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Abstract: Quay crane and yard truck scheduling are two important subproblems in container terminal opera-

tions which have been studied separately in previous research. This paper proposes a new problem for the 

integrated quay crane and yard truck scheduling for inbound containers. The problem is formulated as a 

mixed integer programming (MIP) model. Due to the intractability, a genetic algorithm (GA) and a modified 

Johnson’s Rule-based heuristic algorithm (MJRHA) are used for the problem solution. In addition, two 

closed form lower bounds are given to evaluate the solution accuracy. Computational experiments show that 

the solution algorithm can efficiently handle the scheduling problem and that the integrated methods are 

very useful. 
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Introduction 

Maritime container transport has developed rapidly 
during the past several decades. Container handling 
has grown from 3.3 million twenty-foot equivalent 
units (TEU) in 1997 to 9.9 million TEU in 2007. In 
2008, Singapore, Shanghai, Hong Kong, and Shenzhen 
were the top 4 busiest container terminals in the world, 
with throughputs of 29.9 million TEUs, 28.0 million 
TEUs, 24.2 million TEUs, and 21.4 million TEUs, re-
spectively[1]. Container terminals as hubs of the mari-
time container transport network are facing strict de-
mands from shipping companies to increase the effi-
ciency of stacking and transport of growing numbers 
of containers. High productivity and container 
throughput from quayside to land side and back at low 
costs are vital for terminal operators to compete with 
other terminals[2]. 

Although container terminal operations are becom-
ing more and more complicated with automated han-
dling machines and transporters, advanced communi-
cation technologies and modern decision making 
methods to facilitate improved efficiency and to reduce 
costs, in general there are three types of equipment 
employed in container terminals, namely quay cranes 
(QCs), transporters, and yard cranes (YCs). 

As can be seen in Fig. 1, QCs operate at the quay-
side for loading containers onto and unloading    
containers from container vessels. Before arrival, each 
container vessel sends its loading and unloading plan 
to the container terminal. Terminal operators will    
designate a QC split plan which indicates the number 
of QCs required to serve the ship according to the plan, 
and which ship bay is serviced by which QC. The op-
erators then make a storage plan based on the container 
characteristics related to the vessel, i.e., contents, stor-
age period, and next destination that determines the 
temporary storage location for each container in the 
terminal. YCs work at the yard side staking containers 
onto their allocated storage locations and picking up 
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containers from their current storage locations in the 
yard. Transporters transport containers between the 
quayside and the yardside. Various transporters are 
used in container terminals, such as yard trucks (YTs), 
multi-trailers, straddle carriers, automated guided ve-
hicles (AGVs), and automated lift vehicles (ALVs). 
This paper considers only YTs as the transporters, 
since they are most widely used in current container 
terminals. 

 
Fig. 1  Typical container flows in container terminals[3] 

During the past several decades, container terminal 
operations have attracted more and more attention 
from researchers. Container terminals are a complex 
systems with the operations in the container terminals 
composed of a series of decision problems, i.e., berth 
allocation, QC split, QC scheduling, YT scheduling, 
YC scheduling, and storage allocation. Even today’s 
computational capacities are not sufficient to formulate 
and optimize container terminal operations as a whole.  

Most previous research on container terminal opera-
tions has focused on optimizing a single subproblem 
instead of the whole system. Two of the well-studied 
subproblems are QC scheduling and YT scheduling. 

The QC scheduling problem was first discussed by 
Daganzo in 1989[4]. He suggested an algorithm for de-
termining the number of cranes to assign to ship-bays 
of multiple vessels. Peterkofsky and Daganzo[5] pro-
vided an algorithm for determining the departure times 
of multiple vessels and the number of cranes to assign 
to individual holds of vessels within a specific time 
segment. The objective function was to minimize the 
delay costs. Both of these studies assumed one task per 
ship bay which needed crane operations during a spe-
cific length of time. In contrast, Kim and Park[6] ex-
tended the QC scheduling problem by assuming that 
there may be multiple tasks involved in a ship bay, thus 
determining the QC schedule for each container rather 
than for each ship bay. The problem was formulated as 
a mixed integer programming model with a branch   
and bound algorithm used to solve the model. However, 

none of these studies related to QC scheduling     
considered the constraints of yard operations, such as 
the QC waiting time for the YT. Previous studies all 
assumed that the YTs were always available under the 
QCs, which is not necessarily true during peak periods. 

