorted, use the merge-sort algo-
rithm to implement 1 2(,)S Sλ whose cost is 1(| |O S +

2| |)S .
Selection t Sσ () Given a binding set S and a triple

LIU Chang (刘 畅) et al.：Towards Efficient SPARQL Query Processing on RDF Data

617

pattern t, return a binding set { , }S SS B V′′ = where for
each , { } .SB t Uβ β′′∈ ∈ This system first enumerates
each SBβ ∈ and then checks if { } ,t Uβ ∈ which
requires an index lookup. Thus, its cost is

(| | | |)O S S′+ .
Aggregation V Saggr () Given a binding set S and

a variable set ,SV V⊂ return a binding set { , }SS B V′′ = ,
where for each

SBβ ′′∈ there is
SBβ∈ satisfying ()Vβ ′ =

()Vβ . This system first inserts all ()Vβ′ that equals
to ()Vβ into SB ′ for each ;SBβ ∈ then sorts SB ′ and
removes all duplicates in .SB ′ Thus, its cost is

(| | log | |)O S S .
Binary join t S S1 2(,)® Given two binding sets S1

and S2, and a triple pattern t with V the set of all vari-
ables in t, then return a binding set

1 2
{ ,S S SS B V V′′= ∪ ∪

}V satisfying the conditions: (1) , { } ,SB t Uβ β′′ ′∀ ∈ ∈
(2)

1 1 11 1, () (),S S SB V Vβ β β ′∃ ∈ = and (3)
22 ,SBβ∃ ∈

22 ()SVβ =
2

().SVβ ′
Triple join t S S S1 2 3(, ,)® Given three binding

sets S1, S2, and S3, and a triple pattern t with V the set
of all variables in t, then return a binding set S ′ =

1 2 3
{ , }S S S SB V V V V′ ∪ ∪ ∪ satisfying the conditions:

(1) , { } ,SB t Uβ β′′ ′∀ ∈ ∈ (2)
1 1 11 1, () (),S S SB V Vβ β β ′∃ ∈ =

(3)
2 2 22 2, () ()S S SB V Vβ β β′∃ ∈ = , and (4)

33 ,SBβ∃ ∈

3 33 () ()S SV Vβ β ′= .

3 Query Optimization

Section 2 described how to transform a SPARQL query
graph into an equivalent query tree. Efficiently evalua-
tion of a SPARQL query graph involves finding a
minimal cost execution tree for the query processing.
The challenges are to effectively reduce the search
space for determining the optimal joining order and to
determine which type of statistics should be collected
for estimating the cost of the execution tree. This sec-
tion first formally defines the cost model and the sta-
tistics for the cost estimate, and then presents the opti-
mization algorithm.

3.1 Cost model

Given a SPARQL query graph, the main goal is to find
the optimal execution tree with the minimal cost. The
execution cost is measured by defining a cost model of
the execution tree. For simplicity, use Cost(opi) to in-
dicate the cost of the i-th operator opi in tree T, where
opi is one of the operators listed in Section 3.2. Thus,

the total cost of execution tree T is

op

Cost() Cost(op)
i

i
T

T
∈

= ∑ .

Section 2.2 showed that the cost of each operator
depends on the size of both the input and the output.
However, the exact cardinalities of the input and out-
put of each operator are not known beforehand. Rela-
tional databases use histograms to solve this prob-
lem[13]. The current system uses a similar idea for the
cardinality estimation.

Definition 1 (Concept statistic) Let c be a concept,
then its concept statistic, IND(c), is the number of dis-
tinct instances v where <v, rdf: type, c>∈U.

Definition 2 (Domain statistic) Let v be a subject,
then its domain statistic, DOMs (v), is the number of
distinct predicates p where <v, p, *>∈U, where * indi-
cates that the position can be replaced by any value.
Let v be a predicate, then DOMp (v) is the number of
distinct subjects s where <s, v, *>∈U. Let v be an ob-
ject, then DOMo (v) is the number of distinct subjects s
where <s, *, v>∈U.

Definition 3 (Range statistic) Let v be a subject,
then its range statistics, RNGs(v), is the number of dis-
tinct objects o where <v, *, o>∈U. Let v be a predicate,
then RNGp (v) is the number of distinct objects o where
<*, v, o>∈U. Let v be an object, then RNGo (v) is the
number of distinct predicates p where <*, p, v>∈U.

These statistics are collected while loading the tri-
ples into the repository. While loading a triple, the type
of each RDF resource is checked and its statistics are
updated if it exists. Otherwise, the missing statistics
are created. These statistics are used to build a set of
small equal-width histograms for each type of statisti-
cal information. As new triples are added or existing
triples are removed, the statistics will change (see Sec-
tion 2.2). The histograms are refreshed, when the
number of changes of the indexed statistics exceed a
predefined threshold η.

