
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214ll13/19llpp504-511
Volume 14, Number 4, August 2009

Architecture Design of Computing Intensive SoCs*

YUE Yao (岳 耀), ZHANG Chunming (张春明), WANG Haixin (王海欣),
BAI Guoqiang (白国强), CHEN Hongyi (陈弘毅)**

Institute of Microelectronics, Tsinghua University, Beijing 100084, China

Abstract: Most existing system-on-chip (SoC) architectures are for microprocessor-centric designs. They

are not suitable for computing intensive SoCs, which have their own configurability, extendibility, perform-

ance, and data exchange characteristics. This paper analyzes these characteristics and gives design princi-

ples for computing intensive SoCs. Three architectures suitable for different situations are compared with

selection criteria given. The architectural design of a high performance network security accelerator

(HPNSA) is used to elaborate on the design techniques to fully exploit the performance potential of the ar-

chitectures. A behavior-level simulation system is implemented with the C++ programming language to

evaluate the HPNSA performance and to obtain the optimum system design parameters. Simulations show

that this architecture provides high performance data transfer.

Key words: architecture design; coprocessor; security accelerator; behavior-level simulation; system-on-

chip (SoC)

Introduction

As information technology develops, the computing
demands in various fields are rapidly increasing such
as information security, multimedia encoding, and
digital signal processing. Thus, coprocessors are often
used to reduce the computing burden on the basic mi-
croprocessor circuitry to allow it to work at optimum
speed[1]. Since the required processing on coprocessors
could often be reduced to a combination of several
certain algorithms, the system-on-chip (SoC) design is
a suitable design method for implementing these co-
processors because it can utilize different intelligent
property modules to realize these algorithms and,
therefore, increase the design efficiency[2].

The architectural design is very important for SoCs
because it greatly influences the performance, con-
figurability, and extendibility of the systems. However,
many existing SoC architectures are for microproces-
sor-centric SoCs[3,4]. They are not very suitable for com-
puting intensive SoCs because computing intelligent
property modules lack the scheduling and control abil-
ity of microprocessors. This paper analyzes the char-
acteristics of computing intensive SoCs and presents
three SoC architectures. An implementation scheme
that achieves seamless data processing is introduced in
the architectural design of a high performance network
security accelerator (HPNSA)[5]. A behavior-level
simulation is implemented with the C++ programming
language to assess the HPNSA architecture.

1 Analysis of Computing Intensive
SoCs

1.1 General analysis

Good reconfigurability and extendibility are crucial

 Received: 2008-04-03; revised: 2009-03-16

* Supported by the National Natural Science Foundation of China
(No. 60576027) and by the National High-Tech Research and
Development (863) Program of China (No. 2006AA01Z415)

** To whom correspondence should be addressed.
E-mail: chy-ime@tsinghua.edu.cn; Tel: 86-10-62779252

YUE Yao (岳 耀) et al.：Architecture Design of Computing Intensive SoCs 505

requirements for computing intensive SoC architec-
tures. To achieve these objectives, the algorithm en-
gines (AEs), the intelligent property modules in the
computing intensive SoCs, should concentrate on data
processing and have the simplest system interface so
that they can easily be incorporated into the SoCs.
However, this does not mean that AEs should only
have a very simple function. Many AEs do very com-
plex processing in multiple modes, but the AEs should
not control the data transfer and task scheduling for the
following four reasons.

(1) Unlike microprocessors, AEs are usually appli-
cation specific integrated circuits (ASIC) to perform
certain algorithms and they lack control and scheduling
capabilities.

(2) Intelligent property modules are designed to ac-
commodate various applications and they lack the
global view of the entire working environment.

(3) SoCs need a unified interface to other systems
but intelligent property modules are not necessarily
designed with the same interface.

(4) SoC should have the maximum control over the
intelligent property modules and schedule them freely
to best complete the required tasks and to realize new
functions.

