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Abstract: One of the major issues with multi-carrier systems is their vulnerability to timing synchronization 

errors resulting in the loss of time synchronization which causes loss of orientation of incoming data at the 

receiver. This paper presents an acquisition algorithm to timing recovery using the decision-aided extended 

Kalman filtering (EKF) technique for nonlinear disturbance channels in a wavelet packet transform-based 

multicarrier modulation communication system. This timing recovery algorithm gives faster convergence, 

smaller root mean square (RMS) errors, and better bit error rate (BER) performance than traditional timing 

recovery methods, such as the phase-locked loop (PLL), maximum likelihood (ML), and Kalman filter (KF) 

methods. Thus, the algorithm is able to handle larger timing errors more reliably and to provide better timing 

recovery, since the scheme takes into account the nonlinear relationship between the signal samples and 

timing errors. Simulations for various time-varying channels show that the timing recovery algorithm works 

well for wavelet packet transform-based multicarrier modulation communication systems. 
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Introduction 

Multi-carrier modulation (MCM) is an efficient spec-
tral modulation scheme which is robust against channel 
dispersions/fading, impulse noise, and multipath inter-
ference. Wavelet packet modulation (WPM) is an 
MCM technique that has recently emerged as a strong 
candidate for digital modulation as an alternative to 
orthogonal frequency division multiplexing (OFDM)[1]. 
However, one major issue with multi-carrier systems is 
their vulnerability to timing synchronization errors 
resulting in a loss of time synchronization which 

causes a loss of orientation of incoming data at the re-
ceiver. The fundamental theories of OFDM and WPM 
have many similarities in their functioning and per-
formance but there are some significant differences 
which give the two systems distinctive characteris-
tics[2]. OFDM signals only overlap in the frequency 
domain while the wavelet packet signals overlap in 
both the time and frequency domains. Due to the 
time-overlap, the WPM system can not use the cyclic 
prefix (CP) or any kind of guard interval (GI) that is 
commonly used to overcome interference caused by 
dispersive channels in OFDM systems. Thus, the 
methods for correcting time synchronization errors 
originating from symbols misalignment at the de-
modulator of the OFDM system are not suitable to the 
WPM system.  

This paper investigates how a WPM system utilizing 
known wavelets and time recovery techniques can 
cope with synchronization errors and how their    
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performance compares with that of OFDM.  
In recent years, a number of time recovery ap-

proaches have been developed. For example, the re-
cursive discrete Fourier transform (RDFT) method 
synthesizes a unitary synchronizing signal using the 
RDFT information, independent of the conditions. 
However, the RDFT frequency estimation dynamics 
are not smooth. In addition, there is no direct 
three-phase version of the RDFT method and it needs 
an amplitude detector if the frequency deviates from 
the nominal value[3]. The conventional PLL may fail to 
correct initial errors in acquisition due to its limited 
bandwidth[4]. A popular approach for time recovery is 
the maximum likelihood decision-directed (MLDD) 
method where an appropriate likelihood function is 
maximized with no assumptions about a priori prob-
ability densities. One of disadvantages of the MLDD 
method is that an extensive search may be required to 
find the optimal estimate when the density function has 
several peaks and that the favorable properties, the 
unbiasedness and consistency of the estimates, do not 
necessarily hold if the unknown quantity is actually 
time varying[5]. A timing recovery approach based on 
Kalman filtering has been proposed in order to im-
prove timing recovery performance. However, earlier 
works are based on a linear model of the relation be-
tween the receiving signal and timing offset when the 
relation is actually nonlinear[3,6]. 

In general, timing recovery in communication sys-
tems uses an acquisition stage and a tracking stage. 
This paper focuses on the acquisition stage with an 
adaptive timing recovery algorithm using a deci-
sion-aided EKF which explicitly includes the nonlinear 
relationship between the received signal and the timing 
offset which is applied to a wavelet packet transform-    
based multicarrier modulation communication system. 
Simulations for an additive white Gaussian noise 
(AWGN) channel and a Rayleigh fading channel 
model are used to evaluate the performance of this ap-
proach compared to conventional timing recovery 
methods. Although the overall complexity of an EKF 
scheme timing estimate is quite a bit larger than con-
ventional methods since the Kalman gains vary with 
time, these gains can be pre-computed offline. This 
method then converges faster than conventional PLL, 
ML or KF based timing recovery methods. 