Since all the leaf nodes are index scans, their cost
can be estimated based on the input cardinality. For
example, given a triple pattern <?s, rdf: type, c>, find
the bucket that contains c’s ID and then use the bucket
frequency to estimate their cost. Similarly, for single
triple patterns such as <?s, p, o>, identify the buckets
that contain p and o and then choose the minimum
frequency of these buckets as their costs. For complex
triple patterns involving joining such as the binary join

 Tsinghua Science and Technology, December 2010, 15(6): 613-622

618

(its cost is 1 2 ()
Cost(| | | | | | | (())|)

x
S S S L x

β
β′+ + +∑

where | |S′ is the output cardinality), their costs de-
pend on both the input and output cardinalities. In
general, | |S′ is estimated by 1 2| || |mc S S× where 1| |S
and 2| |S are the size of the input binding sets 1S
and 2S and cm is the merge factor. The many ap-
proaches[15] for estimating the cardinality of the joining
results | |S ′ are not covered here.

3.2 Optimization algorithm

There are two cases for query optimization of a
SPARQL query. The first case has a tree query graph,
while the second case has a graph query graph. The
solution for the first case gives an optimal query
tree while the second case uses a main-tree-shaped
algorithm.

Case 1 A tree-shaped SPARQL query requires two
steps to find the optimal execution tree. The first step
translates every node into the execution subtree. How-
ever, if there are multiple index scans, the algorithm
must determine their optimal joining order using a
greedy algorithm which first estimates the cost of each
index scan (see Section 3.1) and then joins the two
index scans with the minimum costs by an intersection.
Then, the intersection with the next lowest cost is
joined with the index scan by another intersection until
all the index scans are joined together.

The second step enumerates all the execution trees
by treating each node as the root node and then choos-
ing the tree with the minimum execution cost as the
optimal execution plan. Specifically, let v be a root
node with k subtrees 1, , kt t (i.e., the trees generated
by the first step). Assume that the optimal execution
tree of each subtree ti is denoted as .

it
e Then, recur-

sively join the tree made of the root node v with the
subtree tree

it
 with the minimum cost among

1
tree ,t

, tree
kt
 until all the subtrees are joined together.

Case 2 The graph-shaped SPARQL query uses a
heuristic approach based on the concept of the bicon-
nected graph to produce the optimal tree. A bicon-
nected graph[16] is a connected graph with no cutting
vertices. A cutting vertex is a vertex whose removal
increases the number of connected components. Here,
each biconnected subgraph is treated as a virtual tree
node which has two advantages for query optimization:
(1) the query graph can be transformed into a tree

(called main execution tree) and (2) identification of
the optimal execution tree for each biconnected sub-
graph is cheaper than directly optimizing the entire
query graph.

The optimization first uses a depth-first-search (DFS)
algorithm to identify all the biconnected subgraphs.
Then a dynamic programming algorithm is used for
each biconnected subgraph to find its optimal subtree.
Finally, all the optimal execution trees of the bicon-
nected subgraphs are merged into the main execution
tree by cutting vertexes. The greedy algorithm devel-
oped in the first case can be used to determine the op-
timal joining order between all nodes in the main exe-
cution tree (the cost of the entire optimal subtree for
each biconnected subgraph is used as the cost of the
virtual node). The key step in the second case is to
transform a biconnected subgraph into an optimal
execution tree.

For each biconnected subgraph, a dynamic pro-
gramming (DP) based optimization algorithm is de-
signed to calculate its optimal tree in |V| phases, where
|V| is the number of vertexes in the query graph. Ini-
tially, the algorithm seeds the DP table with the vari-
able set S containing only one variable (i.e., the vertex
in the query graph). At the j-th phase, the algorithm
supposes the variable set S includes j variables, and
adds a variable v S∉ into S, which is linked with
some variable(s) in S by either normal or triple edges.
Then compute the best execution tree for { }S v∪ . Let
the edges linking v with S be E, the algorithm trans-
lates each edge e E∈ into a corresponding join op-
eration depending on to the edge type that connects the
execution tree of S and v together. The other edges

{ }E e− are translated as selection operators and se-
quentially put on top of the join operation. The output
binding set then includes all the variables { }S v∪
and the selection only needs to be executed after join.
The triple pattern for each selection is determined by
the edge constraint. However, the order of the selection
operations must also be considered. A greedy strategy
is used to choose the selection with the smallest cost
on the join and then the next lowest cost selection, and
so on. Finally, if any variable can be removed at a tree
node w, then an aggregation operator is added for node
w. The algorithm repeats these steps until all variables
in the subgraph are added into S. The optimal execu-
tion tree of the subgraph is obtained after the |V|-th
variable is put into S.

