
TSINGHUA SCIENCE AND TECHNOLOGY 
ISSNll1007-0214ll13/19llpp504-511 
Volume 14, Number 4, August 2009 

Architecture Design of Computing Intensive SoCs* 

YUE Yao (岳 耀), ZHANG Chunming (张春明), WANG Haixin (王海欣),  
BAI Guoqiang (白国强), CHEN Hongyi (陈弘毅)** 

 
Institute of Microelectronics, Tsinghua University, Beijing 100084, China 

 
Abstract: Most existing system-on-chip (SoC) architectures are for microprocessor-centric designs. They 

are not suitable for computing intensive SoCs, which have their own configurability, extendibility, perform-

ance, and data exchange characteristics. This paper analyzes these characteristics and gives design princi-

ples for computing intensive SoCs. Three architectures suitable for different situations are compared with 

selection criteria given. The architectural design of a high performance network security accelerator 

(HPNSA) is used to elaborate on the design techniques to fully exploit the performance potential of the ar-

chitectures. A behavior-level simulation system is implemented with the C++ programming language to 

evaluate the HPNSA performance and to obtain the optimum system design parameters. Simulations show 

that this architecture provides high performance data transfer. 
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Introduction 

As information technology develops, the computing 
demands in various fields are rapidly increasing such 
as information security, multimedia encoding, and 
digital signal processing. Thus, coprocessors are often 
used to reduce the computing burden on the basic mi-
croprocessor circuitry to allow it to work at optimum 
speed[1]. Since the required processing on coprocessors 
could often be reduced to a combination of several 
certain algorithms, the system-on-chip (SoC) design is 
a suitable design method for implementing these co-
processors because it can utilize different intelligent 
property modules to realize these algorithms and, 
therefore, increase the design efficiency[2]. 

The architectural design is very important for SoCs 
because it greatly influences the performance, con-
figurability, and extendibility of the systems. However, 
many existing SoC architectures are for microproces-
sor-centric SoCs[3,4]. They are not very suitable for com-
puting intensive SoCs because computing intelligent 
property modules lack the scheduling and control abil-
ity of microprocessors. This paper analyzes the char-
acteristics of computing intensive SoCs and presents 
three SoC architectures. An implementation scheme 
that achieves seamless data processing is introduced in 
the architectural design of a high performance network 
security accelerator (HPNSA)[5]. A behavior-level 
simulation is implemented with the C++ programming 
language to assess the HPNSA architecture. 

1  Analysis of Computing Intensive 
SoCs 

1.1  General analysis 

Good reconfigurability and extendibility are crucial 
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requirements for computing intensive SoC architec-
tures. To achieve these objectives, the algorithm en-
gines (AEs), the intelligent property modules in the 
computing intensive SoCs, should concentrate on data 
processing and have the simplest system interface so 
that they can easily be incorporated into the SoCs. 
However, this does not mean that AEs should only 
have a very simple function. Many AEs do very com-
plex processing in multiple modes, but the AEs should 
not control the data transfer and task scheduling for the 
following four reasons.  

(1) Unlike microprocessors, AEs are usually appli-
cation specific integrated circuits (ASIC) to perform 
certain algorithms and they lack control and scheduling 
capabilities. 

(2) Intelligent property modules are designed to ac-
commodate various applications and they lack the 
global view of the entire working environment.  

(3) SoCs need a unified interface to other systems 
but intelligent property modules are not necessarily 
designed with the same interface.  

(4) SoC should have the maximum control over the 
intelligent property modules and schedule them freely 
to best complete the required tasks and to realize new 
functions. 

On the other hand, the SoC framework should spe-
cialize in data transfer, task scheduling, and logic con-
trol. Since task scheduling and logic control are closely 
related, the SoC framework is usually divided into the 
data transfer module (DTM) and the central allocator 
and controller (CAC). The DTM is responsible for 
reading input data and configuration information, 
sending out results, and exchanging intermediate data 
between intelligent property modules, while the CAC 
is in charge of task scheduling, resource allocation, and 
logic control of the intelligent property modules and 
DTM.  