1  Nonlinear Disturbance System 
Model 

Assume ku  represents a transmitted sequence which 
passes through a time-varying, frequency selective 
fading channel, ky  is the multiplicative distortion 
(MD), kv  is a discrete-time AWGN, and kz  is the 
received signal. The transmitted signals suffer from 
time, phase, and frequency offsets resulting from the 
MD due to the time-varying, frequency selective fad-
ing channel. The goal of a general “timing synchro-
nizer” is to provide a good estimate of the MD, ky , 
which may include the phase/frequency errors of the 
mixers and time-varying amplitudes and phases intro-
duced by the time-varying, frequency selective fading 
channel. The system shown in Fig. 1[7,8], which can 
describe a large class of digital communication struc-
tures, can be described by 

k k k k= +z u y v              (1) 

 
Fig. 1  Discrete-time model of a digital communica-
tion system 

The time difference between the ideal and the actual 
sampling times is the phase offset denoted by kθ . Then, 
the timing disturbance can be characterized by the 
phase offset, kθ , and a frequency drift, kf . Thus the 
MD, ky , can be regarded as an output signal generated 
by a nonlinear dynamic system with the state variables 

kθ  and kf . 

2  EKF-Based Timing Recovery 
2.1  EKF algorithm   

The state variable in an EKF system relates the state 
dynamics and the measurements by the following state 
and measurement equations: 

1 ( ) ( ) ,
( )

k k k k k k

k k k kh
φ ϕ+ = +⎧

⎨ = +⎩

x x x w
z x v

        (2) 

where kx  denotes the state vector that may contain 
many estimated parameters which here is k =x T[ ] ,k kfθ  
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The subscript k  is the discrete-time sample index and 
kw  and kv  are zero mean, white Gaussian processes.  
The structure shown in Fig. 1 exactly fits the signal 

model for which an EKF is a “near optimum” estima-
tor[9,10], where ,ka  ,kc  and kd  are in general, dif-
ferentiable, nonlinear vector functions and kb  is a 
linear matrix function.  

( , )
( ) k k k

k k

fθ
ϕ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

b
x

I
0

0
          (3) 

( ) ( , )k k k k k kfθ= =h x c y            (4) 
Assume that 0x  is a Gaussian random variable 

0 0( , )N x P  and kv  and kw  are mutually independent 
with 

T[ ] ,k k kE =v v R  T[ ]k k kE =w w Q          (5) 
Then introduce the matrices 

| |
ˆ ˆ

/ /( )
d /d

k k k k

k kk
k

k

f θφ
θ= =

∂ ∂ ∂ ∂⎡ ⎤∂= = ⎢ ⎥∂ ⎣ ⎦x x x x

a axF
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∂= = ∂ ∂ ∂ ∂
∂ x x

x x

xH c c
x

  (7) 

| , |
|

ˆˆ( )ˆ( ) k k k k k
k k x x

fg θ⎡ ⎤
= = ⎢ ⎥

⎣ ⎦

bG x
I
0

0
            (8) 

The nonlinear model denoted by Eq. (2) can be ap-
proximated to linear equations that conform to the 
Kalman filtering algorithm by Taylor expansions about 
the conditional means |ˆk kx  and | 1ˆk k−x . The linearized 
result can be thought of as a suboptimal algorithm in a 
minimum mean square error (MMSE) sense to the es-
timate of kx . Neglecting the second and higher order 
terms gives a linear approximation of Eq. (2) by the 
following linear model, 

1 ,
T

,

,k k k k k k x

k k k k k z

+ = + +⎧
⎨ = + +⎩

x F x G w q
z H x v q

           (9) 

with known, external insertions 
, | |ˆ ˆ( )k x k k k k k kφ= −q x F x             (10) 

