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Abstract: The problem of fault-tolerant controller design for a class of polytopic uncertain systems with ac-

tuator faults is studied in this paper. The actuator faults are presented as a more general and practical con-

tinuous fault model. Based on the affine quadratic stability (AQS), the stability of the polytopic uncertain 

system is replaced by the stability at all corners of the polytope. For a wide range of problems including 

H∞  and mixed 2 /H H∞  controller design, sufficient conditions are derived to guarantee the robust stabil-

ity and performance of the closed-loop system in both normal and fault cases. In the framework of the linear 

matrix inequality (LMI) method, an iterative algorithm is developed to reduce conservativeness of the design 

procedure. The effectiveness of the proposed design is shown through a flight control example.  

Key words: fault-tolerant control (FTC); affine quadratic stability (AQS); continuous actuator fault; multi-ob-
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Introduction 

With the growing complexity of modern control sys-
tems, research on fault-tolerant control (FTC) has re-
ceived great attention over the past several years. FTC 
is a control technique that provides the ability to main-
tain overall system stability and acceptable perform-
ance in the event of component failures[1]. FTC meth-
ods can be broadly classified into two types: passive 
and active. The active FTC (AFTC), including fault 
detection and diagnosis (FDD) and control reconfigu-
ration, is generally complicated for safety-critical sys-
tems. Passive FTC (PFTC) exploits the inherent re-
dundancy of the controlled system. Consequently, 
PFTC without on-line FDD and control reconfigura-
tion implements easily as compared with AFTC. 

Therefore, PFTC becomes a popular method for    
accommodating the component failures, and some 
works[2-5] have been carried out in recent years. How-
ever, the component failures considered in the above 
literature are all described as a discrete fault model, 
which is the simplest case of component failures. 
Based on a more practical continuous fault model, 
which consists of a scaling factor with upper and lower 
bounds to the signal to be measured or to the control 
action, Yang et al.[6] designed reliable H∞  controllers 
for sensor and actuator faults, respectively. Subse-
quently, problems of reliable tracking controller design 
against actuator faults are studied by using the con-
tinuous fault model in Refs. [7,8]. However, polytopic 
uncertainties and multi-objective synthesis have not 
been considered simultaneously in these papers. 
Moreover, it yields a conservative result by employing 
a fixed quadratic Lyapunov function to deal with all 
cases. 

This paper studies the fault-tolerant controller    
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design for a class of uncertain systems with actuator 
faults. Furthermore, a more general and practical   
continuous fault model is considered for actuator fail-
ures. Sufficient conditions for the existence of fault-    
tolerant controllers are derived based on the concept of 
affine quadratic stability (AQS), which guarantees the 
robust stability and system performance in both normal 
and fault cases. Finally, an iterative algorithm separat-
ing Lyapunov function variables from controller gain is 
developed via additional variables to obtain the con-
troller with less conservativeness. Simulations show 
that our methods give better performance than the 
standard design method. 

1  Problem Statement 

Consider a polytopic uncertain system described by 
( ) ( ) ( ) ( ) ( ) ( ) ( ),
( ) ( ) ( )
t t t t
t t

= + +⎧
⎨ =⎩

x A θ x B θ u G θ w
y C θ x
�

    (1) 

where ( ) nt ∈x R is the state, ( ) mt ∈u R is the control in-
put, ( ) ht ∈w R  is the disturbance input, and ( ) pt ∈y R  
is the measured output. We adopt the following poly-
topic uncertainties in the system matrices ( )A θ , ( )B θ , 

( ),C θ  and ( )G θ : 
{[ ( ), ( ), ( ), ( )] | [ ( ), ( ), ( ), ( )]Ω =A θ B θ C θ G θ A θ B θ C θ G θ�

1 1

( , , , ); 0, 1; 1, , }
N N

i i i i i i i
i i

i Nθ θ θ
= =

= =∑ ∑A B C G …  (2) 

The matrices iA , iB , ,iC  and iG  are known constant 
matrices with appropriate dimensions, which corre-
spond to different vertices of the polytope. 1 2[ , ,θ θ=θ    

T, ]Nθ…  is a uncertain constant parameter vector. 
Actuator fault is the most frequent failure in control 

systems. In this paper, we study the problem of 
fault-tolerant controller design for polytopic uncertain 
systems with actuator faults. Moreover, a continuous 
fault model of the actuator is adopted here. 