A minimum flow algorithm was proposed for 
scheduling of transporters[7] to determine the minimum 
number of AGVs needed to complete a given set of 
delivery tasks without causing a delay in the 
semi-automated container terminals. Bish et al.[8] sug-
gested a greedy algorithm for dispatching the YTs with 
a worst-case analysis of the dispatching method. Kim 
and Bae[9] proposed a look-ahead dispatching method 
for AGVs. Unlike in previous studies Kim and Bae[9] 
assumed that the QCs might need to wait for the AGVs 
with the objective function being to minimize the AGV 
traveling time as well as the QC waiting time for the 
AGVs. The problem was formulated as a one-to-one 
assignment problem and solved with a dedicated heu-
ristic algorithm. The static version of the problem was 
then extended into a dynamic version by using differ-
ent step sizes for looking ahead.  Ng et al.[10] pro-
posed the problem of scheduling a fleet of trucks to 
perform a set of transportation jobs with sequence-     
dependent processing times and different ready times. 
The ready times for the containers reflect the QC op-
erations and are assumed to be given. 

Even though more and more researchers have real-
ized the importance of integrated methods for con-
tainer terminal operations[2,11], QC scheduling and YT 
scheduling, two highly related subproblems in con-
tainer terminal operations, have not been considered 
simultaneously. This paper presents an integrated quay 
crane and yard truck scheduling problem (IQYSP) for 
inbound containers. The problem is formulated as a 
mixed integer programming (MIP) model. Due to the 
intractability of the IQYSP, a genetic algorithm (GA) 
and a modified Johnson’s Rule-based heuristic algo-
rithm (MJRHA) was used for the solution. In addition, 
a job-based lower bound and an equipment-based 
lower bound were derived to estimate the quality of the 
solutions obtained by the GA and the MJRHA.  

1  Problem Definition and  
Formulation 

In practical operations, a set of QCs is assigned to 
serve a vessel, with unloading of containers generally 
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preceding loading operations. The ship bays in the 
vessels are partitioned, with one QC per partition. The 
input is the set of containers to be unloaded by each 
QC which is assumed to be given, with the schedule of 
only one QC considered. A job is defined as a con-
tainer to be discharged. Let i and j be the indices of 
jobs with i, j=0, …, N+1, where N is the number of 
jobs to be unloaded by the QC, and Job 0 and Job N+1 
are two dummy jobs related to the original and final 
states. 

In general, a fixed set of YTs is assigned to perform 
the transportation tasks for a QC. The YTs have two 
operational strategies, namely single-cycling and dual-    
cycling. Figure 2 shows the differences between sin-
gle-cycling and dual-cycling strategies for YT opera-
tions. Even though dual-cycling strategies obviously 
increase the transportation efficiency and reduce the 
empty YT moves, they are actually only suitable for 
automated container terminals, since the complicated 
dispatching strategies are difficult for the drivers to 
follow. Thus this paper focuses on the single-cycling 
strategies which are widely used at manned container 
terminals. Let k be the index for the YTs assigned to 
the QC, with k=1, …, K, where K is the number of YTs 
assigned to the QC. 