LIU Chang (刘 畅) et al.：Towards Efficient SPARQL Query Processing on RDF Data

619

This algorithm does not consider all possible query
plans, but only the left-deep tree. This reduces the com-
plexity of the optimization algorithm whose cost is
O(e2v), where v is the number of nodes and e is the num-
ber of edges in the subgraph, and reduces the calcula-
tions for the selection on the join as discussed in Sec-
tion 3.2 (the actual index lookup for the selection can
be saved which the output binding set of the join is
sorted).

Disjunctive queries This algorithm mainly fo-
cuses on how to optimize conjunctive SPARQL queries.
However, SPARQL also support UNION and OP-
TIONAL clauses for disjunctive queries[3]. For UNION,
the algorithm first treats all its triple patterns as nested
sub-queries. Then the nested sub-queries are trans-
formed into optimal subtrees and merged into the main
execution tree by the UNION operator. For OP-
TIONAL, first all the triple patterns outside the OP-
TIONAL clause are copied into the OPTIONAL clause
based on its semantic and then the optimal subtrees are
selected for these triple patterns. Finally, the subtrees
are merged into the main execution tree by the left
outer join operator. The union and left outer join are
described in detail in Liu et al.[17]

4 Performance Study

A prototype system named Airstore was built using
Lucence 2.4[18] to evaluate this approach. The algo-
rithm was implemented in the Java SDK 1.6 and com-
pared with the state-of-the-art RDF stores Allegro-
Graph[19], Sesame[20], YARS2[8], SOR[5], and RDF-
3X[11]. The first four systems were implemented in
Java, while RDF-3X was developed using C++. The
IBM DB2 v9.1 was used as the backend storage of the
SOR. All tests were ran on a PC with an Intel Duo
Core 6700@2.66 GHz processor, 2.0 GB RAM, and a
140 GB 7200 RPM IDE driver, while the operating
system is Ubuntu 8.0.4. The synthetic and real datasets,
LUBM[21] and DBpedia[1], were used for performance
testing and all tests were repeated 10 times to calculate
the average results.

Since the LUBM benchmark queries are designed
for ontology reasoning, they were not used as bench-
mark queries. Instead SPARQL queries (Q1-Q7) were
developed with five typical access patterns, point, star,
tree, graph, and hybrid. Table 2 lists all the benchmark
queries. Each access pattern tested the efficiency of a

particular access method with Q1 and Q2 used to
evaluate the efficiency of data retrieval with vertex
constraints, while Q3 and Q4 were designed for testing
joinings with edge constraints. Two graph-shaped que-
ries, Q5 and Q6, were used to study the effectiveness
of the cost estimation algorithms. Finally, Q4 and Q6
were combined using the union operation to evaluate
the efficiency of different RDF stores on multiple
query graphs. Seven other SPARQL queries (Q8-Q14)
were designed for the DBpedia dataset[17].

Table 2 SPARQL benchmark queries

ID Query Shape

Q1
SELECT distinct ?x WHERE {
?x ub:researchInterest. ub:Research18.
?x rdf:type ub:FullProfessor.}

Point

Q2
SELECT distinct ?x WHERE {
?x rdf:type ub:UndergraduateStudent.} Point

Q3

SELECT distinct ?x ?y1 ?y2 ?y3
WHERE { ?x ub:worksFor ub:University0.
?x ub:name ?y1.
?x ub:emailAddress ?y2. ?x ub:telephone ?y3. }

Star

Q4

SELECT distinct ?x ?z WHERE { ?x
ub:advisor ?y.
?y ub:worksFor ?z.
?a ub:memberOf ?z. ub:Publication5

ub:publicationAuthor ?a.}

Tree

Q5

SELECT distinct ?x ?y ?z WHERE {
?x rdf:type ub:GraduateStudent.
?y rdf:type ub:University. ?x ub:memberOf ?z.
?z ub:subOrganizationOf ?y.
?z rdf:type ub:Department.?x

ub:undergraduateDegreeFrom ?y. }

Graph

Q6
SELECT distinct ?x ?z WHERE {
?x rdf:type ub:Department. ?x ?y ?z. } Graph

Q7 Q4 union Q6 Hybrid

The system performance was evaluated based on
metrics for the time for data loading and indexing, ac-
curacy of cost estimation and query time. The first
metric evaluates the efficiency of the RDF stores for
loading and indexing triples. The accuracy of cost es-
timation was used for testing the effectiveness of the
query optimization algorithm (i.e., to what degree the
optimization algorithm can speed up SPARQL query
processing). The query time is of most interest to
end-users since it determines both the usability and
scalability of the RDF stores.