On the other hand, the SoC framework should spe-
cialize in data transfer, task scheduling, and logic con-
trol. Since task scheduling and logic control are closely
related, the SoC framework is usually divided into the
data transfer module (DTM) and the central allocator
and controller (CAC). The DTM is responsible for
reading input data and configuration information,
sending out results, and exchanging intermediate data
between intelligent property modules, while the CAC
is in charge of task scheduling, resource allocation, and
logic control of the intelligent property modules and
DTM.

1.2 Data transfer module

The most popular schemes for the DTM design use
hierarchical levels of buses[3,4,6,7] because (1) Intelli-
gent property could be easily connected to on-chip
buses with simple interfaces; (2) High performance
modules and slow modules can use different data
transfer buses; and (3) Hierarchical level of buses can
separate the intelligent property modules from the ex-
ternal environment and allow the intelligent property

modules to concentrate on the data processing.
Although on-chip buses have lower efficiencies than

hardwire interconnections, the buses are adequate for
most computing intensive SoCs because these SoCs
usually communicate with other systems using print
circuits board (PCB) buses, such as VME[8], PCI-X[9],
and PCI Express[10], which are much slower than
on-chip buses. The PCB bus, rather than the on-chip
bus, is then the bottleneck for computing intensive
SoCs, as long as the data exchange between the intel-
ligent property modules is not too frequent. Although
heavy data exchange occurs in some cases, it often
results from improper blocking of the intelligent prop-
erty modules.

For computing intensive SoCs, low performance in-
telligent property modules rarely exist since the AEs
are usually ASIC modules. Therefore, low performance
buses that specialize in slow data transfer such as
CoreConnect[6] and AMBA[7] are not included. There-
fore, the following two hierarchies of buses are usually
enough: inter bus for data transfer between the DTM
and other systems, and inner bus for data transfer be-
tween the DTM and intelligent property modules.
Since inter bus must match the PCB bus, little optimi-
zation can be done, but the inner bus allows free choice.
Common choices for this bus are unidirectional buses,
bidirectional buses, crossbar switch buses, and seg-
mented buses[3,4]. The latter two buses provide efficient
data exchange between intelligent property modules,
but they are not suitable for computing intensive SoCs
because they require the intelligent property modules
to take charge of the intermediate data transfer. Thus,
the remaining problem is how to choose between a
unidirectional bus and a bidirectional bus. Two unidi-
rectional buses would lead to less bus conflicts than a
single bidirectional bus. To do a simple quantitative
comparison between the two schemes, define the sto-
chastic processes 1()X t and 2 ()X t for unidirec-
tional buses as follows:

1

1, if input bus is busy;
()

0, if input bus is free,
X t

⎧
= ⎨
⎩

2

1, if output bus is busy;
()

0, if output bus is free.
X t

⎧
= ⎨
⎩

Further assume that 1()X t and 2 ()X t are two in-
dependent stationary processes satisfying

1 1{ ()}E X t η= , 2 2{ ()}E X t η= ,
where 1η and 2η denote the average occupancy
rates of the two unidirectional buses. Then

 Tsinghua Science and Technology, August 2009, 14(4): 504-511 506

1 2 1 2 1 2{ () ()} { ()} { ()} .E X t X t E X t E X t ηη= =

1 2{ () ()}E X t X t represents the average possibility

that both of the two unidirectional buses are busy, or
the average additional bus contention rate that will be
introduced by replacing the two unidirectional buses
with a bidirectional bus. Assume that all three buses
have the same width, w , and the same transfer rate,
r , then the performance ratio between the bidirec-
tional bus and the unidirectional buses is equal to

bi 1 2 1 2 1 2

uni 1 2 1 2

() 1P wr wr
P wr wr

η η ηη ηη
η η η η
+ −

= = −
+ +

.