 
Fig. 2  YT operations strategies 

The notation for the ship operations is: 
pi, processing time required to discharge Job i by the 

QC, i=1, …, N. 
sij, setup time for the QC to perform Job j immedi-

ately after Job i, i=0, …, N and j=1, …, N. 
ti, transportation time required for the YTs to trans-

port Job i to its storage location, i=1, …, N. 
d, time required to unload a container from the YT 

by a YC. 
M, a large positive number. 
The decision variables in the mathematical formula-

tion are: 

Xij = 1, if the QC performs Job j immediately after 
Job i, 

= 0, otherwise. (i=0, …, N and j=1, …, N+1). 
Yik = 1, if Job i is assigned to YT k, 

= 0, otherwise. (i=1, …, N and k=1, …, K). 
Zijk = 1, if YT k performs Job j immediately after    

Job i, 
= 0, otherwise. (i=0, …, N, j=1, …, N+1, and 

k=1, …, K). 
ri1 = starting time for performing Job i by the QC, 

i=1, …, N. 
ci1 = time when Job i is ready for moving by the QC, 

i=1, …, N. 
ri2 = starting time for moving Job i by a YT, i=0, …, 

N. 
ci2 = completion time of Job i, i=1, …, N. 
Cmax = makespan of all jobs. 
Then, the IQYSP can be formulated as: 
 Min maxC  (1) 
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 2 2(1 )j ijk i ir Z M c t+ − + , for , 1, ,i j N∀ =   
 and 1, ,k K=  (15) 

 2 0(1 ) 0j jkr Z M+ − , for 1, ,i N∀ =  and  
 1, ,k K=  (16) 

 2 2i i ir t d c+ + , for 1, ,i N∀ =  (17) 
where 0iiX =  for all 1, , ,i N= 0iikZ =  for all 1, ,i N=    
and 1, , ,k K= 02 0r =  and 0 1kY =  for all 1, , .k K=  

The objective of this problem is to minimize the 
makespan for dispatching the set of containers allo-
cated to the QC. Constraint (2) is used to calculate the 
makespan that is the completion time of the last con-
tainer in the job set. Constraints (3) and (4) force the 
one-to-one assignment between all jobs in the set to 
form an unloading sequence of the QC. Constraint (5) 
implies that if Job j is immediately unloaded by the QC 
after Job i, the QC needs a setup time of sij before it 
starts to unload Job j after Job i has been transported. 
Constraints (6) represents that the completion time for 
unloading a container by the QC is equal to the starting 
time of unloading the job plus the processing time for 
the container by the QC. Constraint (7) implies that a 
container can be transported only after the completion 
of the unloading process by the QC. Constraint (8) 
guarantees that each container can be assigned to and 
transported by one and only one YT. Constraints (9) 
and (10) force the dummy jobs to be the first and last 
job of each YT. Constraints (11) and (12) guarantee 
that if a container is allocated to YT k, there must be 
one and only one succeeding job after and preceding 
job before this job. Constraints (13) and (14) give the 
relationship between jobs assigned to the same YT. 
Constraints (15) and (16) relate the starting and com-
pletion times between adjacent jobs for the same YT. 
Constraint (17) states that a job experiences the trans-
portation and stacking times between the completion 
time of a job and the starting of the transportation. 

The YT scheduling is similar to the multiple travel-
ing salesmen problem (m-TSP). The problem is also 
analogous to the two-stage flexible flow shop problem 
(2-FFSP) with sequence-dependent setup times and 
blocking. All of these reduced problems have been 
proved to be NP-hard problems, from the computa-
tional complexity point of view, which means that 
there is no efficient algorithm to obtain the exact opti-
mum solution of the problem. However, lower bounds 
for the problem can be found to evaluate solution   

quality before designing the solution algorithms. 

2 Lower Bounds 

This section analyzes the lower bounds for the IQYSP. 
First define an operator to state the bounds. 

Definition  Define the operator “min[k]” as the in-
dication of the (k+1)-th solution from the lowest value 
with [0]min min≡ . 

For example, given a list of values S={1, 4, 7, 9, 10}, 
[2]min 7

S
= . 

The following theorem provides two lower bounds 
for the IQYSP, namely the job-based lower bound and 
the equipment-based lower bound. 