4.1 Time for data loading and indexing

The first test evaluates the time used for loading and

 Tsinghua Science and Technology, December 2010, 15(6): 613-622

620

indexing the LUBM, datasets LUBM20, LUBM40,
LUBM60, LUBM80, and LUBM100, where the num-
ber of triples varies from 2.8 million to 14 million. All
the baseline systems were also ran on these LUBM
datasets to measure the scalability.

The results in Fig. 7 show that the performances of
airstore, AllegroGraph, RDF-3X, and SOR were simi-
lar with increasing data volume with all four systems
significantly outperforming Sesame and YARS2. The
results show that the IR indexing technique can be
used to manage the RDF data since the scalability of
airstore is as good as that of the B+-tree-based RDF
stores, such as RDF-3X and SOR.

Fig. 7 Time for data loading and indexing

4.2 Accuracy of cost estimation

The accuracy of the cost estimates of the query opti-
mization algorithm was then evaluated by calculating
the costs of all possible query plans (including the ac-
tual optimal plan) and then comparing their execution
times. The accuracy of the cost estimate, ACE, is de-

fined as c

o

qtimeACE
qtime

= , where cqtime indicates the

execution time of a candidate query plan and oqtime
refers to the execution time of the optimized query plan
selected by the algorithm. Thus, larger ACE indicates
slower execution trees and, therefore, more accurate
execution cost estimates by the algorithm. Only the re-
sult of Q5 on LUBM1000 that contains more than 100
million triples is reported due to space limitations[17].

The results in Fig. 8 show that the execution times
for the first four query plans are close to the chosen
plan, while those for the next seven query plans are
1.2-7 times slower. The execution times of the last
seven query plans were 1200 times slower than for

Airstore. In the figure, the first plan is the actual opti-
mal plan. These results show that this algorithm very
effectively identifies the optimal plan in the restricted
searching space.

Fig. 8 Accuracy of cost estimation

4.3 Query time

Finally, the query times for the different RDF stores
were measured for both the LUBM and DBpedia data-
sets. The query time for airstore includes both the
query optimization time and the query execution times.
Six indices were used for Sesame with the full 24 in-
dices used for AllegroGraph with the SOR’s perform-
ance tuned with the IBM DB2 design advisor to get the
best results. The two sets of tests on the LUBM data-
sets tested the query time for different RDF stores and
the scalability for different data volumes (LUBM20,
LUBM40, LUBM60, LUBM80, and LUBM100). Then
airstore was evaluated using the two large RDF data-
sets LUBM1000 and DBpedia.

Performance on the LUBM datasets Figure 9 il-
lustrates the query times for all the RDF stores on the
LUBM100. The results on LUBM20, LUBM40,
LUBM60, and LUBM80 were similar. The results in
Fig. 9 show that the query times for Airstore and RDF-
3X were the best with very efficient performance in
comparison with AllegroGraph, Sesame, YARS2, and
SOR. Airstore outperformed RDF-3X on all the que-
ries except for Q5. Airstore outperforms RDF-3X on
most queries mainly because the sequential index
reading on the inverted index is more efficient than the
scanning B+-tree. For example, for Q2, Airstore only
needs to read all the documents with the term Under-
graduateStudent to obtain all the answers and with the
inverted index, all the documents with the same term
are placed near to each other on the disk. For Q5,

LIU Chang (刘 畅) et al.：Towards Efficient SPARQL Query Processing on RDF Data

621

RDF-3X pipelines the operators to produce the final
result while Airstore does not use such a pipeline and
has to maintain the binding sets for the intermediate
results of the binary and triple joins, which costs more
time. In this case, RDF-3X outperforms airstore.

Fig. 9 Query time on LUBM datasets

Thus the Airstore performance on most queries is
better than that of RDF-3X, even though RDF-3X was
implemented using C++. Therefore, the results show
that this RDF storage scheme greatly improves query
performance and the IR technique very efficiently in-
dexes the RDF triples.

The scalability of Airstore as indicated by the query
time was then evaluated by varying the data volume.
The results in Fig. 10 show that the query time for each
SPARQL query increases linearly with increasing
amount of the triple, which shows the good scalability
of Airstore relative to the RDF data population.

Fig. 10 Airstore query time for large datasets

Performance on large RDF datasets The final
tests evaluated the Airstore query performance on two
large RDF datasets LUBM1000 with 140 million tri-
ples and DBpedia with 120 million triples.