This ratio decreases as 1η or 2η increases while biP
approaches uniP when 1η or 2η approaches 0 and it is
only 1/2 of uniP when 1 2 1η η= = . The above equation pro-
vides a criterion for choosing what type of bus should

be used once the required performance is determined.
Three possible architectures shown in Fig. 1 are for

computing intensive SoCs with two levels of hierar-
chical buses. In these architectures, the DMAs are re-
sponsible for caching data between the two levels of
buses. In Fig. 1a, all the DMAs are bidirectional be-
cause both the inner bus and the inter bus are bidirec-
tional. With unidirectional inner buses, the DMAs can
either be bidirectional or unidirectional as in Figs. 1b
and 1c. If bidirectional DMAs are used, they could also
be responsible for exchanging data between different
intelligent property modules. An alternative method
suitable for all three designs uses on-chip SRAM
connected to the inter bus to store the intermediate re-
sults. Both approaches have their own strengths and
weaknesses.

Intelligent property modules

Inner bus

DMAs

Inter bus

PC
B

 b
us

On-chip
SRAM

Intelligent property modules

Inner bus/I

DMAs

Inter bus

Inner bus/O

PC
B

 b
us

On-chip
SRAM

Intelligent property modules

Inner bus/I

Inter bus

Inner bus/O
PC

B
 b

us

On-chip
SRAM

IDMAs ODMAs

(a) Scheme A: Bidirectional DMAs (b) Scheme B: Bidirectional DMAs (c) Scheme C: One-way DMAs

 with bidirectional bus with one-way buses with one-way buses
Fig. 1 Architectures for computing intensive SoC

Approach 1 Bidirectional DMAs to transfer data
between intelligent property modules are more effi-
cient and result in less contention for the inter bus.
However in many cases, the processing rates of the
different intelligent property modules do not match, so
intermediate results may spend a long time in the
DMAs which may obstruct other data that needs to be
transferred immediately. To alleviate this side effect,
more DMAs are required. Furthermore, this approach
lacks flexibility for the following two reasons. First,
each intermediate result will occupy one DMA regard-
less of its length, which wastes memory. Second, the
input data of one intelligent property module might be

the results of several other intelligent property modules.
If the DMA is responsible for this data exchange, it
must guarantee the right storage order of these results.
Although this function can be implemented, this will
lead to a complex DMA structure and the DMA must
be responsible for part of the control and scheduling.
Therefore, this approach is most suitable when the in-
telligent property modules have similar processing
rates and only simple intermediate data exchanges.

Approach 2 Using on-chip SRAM to store inter-
mediate results is less efficient because additional data
transfer is required on the inter bus. However, no data
obstruction can occur in the DMAs and the DMAs

YUE Yao (岳 耀) et al.：Architecture Design of Computing Intensive SoCs 507

structures are relatively simple because they need not
do the control and scheduling. In addition, using
on-chip SRAM to store intermediate data is more
flexible. Thus, when the processing rates of the intelli-
gent property modules differ greatly or complex inter-
mediate data transfer is required, this approach is more
appropriate.

If Approach 2 is used, Figs. 1b and 1c differ only in
the DMA design. Bidirectional DMAs in scheme B of
Fig. 1 are more reusable, but with more complex
structures. In contrast, scheme C needs more DMAs,
but it simplifies the structures of the inner bus, inter
bus, and DMAs. Therefore, scheme C will shorten the
design period and will not necessarily result in a larger
area.

When intermediate data exchanges are very frequent,
specialized buses and DMAs can be introduced to in-
crease performance, at the expense of a larger area and
higher power dissipation.

1.3 Central allocator and controller

One responsibility of the CAC is task scheduling and
resource allocation. However, this is a network proc-
essor (NP)-hard problem in the strong sense[11]. The
simplest solution is a first-come-first-served, which is
reasonable when tasks arrive in serial. Gang schedul-
ing has been used to improve this method[12].

The other responsibility of the CAC is to control the
intelligent property modules and DTM function and
timing. Proper design of control logic is critical to fully
exploit the potential of the DTM. To achieve seamless
data processing, once an intelligent property module
completes its processing, its next input data should be
already in a DMA while another DMA should be ready
to send out the result. A control policy to satisfy this
requirement is introduced in the HPNSA architectural
design.

The CAC can be implemented as either an ASIC or
an embedded microprocessing unit (MPU) based on
the performance and programmability required by the
system specification.