1.2  Data transfer module 

The most popular schemes for the DTM design use 
hierarchical levels of buses[3,4,6,7] because (1) Intelli-
gent property could be easily connected to on-chip 
buses with simple interfaces; (2) High performance 
modules and slow modules can use different data 
transfer buses; and (3) Hierarchical level of buses can 
separate the intelligent property modules from the ex-
ternal environment and allow the intelligent property 

modules to concentrate on the data processing. 
Although on-chip buses have lower efficiencies than 

hardwire interconnections, the buses are adequate for 
most computing intensive SoCs because these SoCs 
usually communicate with other systems using print 
circuits board (PCB) buses, such as VME[8], PCI-X[9], 
and PCI Express[10], which are much slower than 
on-chip buses. The PCB bus, rather than the on-chip 
bus, is then the bottleneck for computing intensive 
SoCs, as long as the data exchange between the intel-
ligent property modules is not too frequent. Although 
heavy data exchange occurs in some cases, it often 
results from improper blocking of the intelligent prop-
erty modules. 

For computing intensive SoCs, low performance in-
telligent property modules rarely exist since the AEs 
are usually ASIC modules. Therefore, low performance 
buses that specialize in slow data transfer such as 
CoreConnect[6] and AMBA[7] are not included. There-
fore, the following two hierarchies of buses are usually 
enough: inter bus for data transfer between the DTM 
and other systems, and inner bus for data transfer be-
tween the DTM and intelligent property modules. 
Since inter bus must match the PCB bus, little optimi-
zation can be done, but the inner bus allows free choice. 
Common choices for this bus are unidirectional buses, 
bidirectional buses, crossbar switch buses, and seg-
mented buses[3,4]. The latter two buses provide efficient 
data exchange between intelligent property modules, 
but they are not suitable for computing intensive SoCs 
because they require the intelligent property modules 
to take charge of the intermediate data transfer. Thus, 
the remaining problem is how to choose between a 
unidirectional bus and a bidirectional bus. Two unidi-
rectional buses would lead to less bus conflicts than a 
single bidirectional bus. To do a simple quantitative 
comparison between the two schemes, define the sto-
chastic processes 1( )X t  and 2 ( )X t  for unidirec-
tional buses as follows: 

1

1, if input bus is busy;
( )

0, if input bus is free,
X t

⎧
= ⎨
⎩

 

2

1, if output bus is busy;
( )

0, if output bus is free.
X t

⎧
= ⎨
⎩

 

Further assume that 1( )X t  and 2 ( )X t  are two in-
dependent stationary processes satisfying 

1 1{ ( )}E X t η= , 2 2{ ( )}E X t η= , 
where 1η  and 2η  denote the average occupancy 
rates of the two unidirectional buses. Then 
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1 2 1 2 1 2{ ( ) ( )} { ( )} { ( )} .E X t X t E X t E X t ηη= =  

1 2{ ( ) ( )}E X t X t  represents the average possibility 

that both of the two unidirectional buses are busy, or 
the average additional bus contention rate that will be 
introduced by replacing the two unidirectional buses 
with a bidirectional bus. Assume that all three buses 
have the same width, w , and the same transfer rate, 
r , then the performance ratio between the bidirec-
tional bus and the unidirectional buses is equal to 

bi 1 2 1 2 1 2

uni 1 2 1 2

( ) 1P wr wr
P wr wr

η η ηη ηη
η η η η
+ −

= = −
+ +

. 