Set ( )tu  and F ( )tu  present actuator outputs in 
normal case and fault case, respectively. Then, 

F ( ) ( )t t=u Fu               (3) 
where F is the matrix of actuator effectiveness factors 
and satisfies 

1 2{ diag[ ,  ],, , mff fΘ∈ =FF � …  
[ ,  ],   = 1, 2, ,  }1,j lj uj ujf f f f j m∈ …       (4) 

By introducing the following matrices: 
0 01 02 0 1 2diag[ ,  ],  diag[ , ],, , , ,m mf w wf f w= =F W… …  

1 2 1 2diag[ , ],  diag[ , ], , | | | | | |, ,| |m ml l l ll l= =L L… …  (5) 

where 

0

0

0

1, 2, ,  .

1 ( ),  ,  
2

,  

uj lj
j lj uj j

lj uj

j j
j

j

m

f f
f f f w

f f

f f
l j

f

−
= + =

+

−
= = …

 

Then, we get the continuous fault model as follows: 
0 ( ),  | |= +F F I L L W I          (6) 

Remark 1 0jf =  means total outage of the j-th ac-
tuator channel and 1jf =  means a healthy actuator 
channel. Partial loss of the j-th actuator channel is 
given by 0 lj j ujf f f< < . It is worth mentioning that 
the above continuous fault model includes the discrete 
fault model. 

Hence, the system (1) with actuator faults is given by  
0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( )
t t t t
t t

= + + +⎧
⎨

=⎩

x A θ x B θ F I L u G θ w
y C θ x
�

 (7) 

2  Fault-Tolerant Controller Design 

In this section, the problem under consideration is to 
design a state feedback fault-tolerant controller of the 
following form: 

( ) ( )t t=u Kx               (8) 
The closed-loop system with actuator faults is repre-
sented as the following by substituting Eq. (8) into Eq. 
(7): 

0( ) [ ( ) ( ) ( ) ] ( ) ( ) ( ),
( ) ( ) ( )
t t t
t t

= + + +⎧
⎨

=⎩

x A θ B θ F I L K x G θ v
y C θ x
�

 (9) 

Then, we get a new expression of the closed-loop sys-
tem by introducing a controlled output z(t) as meas-
urement, 

0

0

( ) [ ( ) ( ) ( ) ] ( ) ( ) ( ),
( ) ( ) ( ),
( ) [ ( ) ] ( )z z

t t t
t t
t t

= + + +⎧
⎪ =⎨
⎪ = + +⎩

x A θ B θ F I L K x G θ v
y C θ x
z C D F I L K x

�
 (10) 

Before giving our main results, we first present the 
following definition and lemmas which play important 
roles in demonstrating the results.  

Definition 1 AQS[9] Consider the polytopic uncer-
tain system (1). We call this system AQS if there exists 
an affine quadratic Lyapunov function, 

T d( , ) ( ) 0,   ( , ) 0
dt

= > = <
VV x θ x P θ x V x θ�   (11) 

where affine quadratic Lyapunov variable 

1
( ) ,

N

i i
i

θ
=

=∑P θ P  

1
1

N

i
i

θ
=

=∑ .  
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Lemma 1[9] Consider a scalar quadratic function of 
uncertain parameter θ,  

2
1 0( , , )K i i ij i j i i

i i j i

f θ θ α α θ β θ θ δ θ
<

= + + +∑ ∑ ∑…  (12) 

And assume that ( )f ⋅  is multi-convex, that is, 
2

22 ( ) 0,  for  1, ,i
i

i Nδ
θ

∂
= =

∂
f θ …       (13) 

Then ( )f ⋅  is negative in the hyper-rectangle iθ ∈  
[ ,  ]i iθ θ  if and only if it takes negative values at the 
corners of this hyper-rectangle.  

Lemma 2[7] Set 1R , 2R  as known real constant 
matrices with appropriate dimensions, U as a positive 
definite diagonal matrix, and Σ  as a time-varying 
matrix satisfying | |Σ U . Then 

T T T T 1 T
1 2 2 1 1 1 2 2α α −+ +R ΣR R Σ R R UR R UR    (14) 

where 0α > , 1 2diag[ , , , ]qσ σ σ=Σ … . 

2.1  ∞H  fault-tolerant controller synthesis 

This subsection concentrates on the robust stability and 
H∞  performance of the closed-loop system (10) and 
explicates the advantages of the proposed AQS. 