2 HPNSA Architectural Design
2.1 Introduction to the HPNSA

Information security is playing an increasingly impor-
tant role in protecting data on the Internet. The NP[13],

as the fifth generation router, is not adequate for data
encryption and decryption because the computing load
is very heavy[14]. Therefore, an HPNSA is often used
with an NP for specialized data encryption and decryp-
tion, especially to better support the socket secure layer
(SSL) and IP security (IPSec) protocols[15,16].

A typical HPNSA should be able to perform block
cipher algorithms, public key algorithms, hash func-
tions, as well as random number generation. It should
also have the capability to execute several algorithms
in a chain which is common in the SSL and IPSec
protocols[5]. One such example is to use the triple data
encryption standard (triple-DES) algorithm to encrypt
the input data and then to sign the result using the
SHA-1 algorithm.

2.2 Overall design

The design objectives of this accelerator are[5] (1) us-
ing 0.18 μm CMOS digital technology; (2) using the
PCI-X bus (133 MHz, 64 bits) interface[9]; (3) using
200 MHz clock frequency except for the PCI-X inter-
face; (4) implementing block cipher algorithms in-
cluding DES, triple-DES, and AES; (5) implementing
public key algorithms including ECC and RSA; (6)
implementing hash algorithms including SHA-1 and
SCH; (7) implementing random number generation
(RNG); (8) executing the algorithms in a chain to bet-
ter support the SSL and IPSec protocols; and (9) hav-
ing high performance, good configurability, and exten-
sibility.

Since the processing rate of public key algorithms is
much slower than that of block cipher algorithms and
hash algorithms, using on-chip SRAM to store inter-
mediate results is more reasonable as has been ana-
lyzed in Section 1. The performance ratio between a
bidirectional bus and unidirectional buses can be cal-
culated using

2
1 2

bi 1 2 1 2

uni 1 2 1 2

()
41 1 1

4
P
P

η η
ηη η η
η η η η

+
+

= − − = −
+ +

.

Since on-chip SRAM is used to store intermediate
results, all the data transferred by the inner bus must
also be transferred by the inter bus. Therefore,

1 2() 200 1 133,η η+ × × 1 2 0.665,η η+

bi

uni

0.6651 0.833 75.
4

P
P

− =

Although using a bidirectional bus reduces the inner
bus performance by only 16.625%, unidirectional buses

 Tsinghua Science and Technology, August 2009, 14(4): 504-511 508

are used because not only high performance is the pri-
mary design goal, but also one unidirectional intelli-
gent property bus suitable for this system[17] is avail-
able. To simplify the DTM design, the architecture in
Fig. 1c is used in this design.

The simplified architecture is illustrated in Fig. 2
with emphasis on the data transfer. When the NP needs
the HPNSA for data encryption or decryption, it sends
a descriptor to the CAC that describes the task details,
such as which algorithm or algorithms to use, the
configuration memory address, the input data, and the
result. If this task requires the HPNSA to execute sev-
eral algorithms in a chain, the CAC divides this task
into several “middle-level tasks (MT)”, each responsi-
ble for one algorithm. The AEs required by the MTs
are allocated by the CAC. If an MT need not process
data in succession, such as the DES algorithm in the
electronic code book (ECB) mode, the MT is allowed
to occupy more than one AE at the same time. The in-
termediate result generated by the first MT will be
used by successive MT for the same task stored in the
on-chip SRAM. Since one MT may execute an algo-
rithm with very long input data, the MT is further di-
vided into sub tasks to guarantee fair use of the bus
among all the MTs. Sub tasks fall into two types, i.e.,
sub configure task (SCT) to transfer the configuration
and sub data task (SDT) to transfer and process the
data. In the final design, each SDT is no longer than
512 bytes.