Theorem  The following are lower bounds on any 
feasible solution to the IQYSP: 
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Proof  LB(1): This is the job-based lower bound. 
Every Job i must experience the QC processing time, 
the YT transportation time, and the stacking time in the 
yard block. In addition, the QC requires a setup time 
which is at least the minimum amount of time required 
to set up Job i. Solutions which are feasible to Con-
straints (2)-(17) satisfy this condition. 

LB(2): This is the equipment-based lower bound. The 
first term represents the minimum time required for a 
job to be ready for transport. The second term assumes 
that jobs are transported preemptively by the YTs. The 
third term follows from the observation that the second 
YT does not work until the second job arrives and so 
on for all the YTs. The minimum is then the sum of all 
the times for the second, third, and other jobs to be 
ready for transport and allocated to the YTs. The first 
three terms obtain the lower bound of the time when 
the last job has been finished and the YT returns to the 
QC. Compared to the makespan definition, the YT re-
turn time is subtracted to find the minimum travel time 
of jobs so as to compute the lower bound for the 
makespan, which is represented by the last term.    
Solutions which are feasible to Constraints (2)-(17) to 
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satisfy this condition.  

3 Genetic Algorithm 

The GA, developed by Holland[11], is one of the nature-    
inspired meta-heuristics used for handling combinato-
rial problems. The usual form of the GA was reported 
by Goldberg[12]. The GA is a stochastic search tech-
nique based on the mechanism of natural selection and 
natural genetics. The GA starts with a set of random 
solutions called a population. Each individual, named a 
chromosome, is represented by a string. The chromo-
somes evolve through successive iterations, called gen-
erations. Offspring are generated through crossover and 
mutation operations on randomly selected chromosomes. 
A new generation is then selected based on Darwinian 
evolution by evaluating the fitness. Individuals with 
better performances will have more probability to be 

chosen. The GA has been refined by numerous re-
searchers and has become one of the most popular 
meta-heuristic algorithms for solving facility schedul-
ing and operation problems in container terminals[10]. 

3.1 Representation 

As can be seen in Fig. 3, a feasible solution, namely a 
chromosome, for the problem can be represented by a 
string describing the QC dispatching sequence. Each 
position represents the index of a job. The chromo-
some is decoded by a YT dispatching rule that assigns 
the transportation task to the first idle YT. Chen et al.[13] 
proved that this dispatching rule obtains the optimal 
solution given a QC schedule. 

 

3 6 1 4 5 2 
 

Fig. 3  Illustration of chromosome representation 

3.2 Initialization 

Initialization is the first stage of a genetic algorithm. 
For the representation method, a set of feasible solu-
tions is randomly generated to form the first generation. 
Let pop_size be the population size of the first genera-
tion. Thus, pop_size chromosomes are generated,    
each of which is a string describing the QC unloading 
sequence. 

3.3 Fitness evaluation and selection 

The chromosome is evaluated based on: 

 eval=1/Cmax (20) 
In this paper, a roulette wheel approach is used as 

the selection procedure using fitness-proportional se-
lection that selects a new population with respect to the 
probability distribution based on the fitness values[14]. 

3.4 Crossover 

“Ordered crossover”[14] is used for one of the two parts 
of the chromosomes with a repair procedure to resolve 
illegitimate offspring. The “order crossover” works as 
follows. 

Step 1 Randomly select a substring in one parent. 
Step 2 Produce a proto-child by copying the sub-

string into the corresponding positions in the child. 
Step 3 Delete the holds which are already in the 

substring from the second parent. The resulted se-
quence of holds contains the holds needed by the 
proto-child. 

Step 4 Place the holds into the unfixed positions of 
the proto-child from left to right according to the order 
of the sequence used to produce an offspring. 

The procedure is illustrated in Fig. 4 which gives an 
example making two offsprings from the same parents. 

 
Fig. 4  Illustration of crossover operator 

3.5 Mutation 

Mutation forces the GA search into new areas to help 
the GA avoid premature convergence to find the global 
optimal solution. In general, in mutations all individu-
als in the population are checked bit by bit and the bit 
values are randomly reversed according to a pre-     
specified rate. However, in this paper the mutation 
process randomly selects chromosomes based on the 
mutation probability and chooses two positions in the 
same part of the selected chromosome at random to 
exchange the values as illustrated in Fig. 5. 