Theorem 1  The polytopic uncertain system (10) 
has affine quadratic H∞  performance (AQP) γ  if 
there exist symmetric matrices iP  such that  

1 1
( ) ,  1,  1, ,

N N

i i i
i i

i Nθ θ
= =

= = =∑ ∑P θ P …       (15) 

T
0 0

T

0

[ ( ) ( ) ( ) ] ( ) ( )[ ( ) ( ) ( ) ]  
( ) ( ) 0

( )  0z z γ

θ
γ

⎡ ⎤+ + + + + ∗ ∗
⎢ ⎥− ∗ <⎢ ⎥
⎢ ⎥+ + −⎣ ⎦

A θ B θ F I L K P θ P θ A θ B F I L K
G θ P θ I

C D F I L K I
         (16) 

hold for all uncertain parameters iθ , where ‘*’ de-
notes entries that can be deduced from the symmetry of 
the matrix. 

Theorem 1 can be readily obtained based on Defini-
tion 4.1 in Ref. [9] and is omitted here for brevity.  

Although this result shows that AQP can be     
dependent on the Lyapunov variable P(θ ), it does not 
yield an implementable controller design method for 

all faults. To overcome this problem, the following 
theorem is derived by invoking the proposed      
preliminaries. 

Theorem 2  Consider the closed-loop augmented 
system (10). For given positive scalars iγ  and iμ , if 
there exist symmetric positive definite matrices jP  
satisfying 

T
0 0

T

0
1/2 T

0
1/2

 ( ) ( ) *

0
0
0

i i i i i i

i i i

z z

i i

γ
⎡ + + +
⎢ −⎢
⎢ +
⎢
⎢
⎢⎣

A B F K P P A B F K
G P I

C D F K
W F B P

W K

    T
2 0 0

1
1

1 1 1
1 2

* * *
* * *

0* *
0 *
0 0 ( )

i z zγ α
α

α α

−

− − −

⎤
⎥
⎥
⎥ <− +
⎥

− ⎥
⎥− + ⎦

I D F WF D
I

I

   (17) 

T
0 0

T

1/2 T 1
0 3

1/2
3

    ( ) ( )

0
0
0 0

i i i i i i i

i i i

i i

μ
μ

α
α

−

⎡ ⎤+ + + + ∗ ∗ ∗
⎢ ⎥∗ ∗⎢ ⎥ >
⎢ ⎥− ∗
⎢ ⎥

−⎢ ⎥⎣ ⎦

A B F K P P A B F K I
G P I

W F B P I
W K I

              (18) 

the controller stabilizes the closed-loop system and the 
upper bound of the H∞  performance index is iγ . 

Proof  Applying the Schur complement lemma[10] 

to the above inequality (17), we have 
T

0 0
T

0

( ) ( ) * *
* +

0

i i i i i i

i i i

z z i

γ
γ

⎡ ⎤+ + +
⎢ ⎥−⎢ ⎥
⎢ ⎥+ −⎣ ⎦

A B F K P P A B F K
G P I

C D F K I
 

T 1 T
1 0 0 1 * *

0 0 *
0 0 0

i i i iWα α −⎡ ⎤+
⎢ ⎥ +⎢ ⎥
⎢ ⎥⎣ ⎦

P B F F B P K WK
 

1 T
2

T
2 0 0

* *
0 0 * 0
0 0 z z

α

α

−⎡ ⎤
⎢ ⎥ <⎢ ⎥
⎢ ⎥⎣ ⎦

K WK

D F WF D
  (19) 

It is easy to see that inequality (19) is equivalent to the 
following expression by using Lemma 2: 
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T
0

0
T

0

[ ( ) ]
* *

[ ( ) ]
0

*
( ) 0

i i i

i i i

i i i

z z i

γ
γ

⎡ ⎤+ + +
⎢ ⎥

+ +⎢ ⎥ <⎢ ⎥−
⎢ ⎥

+ + −⎢ ⎥⎣ ⎦

A B F I L K P
P A B F I L K

G P I
C D F I L K I

 
(20)

 

Based on the bounded real lemma[11], expression (20) 
guarantees stability and H∞  performance of the 
closed-loop system at the corners of the polytope (2). 
Adopting the concept of Lemma 1, we can guarantee 
the robust stability and H∞  performance of the sys-
tem if and only if the AQP formulation described in 
Theorem 1 is multi-convex. Therefore, assume the 
AQP formulation 