W
B

U
S

R
B

U
S

C
/W

D
M

A

Algorithm engines (IPs)

R
D

M
ACentral allocator

and controller

PCI
interface

NP

Inter bus and bus controller

On-chip
SRAM

 PCI bus

W
B

U
S

co
nt

ro
lle

r

R
B

U
S

co
nt

ro
lle

r

Fig. 2 Simplified architecture schematic diagram

2.3 SCT

After an MT occupies a certain AE, the CAC sends out
one SCT to transfer the configuration, including the

algorithm mode, the key to be used, and some
algorithm related parameters, to the allocated AE. The
algorithm mode is described in the descriptor, while
other configuration is in off-chip memory. This process
executes as follows. The CAC writes the algorithm
mode into the allocated configuration transfer DMA
(CDMA) and tells the inter bus controller to transfer
the other configuration information to this CDMA
from the off-chip SRAM. Meanwhile, the CAC tells
the write bus (WBUS) controller which AE is to
receive the configuration information. The allocated
CDMA requests the WBUS as soon as the configura-
tion arrives. The WBUS controller only grants the re-
quest after it is notified by the corresponding AE that
the previous execution, if exists, has completed. The
AE uses some time to configure itself after the con-
figuration arrives and then notifies the WBUS control-
ler that it is ready to read input data, which ends the
SCT process. This process is for SCTs that configure
only one AE, but since one MT can simultaneously
occupy multiple AEs, one SCT could also configure
more than one AE. In this case, WBUS controller noti-
fies all the AEs allocated to the MT to receive the
configuration.

2.4 SDT

The SDT is responsible for transferring input data from
the memory into the AEs and transferring the results to
the memory. Here, memory stands for either on-chip
SRAM or off-chip memory. The SDT can be subdi-
vided into the input phase, processing phase, and out-
put phase. The SDT input phase is much the same as
for the SCT with only the following differences.

(1) The SDT input phase uses a write input DMA
(WDMA) rather than a CDMA. The WDMA need not
read any data from the CAC as the CDMA does. The
WDMA also has a lower priority than the CDMA for
both the inter bus and WBUS to guarantee that the
configuration arrives at the AE prior to the data.

(2) Data could only be transferred to one AE in the
SDT input phase while the configuration can be trans-
ferred to several AEs in the SCT.

(3) The WBUS controller grants requests from
WDMAs only when it has received signals from the
corresponding AE indicating that it is properly config-
ured by the SCT and the previous data processing on
this AE, if exists, has been finished and the result has
been sent out.

YUE Yao (岳 耀) et al.：Architecture Design of Computing Intensive SoCs 509

In the processing phase, the AE executes the re-
quired operation on the input data. Near the end of the
processing, the AE sends out a NEARREADY signal
to the CAC and read bus (RBUS) controller. Upon re-
ceiving the NEARREADY signal, if a waiting SDT
belonging to the same MT exists, the CAC configures
the AE to this SDT; otherwise, it allocates another MT
to this AE. One AE can be allocated to two SDTs or to
one SDT plus one SCT. Actually, the SDT/SCT ar-
rangement can transfer input data to the WDMA/
CDMA pair and then wait for completion of the current
processing task. This is controlled by the WBUS con-
troller as mentioned before. In this way, there is no
conflict at this AE and the input data for the next
SDT/SCT is transferred to the WDMA/CDMA in ad-
vance. After the RBUS controller receives the
NEARREADY signal, it allocates a free read output
DMA (RDMA) for this SDT and notifies the CAC that
this RDMA is responsible for SDT the output phase.
Based on this information, the CAC notifies the inter
bus controller what output address to use when this
RDMA applies for the inter bus. In this way, after the
NEARREADY signal is sent out by the AE, the system
starts setting this SDT output configuration. When the
present process ends, the result can be sent out imme-
diately without delay.

These two features introduced by the NEARREADY
signal dramatically reduce the input and output waiting
times and may completely eliminated them. Therefore,
this architecture can guarantee seamless data process-
ing as long as the time to send out the NEARREADY
signal is set properly. In the final design, the NEAR-
READY signal is sent out no less than 200 cycles prior
to the finish time of the entire execution based on
simulation analysis. If the AEs do not support the
NEARREADY signal, the finish signal could be used
instead to guarantee correct function, but seamless data
processing could not be achieved.