This ratio decreases as 1η  or 2η  increases while biP  
approaches uniP  when 1η  or 2η  approaches 0 and it is 
only 1/2 of uniP  when 1 2 1η η= = . The above equation pro-
vides a criterion for choosing what type of bus should  

be used once the required performance is determined.  
Three possible architectures shown in Fig. 1 are for 

computing intensive SoCs with two levels of hierar-
chical buses. In these architectures, the DMAs are re-
sponsible for caching data between the two levels of 
buses. In Fig. 1a, all the DMAs are bidirectional be-
cause both the inner bus and the inter bus are bidirec-
tional. With unidirectional inner buses, the DMAs can 
either be bidirectional or unidirectional as in Figs. 1b 
and 1c. If bidirectional DMAs are used, they could also 
be responsible for exchanging data between different 
intelligent property modules. An alternative method 
suitable for all three designs uses on-chip SRAM   
connected to the inter bus to store the intermediate re-
sults. Both approaches have their own strengths and 
weaknesses. 
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(a) Scheme A: Bidirectional DMAs        (b) Scheme B: Bidirectional DMAs         (c) Scheme C: One-way DMAs  

 with bidirectional bus                     with one-way buses                   with one-way buses 
Fig. 1  Architectures for computing intensive SoC 

Approach 1  Bidirectional DMAs to transfer data 
between intelligent property modules are more effi-
cient and result in less contention for the inter bus. 
However in many cases, the processing rates of the 
different intelligent property modules do not match, so 
intermediate results may spend a long time in the 
DMAs which may obstruct other data that needs to be 
transferred immediately. To alleviate this side effect, 
more DMAs are required. Furthermore, this approach 
lacks flexibility for the following two reasons. First, 
each intermediate result will occupy one DMA regard-
less of its length, which wastes memory. Second, the 
input data of one intelligent property module might be 

the results of several other intelligent property modules. 
If the DMA is responsible for this data exchange, it 
must guarantee the right storage order of these results. 
Although this function can be implemented, this will 
lead to a complex DMA structure and the DMA must 
be responsible for part of the control and scheduling. 
Therefore, this approach is most suitable when the in-
telligent property modules have similar processing 
rates and only simple intermediate data exchanges. 

Approach 2  Using on-chip SRAM to store inter-
mediate results is less efficient because additional data 
transfer is required on the inter bus. However, no data 
obstruction can occur in the DMAs and the DMAs 
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structures are relatively simple because they need not 
do the control and scheduling. In addition, using 
on-chip SRAM to store intermediate data is more 
flexible. Thus, when the processing rates of the intelli-
gent property modules differ greatly or complex inter-
mediate data transfer is required, this approach is more 
appropriate.  

If Approach 2 is used, Figs. 1b and 1c differ only in 
the DMA design. Bidirectional DMAs in scheme B of 
Fig. 1 are more reusable, but with more complex 
structures. In contrast, scheme C needs more DMAs, 
but it simplifies the structures of the inner bus, inter 
bus, and DMAs. Therefore, scheme C will shorten the 
design period and will not necessarily result in a larger 
area.  

When intermediate data exchanges are very frequent, 
specialized buses and DMAs can be introduced to in-
crease performance, at the expense of a larger area and 
higher power dissipation.  

1.3  Central allocator and controller 

One responsibility of the CAC is task scheduling and 
resource allocation. However, this is a network proc-
essor (NP)-hard problem in the strong sense[11]. The 
simplest solution is a first-come-first-served, which is 
reasonable when tasks arrive in serial. Gang schedul-
ing has been used to improve this method[12].  

The other responsibility of the CAC is to control the 
intelligent property modules and DTM function and 
timing. Proper design of control logic is critical to fully 
exploit the potential of the DTM. To achieve seamless 
data processing, once an intelligent property module 
completes its processing, its next input data should be 
already in a DMA while another DMA should be ready 
to send out the result. A control policy to satisfy this 
requirement is introduced in the HPNSA architectural 
design. 

The CAC can be implemented as either an ASIC or 
an embedded microprocessing unit (MPU) based on 
the performance and programmability required by the 
system specification. 

2  HPNSA Architectural Design 
2.1  Introduction to the HPNSA 

Information security is playing an increasingly impor-
tant role in protecting data on the Internet. The NP[13], 

as the fifth generation router, is not adequate for data 
encryption and decryption because the computing load 
is very heavy[14]. Therefore, an HPNSA is often used 
with an NP for specialized data encryption and decryp-
tion, especially to better support the socket secure layer 
(SSL) and IP security (IPSec) protocols[15,16]. 