 
Fig. 5  Illustration of mutation operator 
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4 Rule-Based Heuristic Algorithm 

The GA performance is affected by the algorithm pa-
rameters, such as the population size, mutation prob-
ability, and crossover probability. This section de-
scribes a rule-based heuristic algorithm, which is an 
extension of Johnson’s Rule taking into account the 
setup times[15]. Johnson’s Rule has been used exten-
sively for the flow shop scheduling problem (FSSP) 
with the objective to minimize the job makespan. 
However, the original Johnson’s Rule is not applicable 
to the IQYSP due to two assumptions: 

(1) Johnson’s Rule assumes that the machine envi-
ronment is a flow shop, which means there is only one 
machine at each stage; 

(2) Johnson’s Rule does not take the sequence- de-
pendent setup time into consideration. 

Therefore, a heuristic algorithm was developed for 
the QC and YT scheduling which is a modified 
MJRHA to overcome these two limitations. 

The modified processing for the QC is: 
 1

i i ip p s= +  (21) 
where  

 
1, , ,
mini jij N j i

s s
= ≠

=  (22) 

The modified processing time incorporates the 
minimum time to setup Job i into its processing time, 
which extends the original Johnson’s Rule to handle 
the sequence-dependent setup time. 

In addition, the modified transport time is defined 
as: 

 2 2 i
i

t dp
K
+

=  (23) 

The modified transport time for a job extends the 
original Johnson’s Rule to a flexible flow shop ma-
chine environment. 

All jobs can be partitioned into two sets denoted by 
1Ω  and 2Ω  based on the modified QC processing 

time and the modified YT transport time. 
 1 2

1 { | }i ii p pΩ = <  (24) 

 1 2
2 { | }i ii p pΩ =  (25) 

The MJRHA can then be described as: 
Step 1 Jobs in 1Ω  precede jobs in 2Ω . 
Step 2 Jobs in 1Ω  are performed in increasing or-

der of 1
ip  (shortest processing time first, SPT). 

Step 3 Jobs in 2Ω  are performed in the nonincreasing 

order of 2
ip (longest processing time first, LPT). 

Step 4 The QC job sequence obtained from Steps 1 
to 3 is used to assign each job to the first idle YT. 

5 Computational Tests 

The performance of the solution algorithms were 
evaluated based on 20 computational examples gener-
ated with random inputs. For smaller scale problems, 
the exact solution can be obtained by CPLEX within 
rational computational times. However, with increas-
ing problem scales, the computational times quickly 
become unacceptably long. 

Table 1 lists the makespans for the computational 
examples obtained by the different solution methods. 
The second column shows the number of containers 
and the number of YTs in each example, ranging from 
5 containers with 1 YT to 15 containers with 4 YTs. 
Column 3 shows the lower bound for each example, 
which is equal to (1) (2)max{LB , LB } . The results cal-
culated by CPLEX for smaller scale examples are 
listed in Column 4. The Gap is defined as: 
Gap =  
makespan obtained by the solution algorithm LB 100%

LB
−

×

   (26) 
The Gap for CPLEX shows that the lower bound is 

at most 10% lower than the optimal solution. In most 
cases, at least for small scale examples, the GA can get 
the same exact solution as obtained from CPLEX. The 
Gap for the GA in each example is controlled to within 
10%. However, the qualities of solutions obtained from 
the rule-based heuristic are not as good as those of the 
GA, though it can be easily implemented. The largest 
Gap for the MJRHA is 44.56%. 

Besides the solution quality, the computational time 
is always another important factor for evaluating solu-
tion algorithms.  