When the data processing finishes, the SDT enters
its output phase. The RBUS transfers the result to the
allocated RDMA, and then the inter bus transfers the
result in the RDMA to the memory address received
from the CAC as mentioned before. This ends the en-
tire SDT process.

2.5 Task, MT, and CAC

In the scenario considered, the NP may require the

HPNSA to execute only one algorithm or several algo-
rithms in a chain. Since each algorithm in the task re-
quires one MT, the task contains only one MT in the
first case and several MTs in the second case. The
number of SDTs in an MT is determined by the input
data length. The SCT is more complicated because the
MT may occupy AEs when it is newly created by the
task, or when AEs of the corresponding type are freed
by other MTs. For all these cases, an SCT should be
generated. The CAC is in charge of receiving

descriptors from the NP, generating MTs, SCTs, and
SDTs, and guaranteeing the right execution order of
the MTs, SDTs, and SCTs, as well as generating con-
trol signals for the inter bus, WBUS controller, and
RBUS controller.

2.6 Simulations

A behavior-level simulation was implemented in the
C++ programming language to evaluate the HPNSA
performance, determine the optimum design parame-
ters, and certify the control logic. An object-oriented
programming style is used to better describe hardware
modules. The relationships between the objects in the
simulation are shown in Fig. 3. In this figure, DES_

ALLOC, ECC_ALLOC, CMDA_ALLOC, WDMA_

ALLOC, and RDMA_ALLOC stand for the allocation
units for the AEs and DMAs in the CAC, while
TASK_GEN is responsible for generating random de-
scriptors. This figure is only for demonstration, and the
number of resources shown is not exact. Actually,
these parameters can easily be altered in the simulation
to determine the optimal parameters. This program
uses simulation steps to simulate the clock. Each object
records its current state, and renews their states when a
new simulation step begins. The program calculates the
system performance indices, such as the bus through-
put based on the intelligent property modules process-
ing rates.

The PCI-X bus limits the upper bound of the whole
system throughput to 133 MHz×64 bit=8.512 Gbps.
The output throughput limit for block cipher algo-
rithms is 4.256 Gbps since the input data and output
data have almost the same lengths. The performance
evaluation is then based on how close the throughput is
to this upper limit.

Since the DES has the quickest processing rate and
is the most demanding on the data transfer and DMAs,

 Tsinghua Science and Technology, August 2009, 14(4): 504-511 510

TASK_GEN

TASK TASKTASK

MTMT MT

SCT SCT SCT SDTSDTSDT

WBUS RBUS

CMDA_ALLOC

ECC_ALLOCDES_ALLOC

AEAEAEAEAEAE

… …

WDMA_ALLOC RDMA_ALLOC

CDMA CDMA… WDMA WDMA… RDMA RDMA…

PCI_BUS

Fig. 3 Object relationships

it is used to determine the optimal number of DMAs.
The simulations show that with 4 DES engines, 1
CDMA, 2 WDMAs, and 2 RDMAs, the output
throughput is 4.157 Gbps when 300 DES tasks are
simulated. This output throughput is very close to the
theoretical upper bound of 4.256 Gbps. If less DMAs
are used, the throughput will not reach 4 Gbps. Thus,
the simulations show that the architecture is very
efficient for high speed data transfer. Another result
that could be drawn from the simulation is that the ar-
chitecture can satisfy the demand of at most four DES
engines because of the transfer rate bottleneck imposed
by the PCI bus. Actually, the fourth DES engine only
increases the total output throughput by about 10%.
However since the triple-DES algorithm, which exe-
cutes more slowly than the DES, shares the DES en-
gines with the DES algorithm, the 4 DES engines are
worthwhile. This method was also used to set the op-
timal number of AEs for the other types. With the

given performance requirements, the simulations
showed that 4 DESs, 4 AESs, 2 ECCs, 2 RSAs, 1 RNG,
and 4 hash engines gave the best results.