T
0

0
T

0

[ ( ) ( ) ( ) ] ( )
 

( )[ ( ) ( ) ( ) ]
( ) ( ) ( )

( )  0z z γ
γ

⎡ ⎤+ + +
∗ ∗⎢ ⎥

+ +⎢ ⎥
⎢ ⎥= − ∗
⎢ ⎥

+ + −⎢ ⎥⎣ ⎦

A θ B θ F I L K P θ
P θ A θ B θ F I L K

f θ G θ P θ I
C D F I L K I

 

(21) 
is multi-convex, namely, 

T
02

02
T

[ ( ) ]
( ) 0[ ( ) ]

0

i i i
i i

i i i
i

i i

θ

⎡ ⎤+ + +
∂ ⎢ ⎥= + +⎢ ⎥∂ ⎢ ⎥⎣ ⎦

A B F I L K P
PGf θ

P A B F I L K
G P

 (22) 

The inequality (22) is hard to solve via LMI since it is 
not a strict positive condition. A simple remedy con-
sists of replacing inequality (22) by 

T
0

0
T

[ ( ) ]
0

0[ ( ) ]
0

0

i i i
i i

ii i i

i i

μ
⎡ ⎤+ + +

⎡ ⎤⎢ ⎥ + >+ + ⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥⎣ ⎦

A B F I L K P
PG I

P A B F I L K
I

G P
 (23) 

Resembling the equivalence of formulas (17) and (20), 
inequality (18) is equivalent to inequality (23). This 
completes the proof. □ 

Remark 2 Theorem 2 transforms the construction of 
the parameter-dependent Lyapunov function into an 
LMI problem. Moreover, the stability of the polytopic 
uncertain system with continuous faults can be reduced 
to the stability of the systems corresponding to the up-
per bound of the continuous fault. However, it is no-
ticed that LMIs in Theorem 2 are numerically in trac-
table due to the coupling between Lyapunov function 
variables and controller gain. Hence, some important 
additional variables are introduced into the following 
theorem to avoid the coupling. 

Theorem 3  Consider the closed-loop augmented 
system (10). For given positive scalars iγ , if there ex-
ist symmetric positive definite matrices jP  satisfying 

T

T
0 1 0 0

1/2 T 1
0 1

1/2 1 1 1
1 2

T
0

( , ) * * * * *
* * * *

0 * * *
0

0 0 * *
0 0 0 ( ) *
0 0 0 0

i

i i i

z z i z z

i i

i i

Φ

W
γ

γ α
α

α α

−

− − −

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥+ − +

<⎢ ⎥
−⎢ ⎥

⎢ ⎥− +
⎢ ⎥

+ −⎢ ⎥⎣ ⎦

K P
G P I

C D F K I D F F D
W F B P I

W K I
B P F K I

          (24) 

T

1/2 T 1
0 3

1/2
3

( , )

0
0
0 0

i i

i i i

i i

Φ μ
μ

α
α

−

+ ∗ ∗ ∗⎡ ⎤
⎢ ⎥∗ ∗⎢ ⎥ >
⎢ ⎥− ∗
⎢ ⎥

−⎣ ⎦

K P I
G P I

W F B P I
W K I

  (25) 

where 

T T T
0 0( , )i i i i i i i i i i i i iΦ = + − − +K P A P P A P B B P P B B P

T T T T
0 0 0 0 0 0 0 0 0 0 0 0.i i i i − − +P B B P K F F K K F FK K F F K  

The controller stabilizes the closed-loop system and 
the upper bound of H∞  performance index is .iγ  

Proof LMI expression (24) can be represented as 
follows using the Schur complement lemma[11], 

T
0 0

T

T
0 2 0 0

1/2 T 1
0 1

1/2 1 1 1
1 2

( ) ( ) * * * *
* * *

0 * *
0 0 *
0 0 0 ( )

i i i i i i

i i i

z z i z z

i

γ
γ α

α
α α

−

− − −

⎡ ⎤+ + +
⎢ ⎥−⎢ ⎥
⎢ ⎥ ++ − +
⎢ ⎥

−⎢ ⎥
⎢ ⎥− +⎣ ⎦

A B F K P P A B F K
G P I

C D F K I D F WF D
W F B P I

W K I
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TT T T
0 0 0 0 0 0( ) ( ) ( ) ( )

