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Abstract:  In this paper, we briefly address the application of the standard principal component analysis 

(PCA) technique to fault detection and identification. Based on an analysis of the existing test statistic, we 

propose a new test statistic, which is similar to the Hawkin’s 2
HT  statistic but without the numerical draw-

back. In comparison with the SPE index, the threshold setting associated with the new statistic is computa-

tionally simpler. Our further study is dedicated to the analysis of fault sensitivity. We consider the off-set and 

scaling faults, and evaluate the test statistic by viewing its sensitivity to the faults. Our final study focuses on 

identifying off-set and scaling faults. To this end, two algorithms are proposed. This paper also includes 

some critical remarks on the application of the PCA technique to fault diagnosis.   
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Introduction 

Principal component analysis (PCA) is a basic method 
in the framework of the multivariate analysis tech-
niques. It has been successfully used in numerous areas 
including data compression, feature extraction, image 
processing, pattern recognition, signal analysis, and 
process monitoring[1]. Thanks to its simplicity and effi-
ciency in processing huge amount of process data, 
PCA is recognised as a powerful tool of statistical 
process monitoring and widely used in the process in-
dustry for fault detection and diagnosis[2-4]. Recent de-
velopment in the PCA technique is focused on achiev-
ing adaptive process monitoring using, for instance, 
recursive implementation of PCA[5], fast moving win-
dow PCA[6] or kernel PCA[7].  

In our recent project dealing with the application of 
the standard PCA technique to the process monitoring, 

we have noticed that slight modifications on the PCA 
methods might lead to a performance improvement in 
detecting and identifying process faults. This experi-
ence motivates us to review the standard PCA tech-
nique, which is the first objective of this paper. Some 
critical remarks on the application of the PCA tech-
nique to fault diagnosis and the introduction of new 
test statistics are the results of our review study. The 
further objective of our study is to analyze the fault 
sensitivity of the test statistic used in the PCA and to 
apply the PCA technique to the identification of two 
different types of faults.  

The paper is organised as follows. In Section 1, the 
standard PCA technique will first be reviewed. The 
focus is on the two well known statistics, 2T  and SPE, 
and their statistical interpretation. This study motivates 
us to introduce an alternative test statistic. Section 2 is 
dedicated to the check of the fault sensitivity under 
different test statistics and with respect to the off-set 
and scaling faults. Section 3 deals with the PCA-based 
identification of those two types of faults. In the last 
section, some critical remarks on the application of the 
PCA methods to fault diagnosis are included.  

Notation The notation adopted throughout this   
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paper is fairly standard. nR  denotes the n-dimentional 
Euclidean space and n m×R  the set of all n m×  real 
matrices. The superscript “ T ” stands for the transpose 
of a matrix. “I ” and “0” denote the identity and zero 
matrices with appropriate dimension, respectively, and 
diag( , , )"∙ ∙ a diagonal matrix. ( )E ∙ represents mean 
value. ( , )Nx Σ∼ 0 means that x  is normal distributed 
with zero mean and covariance. 2 ( )X l and ( , )F l N  
stand for 2X -distributed with l  degrees of freedom 
and F -distributed with ,l N  degrees of freedom, 
respectively.  

1  Reviewing PCA and an Alternative 
Test Statistic 

1.1  A brief description of PCA 

We first briefly review the standard PCA technique.  
Consider a process with m  sensors. A standard 

PCA approach for fault diagnosis consists of three 
steps and can be briefly formulated as follows:  
• Data collection and normalization: In this step, N  

samples for each sensor are first collected and re-
corded in a data matrix .N m×∈X R  Matrix X  is 
then scaled to zero mean, and often in addition to 
unit variance. Let the scaled data be  
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with , 1, , ,m
i i N∈ =x …R  denoting a (scaled) sample 

vector of the m  sensors.  
• Computation of singular values, corresponding sin-

gular vectors and thresholds: First, the covariance 
matrix is formed, 

T1 ,
1N

≈
−
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and then, by means of, for example, an SVD (singular 
value decomposition), the principal components and 
the associated singular vectors are computed as 
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where 1 lσ σ"  are the l  largest (principal) singu-
lar values and  

1 .l l mσ σ σ+>> "  
For the fault detection purpose, the so-called SPE 
(squared prediction error) statistic and Hotelling’s 2T  
statistic are often used. For a significance level α , the 
corresponding thresholds are respectively set to be 
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where cα  is the normal deviate corresponding to the 
upper 1 α−  percentile and  
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• On-line computation of SPE statistic and Hotelling’s 
2T statistic and fault detection: For a new scaled 

measurement mx ∈ R  the SPE statistic and Hotel-
ling’s 2T statistic are respectively (on-line ) com-
puted as  

2 2TT T
pc pc pc pc
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The fault detection logic is 
2

2
th,SPE th

SPE or fault-free otherwise faulty.
T

J T J
,

⇒ ,  

Remark  In order to simplify our study and nota-
tion, it is assumed, throughout the paper, that the   
sample number N  is large enough so that 2X -dis-
tribution instead of F -distribution can be adopted.  