As can be seen in Fig. 6, the GA obtains solutions 
within acceptable computational times ranging from 
0.062 s to 0.375 s. The computational times for 
CPLEX increase unacceptably with a larger number   
of vehicles (1049.86 s for experiment 9 and 345 
600.90 s for experiment 10). For all the examples, the 
computational times for the MJRHA were less than 
0.001 s. 
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Table 1  Results of computational tests 

LB CPLEX GA MJRHA No. of 
example 

No. of containers × 
No. of trucks max{LB(1), LB(2)} Makespan (s) Gap (%) Makespan (s) Gap (%) Makespan (s) Gap (%)

1 5×1 3018 3203 6.11 3300 9.33 3310  9.66
2 5×2 2372 2608 9.97 2608 9.97 2890 21.86
3 5×3 1868 1991 6.58 1997 6.90 2571 37.62
4 6×1 3784 4100 8.36 4105 8.49 4107  8.54
5 6×2 2816 2922 3.77 2922 3.77 3180 12.94
6 6×3 1959 2120 8.21 2120 8.21 2496 27.40
7 7×1 6948 7220 3.91 7220 3.91 7633  9.85
8 7×2 3407 3650 7.12 3650 7.12 4301 26.22
9 7×3 2441 2626 7.60 2626 7.60 3125 28.04

10 8×1 8515 − − 9226 8.35 9269  8.85
11 8×2 4326 − − 4630 7.03 4749  9.78
12 8×3 3271 − − 3403 4.05 3691 12.85
13 9×1 8455 − − 9024 6.73 9160  8.34
14 9×2 4308 − − 4658 8.13 5092 18.21
15 9×3 3042 − − 3266 7.36 3890 27.87
16 10×3 3232 − − 3399 5.15 3886 20.22
17 10×4 2569 − − 2826 9.99 3519 36.96
18 10×5 2362 − − 2546 7.77 3415 44.56
19 15×3 5373 − − 5537 3.04 5795 7.85
20 15×4 4140 − − 4306 4.00 4633 11.90

 

 
Fig. 6  GA computational time 

To test the significance of the integrated model, a 
benchmark strategy was developed for the IQYSP. The 
benchmark strategy always chooses the job with the 
smallest setup time as the immediately succeeding job, 
which is similar to strategies used in practice today, but 
this does not necessarily give the best results. 

As shown in Fig. 7, compared with the benchmark 
strategy, the makespan obtained by the proposed GA to 
the IQYSP can be reduced by a large percentage, 
ranging from 23% to 115%. Thus, the integrated model 

can be used to determine significantly better solutions. 

 
Fig. 7  Improvement of makespan 

6 Conclusions and Future Research 

This paper describes an IQYSP for discharging in-
bound containers at container terminals. The IQYSP 
determines the QC unloading schedule taking into ac-
count the YT operations. The problem is formulated   
as a two-stage flexible flow shop problem with    
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sequence-dependent setup times and blocking in an 
MIP. The objective of the problem is to minimize the 
makespan for discharging all containers assigned to the 
QC. Due to the computational complexity of the prob-
lem, optimal solutions cannot be found through exact 
algorithms, thus a GA and a MJRHA were used for the 
problem solution. Two lower bounds were also derived 
to facilitate evaluations of the solution qualities. 

The computational examples showed that: 
(1) The exact algorithm cannot solve large scale 

problems within an acceptable amount of time. 
(2) The proposed algorithms can obtain solutions 

with satisfactory qualities in terms of the Gaps relative 
to the lower bounds. 

(3) The algorithms can obtain solutions for larger 
scale problems in acceptable computational times. 

(4) Compared with the benchmark strategy, the 
IQYSP provides better solutions reducing the 
makespan of discharging inbound containers than the 
benchmark strategy, which would reduce the costs of 
container terminal operations. 

There are also several potential directions of future 
research work: 

(1) Container loading operations could be optimized 
in a similar way. 

(2) The YC operations can also be integrated into the 
problem instead of using a fixed YC stacking time as 
in this paper. 

(3) Explore efficient formulations and algorithms for 
the problem. 
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