0 0 0 0
  00 0 0 0

0 0 0 0
0 0 0 0

i i i i i i− − ⎡ ⎤ ⎡ ⎤− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ + <
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

P P B P P B K K F K K F

               (26) 

Formula (24) is a strict condition of formula (17) since 
the left-hand side of inequality (26) includes left-hand 
side of formula (17) and two positive definite items. 
Therefore, it is apparent that the condition (17) holds if 
formula (24) is satisfied. Similar to the above-men-
tioned demonstration, we can also explain the relation 
between expressions (18) and (25). This completes the 
proof. □ 

Remark 3  The non-convex optimization problem 
in Theorem 2 can be solved by giving the additional 

variables 0K  and 0iP . The conservativeness of this 
transformation lies in the differences between 0−K K  
and 0i i−P P . Thus, the following iterative algorithm 
will be developed to minimize this conservativeness. 

Algorithm 1 
(1)[12] Select proper upper bounds 0iγ > , then ob-

tain the initial controller gain 0 1
opt opt opt

−=K Z X  via the op-
timization problem: minimize tr(Y ), subject to X>0 
and 

T T T T
0 0 1 0 0

T

T
0 1 0 0

1/2 1 1 1
1 2

* * *
* *

0
0 *
0 0 ( )

i i i i i i

i i

z z i z z

α
γ

γ α
α α− − −

⎡ ⎤+ + + +
⎢ ⎥−⎢ ⎥ <
⎢ ⎥+ − +
⎢ ⎥

− +⎢ ⎥⎣ ⎦

XA A X B F Z Z F B B F WF B
G I

C D F K I D F WF D
W Z I

    (27) 

0⎡ ⎤
>⎢ ⎥

⎣ ⎦

Y I
I X

              (28) 

If there is no such controller, then stop and the algo-
rithm fails to obtain a solution. 

(2) Let 0
opt=K K , 

1

minimize [tr( )]
N

i
i=
∑ P  subject to 

Pi > 0 and the optimization problems described in 
Theorem 2, then we get the initial Lyapunov function 
variables 0

0iP . 
(3) At the k-th (k>0) iteration, let 1

0 ,opt
k k

i i
−=P P  and 

1
0 opt
k k −=K K , 

1

minimize [tr( )]
N

i
i=
∑ P  subject to 0i >P  

and the optimization problems described in Theorem 3, 
then we get the k-th Lyapunov function variables 

, opt
k

iP  and controller gain opt
kK . 

(4) If 1
0 0

1

tr[ ( )]
N

k k
i i

i

δ−

=

− <∑ P P  where δ  is a given 

error tolerance, the calculated opt
k=K K  is the optimal 

fault-tolerant H∞  controller gain, stop. Otherwise, let 
k=k+1 and return to Step 3. 

It should be noted that the convex optimization 
problem for K and iP  in Theorem 3 can be solved by 
using the LMI Toolbox in the MATLAB environment 
for given initial gains 0K  and 0

iP . 

2.2  Mixed H H2 / ∞  fault-tolerant controller  
synthesis 

It is well known that H∞  control guarantees robust 
stability of a system only in the face of uncertainties 
and disturbances. In practice, transient performance of 
a system also needs to be dealt with. To manage the 
trade-off between the system performance and robust-
ness, many works of the mixed 2 /H H∞  control[6,13-16] 
have been carried out. So we extend our results to the 
mixed 2 /H H∞  FTC in this subsection. 

Introduce the different controlled outputs ( )z t∞  
and 2 ( )z t  as measurement of robustness and system 
performances, respectively. Then the closed-loop sys-
tem (9) is represented as 

0

0

2 2 2 0

( ) [ ( ) ( ) ( ) ] ( ) ( ) ( ),
( ) ( ) ( ),
( ) [ ( ) ] ( ),
( ) [ ( ) ] ( )

t t t
t t
t t
t t

∞ ∞ ∞

= + + +⎧
⎪ =⎪
⎨ = + +⎪
⎪ = + +⎩

x A θ B θ F I L K x G θ v
y C θ x
z C D F I L K x
z C D F I L K x

�

 (29) 

Definition 2[15] Mixed 2 /H H∞  problem. Give an 
H∞  level γ, find an admissible SOF controller gain K 
which stabilizes the closed-loop system satisfying 

2

1/2
T

2
1min|| || min Trace ( j ) ( j ) d
2π

ω ω ω
∞

−∞

⎧ ⎫⎪ ⎪⎛ ⎞= ⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∫z vT T T  
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maxs. t.   || || sup( ( ( j )))
ω

σ ω γ
∞ ∞

⎛ ⎞= <⎜ ⎟
⎝ ⎠z vT T       (30) 

where 
∞z vT  and 

2z vT  denote the transfer functions 
from v(t) to ( )t∞z  and 2 ( )tz , respectively. The H∞  
norm of  

∞z vT  is defined as supermum of its largest 
singular value over all frequencies. The 2H  norm of 

2z vT  is defined as the output energy of impulse    
response of 2 ( )tz . 