The results in Fig. 11 show that Airstore took only

4.4 s to execute the most expensive query, Q5, with all
other queries finishing within 1 s. The results in Fig. 12
show that the slowest query time on the DBpedia
dataset was less than 120 ms. Thus, these results show
that airstore is scalable and efficient in terms of the
data population to be queried. Comparison of Figs. 11
and 12 also show that the performance difference of
airstore between the LUBM1000 and DBPedia datasets
is mainly caused by the difference in their data distri-
bution and the query selectivity.

Fig. 11 Airstore query time on LUBM1000

Fig. 12 Airstore query time on DBPedia

5 Conclusions

This paper presents an RDF query engine for efficient
SPARQL query processing. The algorithm includes an
IR based solution for indexing triples and a set of
highly-efficient operators for query optimization and
evaluation, a set of RDF statistics for estimating the
execution cost of the query plan, and a main-tree-
shaped optimization algorithm for identifying the
optimal query plan. Tests show that this approach is
very efficient and scalable for querying large-scale
RDF triples. Current work focuses on the query opti-
mization problem on SPARQL basic graph patterns,

 Tsinghua Science and Technology, December 2010, 15(6): 613-622

622

and union and optional patterns. Future work will
extend this approach to support the filter clause and
named graphs in the SPARQL[3] by extending the ex-
isting statistics, indexing scheme and operators.

References

[1] DBpedia. http://dbpedia.org/, 2010.
[2] Bizer C, Heath T, Idehen K, et al. Linked data on the web.

In: Proc. of World Wide Web. Beijing, China, 2008:
1265-1266.

[3] SPARQL query language for RDF. http://www.w3.org/
TR/rdf-sparql-query/, 2008.

[4] Wilkinson K. Jena property table implementation. In: Proc.
of SSWS. Athens, Georgia, USA, 2006.

[5] Ma L, Wang C, Lu J, et al. Effective and efficient semantic
web data management on DB2. In: Proc. of SIGMOD: In-
ternational Conference on Management of Data. Vancouver,
Canada, 2008.

[6] Abadi D J, Marcus A, Madden S R, et al. Scalable seman-
tic web data management using vertical partitioning. In:
Proc. of Very Large Database. Vienna, Austria, 2007.

[7] Weiss C, Karras P, Bernstein A. Hexastore: Sextuple in-
dexing for semantic web data management. In: Proc. of
Very Large Database. Auckland, New Zealand, 2008.

[8] Harth A, Umbrich J, Hogan A, et al. Yars2: A federated
repository for querying graph structured data from the web.
In: Proc. of International Semantic Web Conference. Pusan,
South Korea, 2007.

[9] Zhang L, Liu Q, Zhang J, et al. Semplore: An IR approach
to scalable hybrid query of semantic web data. In: Proc. of
International Semantic Web Conference. Pusan, South Ko-

rea, 2007.
[10] Stocker M, Seaborne A, Bernstein A, et al. SPARQL basic

graph pattern optimization using selectivity estimation. In:
Proc. of World Wide Web. Beijing, China, 2008.

[11] Neumann T, Weikum G. Rdf-3x: A RISC-style engine for
RDF. In: Proc. of Very Large Database. Auckland, New
Zealand, 2008.

[12] Selinger P G, Astrahan M M, Chamberlin D D, et al. Ac-
cess path selection in a relational database management
system. In: Proc. of SIGMOD: International Conference on
Management of Data. Boston, Massachusetts, USA, 1979:
23-34

[13] Ioannidis Y. The history of histograms. In: Proc. of Very
Large Database. Berlin, Germany, 2003.

[14] Ioannidis Y E. Query optimization. ACM Computing Sur-
veys, 1996, 28(1): 121-123.

[15] Florin R, Alin D. Sketches for size of join estimation. ACM
Transaction on Database System, 2008, 33(3): 1-46.

[16] Biconnected graph. http://mathworld.wolfram.com/Bi-
connectedGraph.html, 2010.

[17] Liu C, Xu L, Wang H, et al. Towards efficient SPARQL
query processing on RDF data. http://apex.sjtu.edu.cn/apex
wiki/Papers, 2009.

[18] Apache Lucene. http://lucene.apache.org/, 2010.
[19] AllegroGraph RDFStore. http://agraph.franz.com/allegro-

graph/, 2010.
[20] OWLIM semantic repository. http://ontotext.com/owlim/,

2010.
[21] Guo Y, Pan Z, Heflin J. LUBM: A benchmark for owl

knowledge base systems. Journal of Web Semantics, 2005,
3(2): 158-182.

