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Abstract: A method was developed to restore degraded images to some extent after the pixel binning pro-   

cess in image sensors to improve the resolution. A pixel binning model was used to approximate the original 

un-binned image. Then, the least squares error criterion was used as a constraint to reconstruct the re-

stored pixel values from the binning model. The technique achieves about a one-decibel increase in the 

peak signal-to-noise ratio compared with the original estimated image. The technique has good detail pre-   

servation performance as well as low computation load. Thus, this restoration technique provides valuable 

improvements in practical, real time image processing. 

Key words: image restoration; image sensors; pixel binning 

 

Introduction 

Image sensors are widely used to acquire digitalized 
images. Real-time image acquisition often uses pixel 
binning to reduce decreases of the signal-to-noise ratio 
(SNR)[1-6]. However, the pixel binning process does 
degrade the original image, which can be restored to 
some extent. The fact that pixels from the image sensor 
are binned from the original un-binned pixels can be 
used to help the restoration. Thus, a higher resolution 
image can be restored from the binned image. 

1  Pixel Binning 

Image sensors, which are in essence transducers, con-
vert photons into electrical signals. As the photons fall 
onto the surface of the image sensors, electrons accu-
mulate in each pixel. Once the exposure is finished, the 
charges are transferred to the output and digitized. 
Most image sensors have the ability to combine multi-
ple pixel charges with one single large pixel, which 

represents all the individual pixels contributing to the 
charge. This is referred to as binning. No-binning or 
1 1×  binning means the individual pixels are retained. 
With 2 2×  binning, four adjacent pixels are binned 
into one larger pixel and read out. With this option, the 
light sensitivity is increased four times from the 
four-pixel contribution; however, the image resolution 
is reduced by half. The diagram in Fig. 1 illustrates the 
pixel-binning process for no-binning, 2 2×  binning, 
and 3 3×  binning.  

 
(a) No binning 

 
(b) 2×2 binning 

 
(c) 3×3 binning 

Fig. 1  Diagram for pixel-binning 

The pixel binning technique is helpful for image 
acquisition. One primary benefit of binning is a higher 
SNR in the readout signal. With no binning, the   
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readout noise is added during each readout and will be 
added to each individual pixel. However, in the 
binning mode, the noise is added to the binned pixel 
which has the combined signal from multiple individ-
ual pixels[7-12]. Ideally, this operation can produce an 
SNR improvement equal to the binning factor, which 
equals four with 2 2×  binning.  

Another benefit of binning is to increase the readout 
frame rate. Since the bottleneck in the readout is the 
pixel digitization, the binning technique can be used to 
effectively increase the total frame rate of a given sys-
tem. Highly binned low-resolution images can be read 
out very fast when high speed is needed[2,6,13].  

According to the sampling theory, images acquired 
from image sensors can be viewed as digitized discrete 
samples from the original continuous two-dimensional 
signal. However, the pixel binning process does not 
follow this sampling procedure. In Fig. 2, the triangu-
lar dots represent the original samples and the circular 
dots represent the binned image with 2 2×  binning. 
Each binned image pixel represents the area of four 
adjacent sub-areas. The binned value is equal to the 
summation of the four adjacent individual pixels rather 
than the sample at the position of the continuous signal. 
Pixel binning then degrades image resolution. How-
ever, the binned image can be restored to acquire an 
image with higher resolution. Though the pixel binning 
process can not be completely reversed, proper restora-
tion can give a good approximation of the original im-
age, which is generally valuable in image acquisition. 

 
Fig. 2  Diagram for the image sample and 
pixel-binning 

2  Method 

For simplicity, we consider only 2×2 binning. The idea 
can be directly extended to larger-scale binning. To 
clearly explain the idea, we first explain some of the 

terms used in the derivation. 
A 2 2×  binned image is acquired from the detector. 

Let ( , )I m n  denote the binned image, where 
1,2, ,m M= …  and 1,2, ,n N= … . The binned image 

can be considered to be acquired from the original 
un-binned image O ( , )I i j , where 1,2, ,2i M= …  and 

1,2, ,2j N= … . Since the pixel binning can not be 
completely reversed, the restored image R ( , )I i j  can 
be a good approximation of O ( , )I i j . The restored 
image R ( , )I i j  follows the binning procedure which 
can be modeled by a very simple equation as follows: 

R R( , ) ( (2 1,2 1) (2 ,2 1)I m n I m n I m n= − − + − +  

R R(2 1,2 ) (2 ,2 )) / 4I m n I m n− +     (1) 
However, Eq. (1) has an infinite number of solutions 

and R ( , )I i j  cannot be obtained without additional 
information and constraints. To restore the binned im-
age, we first get an estimate of O ( , )I i j , which can be 
denoted as E ( , )I i j . Then, we need to find R ( , )I i j  
which best approximates O ( , )I i j . However, since the 
real values O ( , )I i j  cannot be obtained, we substitute 

E ( , )I i j  for O ( , )I i j  to find the best approximation. A 
simple, meaningful constraint for each binned pixel 

0 0( , )m n  is 
0 0

0 0
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2
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The estimation E ( , )I i j  does not necessarily need to 
follow the pixel binning model in Eq. (1). There are 
many ways to obtain this estimation, e.g., the interpo-
lated image of ( , )I m n , which is widely used in image 
processing to acquire enlarged images[14]. 