A typical HPNSA should be able to perform block 
cipher algorithms, public key algorithms, hash func-
tions, as well as random number generation. It should 
also have the capability to execute several algorithms 
in a chain which is common in the SSL and IPSec  
protocols[5]. One such example is to use the triple data 
encryption standard (triple-DES) algorithm to encrypt 
the input data and then to sign the result using the 
SHA-1 algorithm. 

2.2  Overall design 

The design objectives of this accelerator are[5] (1) us-
ing 0.18 μm CMOS digital technology; (2) using the 
PCI-X bus (133 MHz, 64 bits) interface[9]; (3) using 
200 MHz clock frequency except for the PCI-X inter-
face; (4) implementing block cipher algorithms in-
cluding DES, triple-DES, and AES; (5) implementing 
public key algorithms including ECC and RSA; (6) 
implementing hash algorithms including SHA-1 and 
SCH; (7) implementing random number generation 
(RNG); (8) executing the algorithms in a chain to bet-
ter support the SSL and IPSec protocols; and (9) hav-
ing high performance, good configurability, and exten-
sibility. 

Since the processing rate of public key algorithms is 
much slower than that of block cipher algorithms and 
hash algorithms, using on-chip SRAM to store inter-
mediate results is more reasonable as has been ana-
lyzed in Section 1. The performance ratio between a 
bidirectional bus and unidirectional buses can be cal-
culated using 

2
1 2

bi 1 2 1 2

uni 1 2 1 2

( )
41 1 1

4
P
P

η η
ηη η η
η η η η

+
+

= − − = −
+ +

. 

Since on-chip SRAM is used to store intermediate 
results, all the data transferred by the inner bus must 
also be transferred by the inter bus. Therefore, 

1 2( ) 200 1 133,η η+ × ×  1 2 0.665,η η+  

bi

uni

0.6651 0.833 75.
4

P
P

− =  

Although using a bidirectional bus reduces the inner 
bus performance by only 16.625%, unidirectional buses 
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are used because not only high performance is the pri-
mary design goal, but also one unidirectional intelli-
gent property bus suitable for this system[17] is avail-
able. To simplify the DTM design, the architecture in 
Fig. 1c is used in this design.  

The simplified architecture is illustrated in Fig. 2 
with emphasis on the data transfer. When the NP needs 
the HPNSA for data encryption or decryption, it sends 
a descriptor to the CAC that describes the task details, 
such as which algorithm or algorithms to use, the  
configuration memory address, the input data, and the 
result. If this task requires the HPNSA to execute sev-
eral algorithms in a chain, the CAC divides this task 
into several “middle-level tasks (MT)”, each responsi-
ble for one algorithm. The AEs required by the MTs 
are allocated by the CAC. If an MT need not process 
data in succession, such as the DES algorithm in the 
electronic code book (ECB) mode, the MT is allowed 
to occupy more than one AE at the same time. The in-
termediate result generated by the first MT will be 
used by successive MT for the same task stored in the 
on-chip SRAM. Since one MT may execute an algo-
rithm with very long input data, the MT is further di-
vided into sub tasks to guarantee fair use of the bus 
among all the MTs. Sub tasks fall into two types, i.e., 
sub configure task (SCT) to transfer the configuration 
and sub data task (SDT) to transfer and process the 
data. In the final design, each SDT is no longer than 
512 bytes.  
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Fig. 2  Simplified architecture schematic diagram 