Theorem 4  Consider the uncertain closed-loop 
system (29). For given positive scalars γ  and λ , if 
there exist affine parameter-dependent Lyapunov vari-

able 
1

( )
N

i i
i

θ
=

= ∑P θ P  and symmetric positive definite 

matrix Q satisfying the optimization problem, 
min[tr( )]Q       s. t. 

T
0

0
T

0

[ ( ) ( ) ( ) ] ( )
 

( )[ ( ) ( ) ( ) ]
0

( ) ( )
( )  0 γ

γ

∞ ∞

⎡ ⎤+ + +
∗ ∗⎢ ⎥

+ +⎢ ⎥ <⎢ ⎥− ∗
⎢ ⎥

+ + −⎢ ⎥⎣ ⎦

A θ B θ F I L K P θ
P θ A θ B θ F I L K

G θ P θ I
C D F I L K I

 (31) 

T
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2Trace( ) λ<Q              (34) 
the obtained controller guarantees the robust stability 
and mixed 2 /H H∞  performance of the uncertain 
closed-loop system in both normal and fault cases. 

Although Theorem 4 is not a direct consequence of 
Theorem 1, we can derive it by following Definition 2 
and similar arguments to the proof of Theorem 1. So it 
is omitted here.  

Theorem 5  For given positive scalars iγ  and iλ , 
the robust stability and mixed performance of Eq. (29) 
guarantee if there exist symmetric positive definite 
matrices iP  and iQ  satisfying 
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2Trace( )i iλ<Q              (38) 
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Adopting the concept of Definition 2, it is clear that 

the expressions (35)-(38) in Theorem 5 are sufficient 
conditions for mixed 2 /H H∞  performance at the 
corners of the polytope. The proof of formulas (39) and 
(40) in Theorem 5 is again an application of Lemmas 1 
and 2. Thus, the proof is omitted for brevity. 

By following a similar discussion as in Remark 2, 
we see that there is still a coupling between the 
Lyapunov function variables and the controller gain in 
Theorem 5. Hence, we eliminate the coupling with the 
aid of the following theorem. 

Theorem 6  For given positive scalars iγ  and iλ , 
the robust stability and mixed performance of Eq. (29) 
guarantee if there exist symmetric positive definite 
matrices iP  and iQ  satisfying 

1

min[tr( )]
N

i
i=
∑Q       s. t. 
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By following similar lines to the proof of Theorem 3, 
the proof of Theorem 6 can be readily obtained.  

The discussions of the iterative algorithm for mixed 
2 /H H∞  fault-tolerant controller design follow those 

in Subsection 2.1 and so are also omitted here. 

3  Simulation Results and Analysis 

A numerical example of flight tracking control for the 
F-18 aircraft is presented to demonstrate the merits of 
the proposed method. 

The decoupled linearized longitudinal dynamical 

motion equations of the F-18 aircraft[17] are given as 
E

long long
PTV

,
q q

δα α
δ

⎡ ⎤⎡ ⎤ ⎡ ⎤
= + ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
A B

�
�

 

where α  is the angle of attack, q is the pitch rate, Eδ  
is the symmetric elevator position, and PTVδ  is the 
symmetric pitch thrust velocity nozzle position. For the 
considered flight case, 

m7h14 m7h14
long long

m85h5 m85h5
long long

m9h10
long

1.175 0.9871 0.194 0.0359
,  ;

8.458 0.8776 19.29 3.803

2.328 0.9831 0.3012 0.0587
,  ;

30.44 1.493 38.43 7.815

2.452 0.9856
38

− − −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

− − −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

−
=

−

A B

A B

A m9h10
long

0.2757 0.0523
,  .

.61 1.34 37.36 7.247
− −⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦
B

 

Following the nomenclature in Ref. [17], m7h14
longA  

denotes the longitudinal state matrix at Mach 0.7 and 
14-kft altitude. 