The constraint in Eq. (2) is a least square error (LSE) 
criterion, which enables analytic solution to Eq. (1). 
The Lagrange multiplier method can be used to form a 
new function to find the minimum of 
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where F(m0,n0) is the Lagrangian function and the 
constant λ is the Lagrange multiplier. 

Taking partial derivatives of Eq. (3) gives four equa-
tions for the four pixels 0 0(2 1,2 1),m n− − 0 0(2 ,2 1),m n −  

0 0(2 1,2 )m n− , and 0 0(2 ,2 )m n . 

R 0 0 E 0 02( ( , ) ( , )) 0,I i j I i j λ− − =  

0 0 0 0 0 02 1,2 ;  2 1,2i m m j n n= − = −       (4) 
So we have 

R 0 0 E 0 0( , ) ( , ),
2

I i j I i jλ= +  

0 0 0 0 0 02 1,2 ; 2 1,2i m m j n n= − = −       (5) 
According to Eq. (1), for each binned pixel 
0 0( , )m n , 

0 0

0 0

2 2

E 0 0
2 1 2 1

2 ( , ) 4 ( , )
m n

i m j n
I i j I m nλ

= − = −
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Then 
0 0

0 0
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λ = − = −

−
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We then substitute Eq. (7) for λ  into Eq. (5) to ob-
tain the restored pixel values at 0 0(2 1,2 1)m n− − , 

0 0(2 ,2 1)m n − , 0 0(2 1,2 )m n− , and 0 0(2 ,2 )m n : 
0 0

0 0

2 2

0 0 E
2 1 2 1

R 0 0 E 0 0

4 ( , ) ( , )
( , ) ( , ),

4

m n
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−
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∑ ∑
 

0 0 0 0 0 02 1,2 ;  2 1,2i m m j n n= − = −       (8) 
Now we are able to get the values of the restored 

image pixels R ( , )I i j  in terms of the estimated values. 
A flow chart is given in Fig. 3 to better illustrate the 
method. All the additional work in the method is sim-
ply to make corrections to the pixels after the estima-
tion. The calculational load, as shown in Eq. (8), is 
very small. 

 
Fig. 3  Flow chart 

3  Geometric Description 

The geometric description of the process is given to 

provide a profound understanding of the method. Only 
the one-dimensional case is shown without loss of 
generality to explain the concept. The description here 
can be directly extended to the two-dimensional case 
for an image.  

The estimation method used here is bilinear interpo-
lation, which is linear interpolation in the one- dimen-
sional case. The continuous light solid line shown in 
Fig. 4 indicates the original continuous signal. The 
original signals are sampled at the sampling frequency, 
indicated by the vertical dashed grid. The sampled 
signals are then binned and read out, as indicated by 
the heavy solid points ( 1)I n − , ( )I n , ( 1)I n + , and 

( 2)I n + . The binned signal is interpolated to acquire 
the signals at the original sampling frequency. Using 
linear interpolation on the resampling grid indicated in 
Fig. 4, we have  

E
1 3(2 1) ( 1) ( ),
4 4

I n I n I n− = − +  

E
3 1(2 ) ( ) ( 1)
4 4

I n I n I n= + +         (9) 

 
Fig. 4  Diagram of the method in one dimension 

The dotted dashed line between E (2 1)I n −  and 

E (2 )I n  depicts the profile of the interpolated signal 
which deviates greatly from the original profile and 
does not pass through the binned signal ( )I n . The 
correction to the interpolated signals gives 

R
1 1(2 1) ( 1) ( ) ( 1),
8 8

I n I n I n I n− = − − + + +  

R
1 1(2 ) ( 1) ( ) ( 1)
8 8

I n I n I n I n= − + − +     (10) 

The dashed line between R (2 1)I n −  and R (2 )I n , 
indicated by  , passes through the binned signal  

( )I n  and is a better linear approximation to the   
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original profile. The fact that the readout signal is ob-
tained through binning is an important part of the 
method.  