2.3  SCT 

After an MT occupies a certain AE, the CAC sends out 
one SCT to transfer the configuration, including the 

algorithm mode, the key to be used, and some     
algorithm related parameters, to the allocated AE. The   
algorithm mode is described in the descriptor, while 
other configuration is in off-chip memory. This process 
executes as follows. The CAC writes the algorithm 
mode into the allocated configuration transfer DMA 
(CDMA) and tells the inter bus controller to transfer 
the other configuration information to this CDMA 
from the off-chip SRAM. Meanwhile, the CAC tells 
the write bus (WBUS) controller which AE is to    
receive the configuration information. The allocated 
CDMA requests the WBUS as soon as the configura-
tion arrives. The WBUS controller only grants the re-
quest after it is notified by the corresponding AE that 
the previous execution, if exists, has completed. The 
AE uses some time to configure itself after the con-
figuration arrives and then notifies the WBUS control-
ler that it is ready to read input data, which ends the 
SCT process. This process is for SCTs that configure 
only one AE, but since one MT can simultaneously 
occupy multiple AEs, one SCT could also configure 
more than one AE. In this case, WBUS controller noti-
fies all the AEs allocated to the MT to receive the   
configuration. 

2.4  SDT 

The SDT is responsible for transferring input data from 
the memory into the AEs and transferring the results to 
the memory. Here, memory stands for either on-chip 
SRAM or off-chip memory. The SDT can be subdi-
vided into the input phase, processing phase, and out-
put phase. The SDT input phase is much the same as 
for the SCT with only the following differences. 

(1) The SDT input phase uses a write input DMA 
(WDMA) rather than a CDMA. The WDMA need not 
read any data from the CAC as the CDMA does. The 
WDMA also has a lower priority than the CDMA for 
both the inter bus and WBUS to guarantee that the 
configuration arrives at the AE prior to the data.  

(2) Data could only be transferred to one AE in the 
SDT input phase while the configuration can be trans-
ferred to several AEs in the SCT. 

(3) The WBUS controller grants requests from 
WDMAs only when it has received signals from the 
corresponding AE indicating that it is properly config-
ured by the SCT and the previous data processing on 
this AE, if exists, has been finished and the result has 
been sent out. 
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In the processing phase, the AE executes the re-
quired operation on the input data. Near the end of the 
processing, the AE sends out a NEARREADY signal 
to the CAC and read bus (RBUS) controller. Upon re-
ceiving the NEARREADY signal, if a waiting SDT 
belonging to the same MT exists, the CAC configures 
the AE to this SDT; otherwise, it allocates another MT 
to this AE. One AE can be allocated to two SDTs or to 
one SDT plus one SCT. Actually, the SDT/SCT ar-
rangement can transfer input data to the WDMA/   
CDMA pair and then wait for completion of the current 
processing task. This is controlled by the WBUS con-
troller as mentioned before. In this way, there is no 
conflict at this AE and the input data for the next 
SDT/SCT is transferred to the WDMA/CDMA in ad-
vance. After the RBUS controller receives the 
NEARREADY signal, it allocates a free read output 
DMA (RDMA) for this SDT and notifies the CAC that 
this RDMA is responsible for SDT the output phase. 
Based on this information, the CAC notifies the inter 
bus controller what output address to use when this 
RDMA applies for the inter bus. In this way, after the 
NEARREADY signal is sent out by the AE, the system 
starts setting this SDT output configuration. When the 
present process ends, the result can be sent out imme-
diately without delay. 

These two features introduced by the NEARREADY 
signal dramatically reduce the input and output waiting 
times and may completely eliminated them. Therefore, 
this architecture can guarantee seamless data process-
ing as long as the time to send out the NEARREADY 
signal is set properly. In the final design, the NEAR-
READY signal is sent out no less than 200 cycles prior 
to the finish time of the entire execution based on 
simulation analysis. If the AEs do not support the 
NEARREADY signal, the finish signal could be used 
instead to guarantee correct function, but seamless data 
processing could not be achieved. 

When the data processing finishes, the SDT enters 
its output phase. The RBUS transfers the result to the 
allocated RDMA, and then the inter bus transfers the 
result in the RDMA to the memory address received 
from the CAC as mentioned before. This ends the en-
tire SDT process.  