For the F-18 aircraft model, consider the actuator 
fault matrix 1 2diag[ , ]f f=F , 1 20.4 1,  0 1f f , 
weight parameters 1 6 1,α α= = =" 1 2 0.01i iμ μ= =  
and select the designed output as 

2 2 E2 2

2 2 PTV2 2

( ) .
0.1*

t
q

δα
δ

××

××

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
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⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦

I
z

I
0

0
 

Then, we have taken the LMI toolbox function mincx 
applied it to the optimization problem in Section 2 for 
obtaining the H∞ and mixed 2 /H H∞  fault-tolerant 
controller gains, 

0.2862 0.6379
0.0178 0.0386H∞

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

K  

and 

2 /

0.3617 1.4367
.

0.0739 0.1640H H∞

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

K  
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For comparison purposes, the standard H∞  control-
ler[12] without considering actuator faults are also car-
ried out. 

Table 1 shows the H∞  performance and iteration 
counter of the three control methods. 

Table 1  Comparison of the three control methods 

H∞ performance 
Methods 

m7h14 m85h5 m9h10 
Iteration
counter

Standard 
H∞ control 0.5006 0.5006 0.5006 − 

H∞ FTC 0.2469 0.3095 0.4236 17 
Mixed 2 /H H∞  FTC 0.2586 0.3319 0.4701 42 
 

Subsequently, we consider the following actuator 
faults at 0.5 s in simulations. 

Fault-free: diag[1,  1]=F ; 
Fault 1: diag[0.8,  0.4]=F ; 
Fault 2: diag[0.4,  0]=F . 

The fault 1 means that the effectiveness of Eδ  and 
PTVδ  lose 20% and 60%, respectively. The fault 2 

means that the effectiveness of Eδ  loses 60% and 
PTVδ  is the total outage. Obviously, the fault 2 is more 

severe than fault 1. 
The response curves of the closed-loop system with 

fault free, fault 1 and fault 2 are given in Figs. 1-9, 
respectively. The simulation results show that the sys-
tem performance of the standard H∞  controller is 
similar to that of the fault-tolerant controllers when the 
actuators are healthy. However, as the magnitude of 
faults increases, the standard H∞  controller cannot 
stabilize the closed-loop system and fault-tolerant   
controllers just suffer from slight performance    
degradation.  

 
Fig. 1  Responses of standard H∞  controller with 
fault free 

 
Fig. 2  Responses of H∞  fault-tolerant controller 
with fault free 

 
Fig. 3  Responses of mixed H H2 / ∞  fault-tolerant 
controller with fault free 

 
Fig. 4  Responses of standard H∞  controller with 
fault 1 

 
Fig. 5  Responses of H∞  fault-tolerant controller 
with fault 1 
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Fig. 6  Responses of mixed H H2 / ∞  fault-tolerant 
controller with fault 1 

 
Fig. 7  Responses of standard H∞  controller with 
fault 2 

 
Fig. 8  Responses of H∞  fault-tolerant controller 
with fault 2 

 
Fig. 9  Responses of mixed H H2 / ∞  fault-tolerant 
controller with fault 2 

The simulation results also show that the mixed 
2 /H H∞  fault-tolerant controller yields transient be-

haviors superior to the H∞  fault-tolerant controller in 
all cases.  

Summarizing the simulation results, our approaches 
can improve the system performance in the event of 
fault cases as compared to the standard design method. 

4  Conclusions and Future Work 

A fault-tolerant controller design approach has been 
developed for polytopic uncertain systems with actua-
tor faults, and with extensions to H∞  and mixed 

2 /H H∞  problems. Moreover, an iterative algorithm is 
obtained to reduce the conservativeness of controller 
design by employing the additional variables. The re-
sulting controllers are reliable in that it provides guar-
anteed robust stability and system performance in both 
normal and fault cases. Simulation results of F-18 air-
craft illustrate that our methods result in performance 
superior to previous methods. 

The convenience of controller design has been 
achieved by using the iterative algorithm. Unfortu-
nately, the algorithm yields a suboptimal solution since 
additional variables were introduced. Therefore, future 
work will investigate how to develop a new LMI re-
laxation method to get an optimal solution of the 
non-convex optimization problem in Theorem 3 and 5 
without additional variables, namely, how to decouple 
the Lyapunov variables and system matrices.  
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