No PCI bus conflicts with other systems are consid-
ered in the analysis. The simulations show that the
DMAs are more useful with severe PCI bus conflicts
because the DMAs cache the input and output data.
Therefore, the DMAs make the system more robust, so
the final design uses 1 CDMA, 3 WDMAs, and 3
RDMAs to increase the system performance when
contentions on the PCI bus are severe.

3 Conclusions

This paper shows that the specialization of the intelli-
gent property modules and the SoC framework are vi-
tal for attaining good configurability, extensibility, and
high performance in computing intensive SoCs. Dif-
ferent architectures are proposed and, although the

YUE Yao (岳 耀) et al.：Architecture Design of Computing Intensive SoCs 511

architectures are all highly configurable, extensible,
and efficient, they are suitable for different situations.
An implementation scheme that guarantees seamless
data processing is given for the HPNSA architectural
design. A behavior-level simulation shows that if the
parameters are properly set, the HPNSA throughput
approaches the theoretical limit of the PCB bus.

References

[1] Galanis M D, Dimitroulakos G, Goutis C E. Performance
improvements in microprocessor systems utilizing a

coprocessor data-path. In: International Conference on
Embedded Computer Systems: Architectures, Modeling
and Simulation. New Jersey, USA: IEEE Press, 2006:
85-92.

[2] Rincon A M, Lee W R, Slattery M. The changing land-
scape of system-on-a-chip design. In: Proceedings of the
IEEE on Custom Integrated Circuits Conference. New
Jersey, USA: IEEE Press, 1999: 83-90.

[3] Ryu K K, Shin E, Mooney V J. A comparison of five dif-
ferent multiprocessor SoC bus architectures. In: Proceed-
ings of Euromicro Symposium on Digital Systems Design.
New Jersey, USA: IEEE Press, 2001: 202-209.

[4] Ryu K K, Mooney V J. Automated bus generation for mul-
tiprocessor SoC design. IEEE Transactions on Com-
puter-Aided Design of Integrated Circuits and Systems,
2004, 23(11): 1531-1549.

[5] Wang Haixin, Yue Yao, Zhang Chunming, Bai Guoqiang,
Chen Hongyi. A novel unified control architecture for a
high-performance network security accelerator. In: Proc.
International Conference on Security and Management.
Las Vegas, USA, 2007: 538-544.

[6] IBM Incorporation. CoreConnect bus architecture.
http://www.ibm.com/us/, 2001.

[7] ARM Incorporation. AMBA peripherals. http://www.arm.

com/, 1999.
[8] VME64 standard. http://www.vita.com/specifications.html,

2001.
[9] PCI-X 2.0a protocol spec. http://www.pcisig.com/, 1999.
[10] PCI Express Base 2.0 specification. http://www.pcisig.com/,

2003.
[11] Schild K, Würtz J. Scheduling of time-triggered real-time

systems. Constraints, 2000, 5(4): 335-357.
[12] Schwiegeishohn U, Yahyapour R. Improving first-come-

first-serve job scheduling by gang scheduling. Job Sched-
uling Strategies for Parallel Processing, 1998, 1459:
180-198.

[13] Shah N. Understanding network processors [Dissertation].
Berkeley: University of California, 2001.

[14] Xie H, Zhou L, Bhuyan L. Architectural analysis of cryp-
tographic applications for network processors. In: 8th In-
ternational Symposium on High-Performance Computer
Architecture. New Jersey, USA: IEEE Press. http://www.
cs.ucr.edu/~bhuyan/ papers/np1.pdf, 2002.

[15] Motorola Incorporation. MPC190 hardware reference
manual. http://www.freescale.com, 2001.

[16] Broadcom Incroporation. BCM 5840 gigabit security
processor. http://www.broadcom.com, 2003.

[17] Zhang Chunming, Yue Yao, Wang Haixin, Bai Guoqiang,
Chen Hongyi. An improved AHB bus frame adapted to a
high-performance network security accelerator. In: IEEE
Conference on Electron Devices and Solid-State Circuits.
HsinChu, Taiwan, China: IEEE Press, 2007: 1159-1162.