4  Simulation Results 

The method is evaluated quantitatively using the clas-
sic fishing boat image comparing interpolation and the 
proposed method. The original boat image, which is 
512 512×  pixels, was first binned into a 256 256×  
pixel image. Bilinear interpolation was used to acquire 
the estimated image. Then, the estimated image was 
corrected to acquire the restored image.  

The peak signal-to-noise ratio (PSNR) is used to 
evaluate the image quality. The PSNR is defined as 

2255PSNR 10 lg ,
MSE

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∙  

1 1
2

0 0

1MSE | ( , ) ( , ) |
m n

i j
I i j K i j

mn

− −

= =

= −∑∑     (11) 

where m and n are the numbers of rows and columns in 
image I  or .K  

The PSNRs for the bilinear-interpolated and the re-
stored images are listed in Table 1. The detail- preserv-
ing ability of the method was evaluated using part of a 
boat, which contains fine details cropped from the 
original image. The PSNRs for this part were also 
listed in Table 1. The results in Table 1 show that the 
restoration process has improved the image quality in 
terms of the PSNR with more than one decibel im-
provement between the overall or partial PSNRs of the 
interpolated and restored images. Thus, the corrected 
image is a better approximation to the original signal 
than the estimate, i.e., the interpolated image, since the 
restored image rather than the interpolated image util-
izes the pixel binning model in Eq. (1).  

Table 1  PSNRs of the interpolated and restored fishing 
boat image 

  PSNR (dB) 
Interpolated 29.06 

Overall 
Restored 30.29 

Interpolated 39.54 
Partial 

Restored 40.64 
   

The cropped boat images are shown in Fig. 5 to sub-
jectively evaluate the method. The bilinear interpola-
tion smears the fine details while the proposed restora-
tion method helps to recover these fine details to some 
extent. Though the restoration is not perfect, the result 

can be seen improved compared with the estimate.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5  Part of boat image cropped from (a) the original 
image, un-binned, (b) the bilinear-interpolated image after 
pixel-binning, (c) the restored image from (b), and (d) the 
bicubic-interpolated image after pixel-binning 

5  Discussion 

This restoration method helps restore an image from a 
degraded binned image. The estimate, which might not 
follow the pixel binning model, provides a constraint 
to make the restoration possible. The restoration should 
strictly follow the pixel binning model as a better ap-
proximation to the original signal. This method uses 
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the LSE criterion as a constraint. The least absolute 
error (LAE) or the maximum norm could also be used 
as the constraint. However, if the LAE or the maxi-
mum norm is used as the constraint, no simple ana-
lytical solution can be derived for each point, so the 
image processing would not be practical. 

Binned images from image sensors are generally 
enlarged to the original image when processed, e.g., 
directly interpolated for the enlargement. However, as 
stated in Section 2, this process does not utilize the 
pixel binning knowledge. The restoration method can 
then be considered a correction to the interpolation. 
The interpolation method in the restoration could vary 
from a very simple bilinear model to the more complex 
B-spline interpolation. Though the PSNR is not a reli-
able measurement to judge the image quality, restora-
tion using simple interpolation as the estimation can 
give improved PSNR comparable to that of using more 
complex interpolation methods. For example, the cur-
rent method with bilinear interpolation gives a PSNR 
of 30.29 dB. Bicubic interpolation with the interpo-
lated boat image gives 30.11 dB. The bilin-
ear-correction PNSR for the cropped part in Fig. 5 is 
40.64 dB while the bicubic-interpolation gives a PSNR 
of 40.48 dB. The PSNRs for the counterparts are 
nearly equal. The bicubic-interpolated image is shown 
in Fig. 5d for comparison of the image quality. The 
current method can be seen to achieve comparable de-
tail-preservation to the bicubic-interpolated image.  

The calculational load for each point using bilin-
ear-correction is significantly smaller than with bi-
cubic-interpolation. For example, with 2 2×  binning, 
bilinear interpolation requires four multiplications and 
three additions for each point. The correction process 
then requires only one division by four, one multiplica-
tion by four, and five additions. The division or   
multiplication by four can be implemented by a data 
shift when implemented in hardware, which is very 
fast. Therefore, the total calculational load for the bi-
linear-correction is just six multiplications, eight addi-
tions, and the data shift. The bicubic interpolation re-
quires unavoidable 16 multiplications and 15 additions. 
Therefore, this method can give images with compara-
ble PSNR with much less computational load. 

6  Conclusions 

An image restoration that receives the binning process 

was developed to restore degraded images. The method 
is proven to be efficient and to provide good detail 
preservation. The method does not significantly in-
crease the calculational load during implementation, 
which is valuable for real-time image processing.  
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