2.5  Task, MT, and CAC 

In the scenario considered, the NP may require the 

HPNSA to execute only one algorithm or several algo-
rithms in a chain. Since each algorithm in the task re-
quires one MT, the task contains only one MT in the 
first case and several MTs in the second case. The 
number of SDTs in an MT is determined by the input 
data length. The SCT is more complicated because the 
MT may occupy AEs when it is newly created by the 
task, or when AEs of the corresponding type are freed 
by other MTs. For all these cases, an SCT should be 
generated. The CAC is in charge of receiving   

descriptors from the NP, generating MTs, SCTs, and 
SDTs, and guaranteeing the right execution order of 
the MTs, SDTs, and SCTs, as well as generating con-
trol signals for the inter bus, WBUS controller, and 
RBUS controller. 

2.6  Simulations 

A behavior-level simulation was implemented in the 
C++ programming language to evaluate the HPNSA 
performance, determine the optimum design parame-
ters, and certify the control logic. An object-oriented 
programming style is used to better describe hardware 
modules. The relationships between the objects in the 
simulation are shown in Fig. 3. In this figure, DES_  

ALLOC, ECC_ALLOC, CMDA_ALLOC, WDMA_  

ALLOC, and RDMA_ALLOC stand for the allocation 
units for the AEs and DMAs in the CAC, while 
TASK_GEN is responsible for generating random de-
scriptors. This figure is only for demonstration, and the 
number of resources shown is not exact. Actually, 
these parameters can easily be altered in the simulation 
to determine the optimal parameters. This program 
uses simulation steps to simulate the clock. Each object 
records its current state, and renews their states when a 
new simulation step begins. The program calculates the 
system performance indices, such as the bus through-
put based on the intelligent property modules process-
ing rates. 

The PCI-X bus limits the upper bound of the whole 
system throughput to 133 MHz×64 bit=8.512 Gbps. 
The output throughput limit for block cipher algo-
rithms is 4.256 Gbps since the input data and output 
data have almost the same lengths. The performance 
evaluation is then based on how close the throughput is 
to this upper limit.  

Since the DES has the quickest processing rate and 
is the most demanding on the data transfer and DMAs,  
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Fig. 3  Object relationships 

it is used to determine the optimal number of DMAs. 
The simulations show that with 4 DES engines, 1 
CDMA, 2 WDMAs, and 2 RDMAs, the output 
throughput is 4.157 Gbps when 300 DES tasks are 
simulated. This output throughput is very close to the 
theoretical upper bound of 4.256 Gbps. If less DMAs 
are used, the throughput will not reach 4 Gbps. Thus, 
the simulations show that the architecture is very   
efficient for high speed data transfer. Another result 
that could be drawn from the simulation is that the ar-
chitecture can satisfy the demand of at most four DES 
engines because of the transfer rate bottleneck imposed 
by the PCI bus. Actually, the fourth DES engine only 
increases the total output throughput by about 10%. 
However since the triple-DES algorithm, which exe-
cutes more slowly than the DES, shares the DES en-
gines with the DES algorithm, the 4 DES engines are 
worthwhile. This method was also used to set the op-
timal number of AEs for the other types. With the 

given performance requirements, the simulations 
showed that 4 DESs, 4 AESs, 2 ECCs, 2 RSAs, 1 RNG, 
and 4 hash engines gave the best results.  

No PCI bus conflicts with other systems are consid-
ered in the analysis. The simulations show that the 
DMAs are more useful with severe PCI bus conflicts 
because the DMAs cache the input and output data. 
Therefore, the DMAs make the system more robust, so 
the final design uses 1 CDMA, 3 WDMAs, and 3 
RDMAs to increase the system performance when 
contentions on the PCI bus are severe. 

3  Conclusions 

This paper shows that the specialization of the intelli-
gent property modules and the SoC framework are vi-
tal for attaining good configurability, extensibility, and 
high performance in computing intensive SoCs. Dif-
ferent architectures are proposed and, although the   
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architectures are all highly configurable, extensible, 
and efficient, they are suitable for different situations. 
An implementation scheme that guarantees seamless 
data processing is given for the HPNSA architectural 
design. A behavior-level simulation shows that if the 
parameters are properly set, the HPNSA throughput 
approaches the theoretical limit of the PCB bus. 
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