T
, | 1 | 1ˆ ˆ( )k z k k k k k kh − −= −q x H x            (11) 

Note that kφ  and kh  are linearized at each time step. 
The EKF initialization and recursion are given as  

0| 1 0 0
T

0| 1 0 0 0 0 0

ˆ [ ] ,
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E
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| 1k k k k k k−= +Ω H H RΣ            (13) 

1
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| | 1 | 1

1| |

ˆ ˆ ˆ( ( )),
ˆ ˆ( )

k k k k k k k k k

k k k k k

h
φ

− −

+

= + −⎧
⎨ =⎩

x x L z x
x x

       (15) 
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T T
1| |k k k k k k k k k+ = +Σ F Σ F G Q G         (17) 

where kL  are the Kalman gains which can be pre-    
computed and stored, | 1ˆk k−x  is a prior state estimate, 

|ˆk kx  is a posterior estimate, and | 1k k−Σ  and |k kΣ  are a 
prior and posterior error covariance matrices. 

2.2  EKF estimate of the phase offset  

The EKF approach for the timing recovery by estimat-
ing the phase offset, kθ , can be described by 

1

1

1 1
0 1

k k k
f

k k k
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f f w

θθ θ+
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where I
ku  and Q

ku  are the transmitted in-phase (I) 
and quadrature (Q) components. The system observa-
tions, I

kz  and Q
kz , are the I and Q components of the 

output signals with a timing misalignment between the 
transmitter and the receiver[11,12].  

The estimate of kθ  without frequency variations is 

1k k k kf wθθ θ+ = + +             (20) 
The estimation of kf  is  

| 1
ˆj I Q

1
ˆ ˆ ˆ ˆIm{ e ( j ) }k k
k k f k k kf f u uθ −− ∗

−= + +K z     (21) 

where fK  is the step size controlling the conver-
gence rate of the input estimation algorithm, Im de-
notes the imaginary part of the underlying argument, 
the term | 1

ˆje k k
k

θ −−z  represents the rotating signal, kz , 
with a phase angle | 1k̂ kθ −− , I Qˆ ˆjk ku u+  is the k-th 
transmitted data symbol obtained by the decision-aided 
data, and the symbol ∗  takes the complex conjugate 
operation of its argument. 

The EKF equations for updating state estimates are 
I I Q

| 1
| | 1 Q Q I

| 1

1| |

ˆcosˆ ˆˆ ˆ ,ˆˆ ˆ sin

ˆˆ ˆ

k kk k k
k k k k k

k k k k k

k k k k k

z u u
z u u

f

θ
θ θ

θ

θ θ

−
−

−

+

⎧ ⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤−⎪ ⎪⎪ = + − ⎢ ⎥⎨ ⎬⎢ ⎥ ⎢ ⎥⎪ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎨ ⎪ ⎪⎣ ⎦⎩ ⎭
⎪

= +⎪⎩

L
(22) 

where kL  is the Kalman gain and the error covari-
ance updates are obtained from Eqs. (16) and (17), 
where the parameters vary as the following. 
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where the symbol I Qˆ ˆjk ku u+  is the estimation of the 
transmitted symbol which is unknown at the receiver, 
but which can be obtained using the decision-aided 
approach from the output of the hard-decision device. 
Thus, the state update in Eq. (22) can be rewritten as 

I I Q
| 1

| | 1 Q Q I
| 1

ˆcosˆ ˆˆ ˆ
ˆˆ ˆ sin

k kk k k
k k k k k

k k k k k

z u u
z u u

θ
θ θ

θ
−

−

−

⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤−⎪ ⎪= + − ⎢ ⎥⎨ ⎬⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭

L  (25) 

In conclusion, Eqs. (12) - (17) and (22) - (25) form 
the EKF algorithm for adaptive estimation of the phase 
offset.  

3  Numerical Experiments 

The timing recovery method was simulated for a 
wavelet packet transform-based multicarrier modula-
tion communication system[13] with N=64 subcarriers, 
a carrier frequency c 900f = MHz, a channel band-
width 5 MHz,W =  a subcarrier bandwidth /f W NΔ = =  

78.125 kHz,  a symbol width s
1 12.8T
f

= =
Δ

µs, a 

wavelet packet basis function of db4, a maximum 
Doppler frequency m 300 Hzf =  which is quite large, 
multi-path channels number 4,L =  and delaying times 
of /( ), 0,1,2,3.i i K f iτ = Δ =  All of the test data was 
modulated by 4QAM.  

The pre-computed Kalman phase gains for the KF 
and EKF schemes are shown in Fig. 2, where Tb is the 
nominal bit interval. The initial error covariance was 
set to 5/3 for the phase and 0.2 for the frequency. The 
measurement noise variance was set to 0.1 and the 
noise variances of the random phase and frequency 
disturbances were set to 1× 310−  and 1× 410− . Note that 
the EKF gains are oscillating due to the nonlinear 
function ( )k kh x  in Eq. (4) and converge faster than  

 
Fig. 2  Pre-computed Kalman phase gains for the KF 
and EKF schemes 

the KF gains, because they are updated every time step, 
while the KF gains are smooth since they are updated 
only every four time steps.  

The validity of the method was investigated for two 
types of channel models. 
Model I: AWGN channel model 

This simulation compares the timing recovery of the 
current algorithm with those of several conventional 
methods. The step size in Eq. (21) was set to 

102f
−=K  to achieve stable fast convergence for this 

simulation environment. 
Figure 3 shows the RMS error of the phase offset 

estimates for the PLL, ML, KF, and EKF schemes. The 
RMS error of the EKF phase estimation is around 0.13 
at time 20Tb and 0.081Tb at time 40, which is smaller 
and converging faster than for the other three methods. 
The BER performances of the PLL, ML, KF, and EKF 
schemes for the same channel are shown in Fig. 4, 
which clearly reflects the efficiency of the EKF algo-
rithm over the other three methods. For example, the  

 
Fig. 3  RMS phase error for AWGN channel 

 
Fig. 4  Average BER versus SNR for AWGN channel 
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minimum BER of the EKF scheme is 70.5 10−× dB for 
a signal noise ratio (SNR) of 22 dB.  
Model II: Rayleigh fading channel model 

A Rayleigh fading channel model with variable 
channel coefficients was also used to test the efficiency 
of the decision-aided EKF algorithm over the other 
scheme. The settings are the same in model I. The re-
sult in Fig. 5 shows that the RMS error of the EKF 
phase estimation is around 0.084 at time 20Tb and 
0.056 at time 40Tb, less than for the other three meth-
ods, with the EKF method having faster convergence 
in the Rayleigh fading channel. As with model I, Fig. 6 
shows that the bit error performance of the decision-    
aided EKF scheme for the fading channel after time 
offset is better than for the PLL, ML, and KF schemes. 
The decision-aided EKF method has a less bit error 
rate than the PLL, ML, and KF methods for the same 
SNR, with a BER of 71.8 10−× dB for SNR of 22 dB 
which is smaller than for the other methods. 

 
Fig. 5  RMS phase error for Rayleigh channel 

 
Fig. 6  Average BER versus SNR for Rayleigh channel 

4  Conclusions 

An adaptive timing recovery method was developed 
based on decision-aided EKF for both AWGN and 
Rayleigh fading channels in a wavelet packet trans-
form-based multicarrier modulation communication 
system. The method is compared with the conventional 
PLL, ML, and KF methods. Simulations show that the 
decision-aided EKF performs better than the PLL, ML, 
and KF methods in terms of convergence rate, RMS 
error, and BER, since the scheme takes into account 
the nonlinear relationship between the signal samples 
and timing errors. Offline computations of the Kalman 
gains reduce the online computations to a level com-
parable to those used by a conventional PLL. Thus, the 
decision-aided EKF based timing recovery is much 
more suitable for the nonlinear time-varying fading 
channel environment of wavelet packet trans-
form-based multicarrier modulation communication 
system. 
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