1.2  On the test statistic and an alternative test  
statistic 

Assume that the process is normal and  
( )N ,x Σ∼ 0                (4) 

It holds  
T T

pc pc pc pc pc pc, ( , ) ( , ).l N N= ∈ =z P x z P ΣP Λ∼R 0 0  

Thus, the 2T statistic satisfies 2X -distribution with 
l  degrees of freedom. It is interesting to notice that  

2T T T T T TT
res res res res res respc pcSPE .( ) x x= = =−x x P P P P x x P PI P P  

Moreover, on the assumption Eq. (4),  
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T ( ) T
res res res res res res, ( , ) ( , )m l N N−= ∈ =z P x z P ΣP Λ∼R 0 0  (5) 

As a result,  
T 1 T

res res resx
−x P Λ P               (6) 

satisfies 2X -distribution with m l−  degrees of free-
dom and would be a reasonable statistic for the fault 
detection purpose. In fact, the statistic defined by Eq. 
(6) is called Hawkin’s 2

HT  statistic, which is, however, 
less used in practice due to the drawback with the pos-
sible ill-conditioning resΛ  when some of the singular 
values of 1, ,l mσ σ+ "  are too close to zero. To avoid 
this difficulty on the one hand and to make use of the 
easy/available computation of the 2X -distribution on 
the other hand, we propose below an alternative test 
statistic.  

Let  
2 2

( ) ( )
2 2

1 1

diag , , ,1 .m l m lm m

l m

σ σ
σ σ

− × −

+ −
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It turns out that  
1 2 1 2 T 2

res res res ( ) ( )( , )m m l m lN σ/ /
− × −= =z Ξ z Ξ P x I∼ 0  

and moreover 
T 2 T 1 TT

res res res res res res res .mσ −= =z z Ξz x P Λ P xz  

Since T 1 T
res res res

−x P Λ P x  is 2X -distributed with m l−  de-
grees of freedom, define  

2 T T T T
new res res res res res resT = = =z z z Ξz x P ΞP x     (7) 

as the test statistic results in a threshold setting, for a 
given significance level, α , equal to 

2 2
th,new ( )mJ X m lασ= −             (8) 

1.3  Some remarks 

pc res,P P  define two subspaces, which are called, 

known in the PCA relevant literatures, principal com-
ponent subspace and residual subspace respectively. In 
the standard PCA technique, the projections  

T T
pc pc res resˆ ˆ,= = ⇒ = +x P P x x P P x x x x� �  

are introduced for the study on fault detection. It is 
interesting to notice that  
• both T

pc pc
m m×∈P P R  and T

res res
m m×∈P P R  are singu-

lar matrices, since T T T T
res pc pc pc res res, .= =P P P P P P0 0   

• the test statistics used in the PCA are the quadratic 
forms associated with T

pc pc=z P x  and T
res res .=z P x   

The introduction of the new statistic Eq. (7) is moti-
vated by this observation. Also in our subsequent study, 

we shall focus on pc res,z z  instead of ˆ, .x x�   

We would like to point out that  
• the new statistic 2

newT  is 2X -distributed, and  
• different from the SPE,  for which the associated 

threshold has been derived by an approximation[8], 
the corresponding threshold can be exactly deter-
mined using the available 2X  data table as shown 
in Eq. (8), and  

• the associated computation is (considerably) less 
complicated than the computation of th,SPEJ  given 

in Eq. (2).  

2  Fault Sensitivity Analysis 

In this section, we analyze the fault sensitivity of the 
test statistic introduced in the last section.  

Off-set and scaling (multiplicative) faults are the 
two types of faults which are mostly considered both in 
the theoretic study and practical application. Given a 
measurement sample ,x  the off-set and scaling faults 
can be modelled as follows. 

o

o

, off-set fault,
, scaling fault,

= + ≠ ⇒

= ≠ ⇒

x x f f
x Fx F I

0
 

where ox  represents the sample in the fault-free case 
and m∈f R  a (non-zero) constant fault vector. Next, 
we shall study the test statistic introduced in the last 
section in detecting off-set and scaling faults.  

Note that the SPE, 2
HT  and 2

newT  statistic consist of 
(different) quadratic forms of vector res =z T

res ,P x  
while the 2T statistic is based on T

pc pc= .z P x  To sim-

plify the notation, use 2
resT  to represent the statistic 

associated with T
res res ,=z P x  i.e., the SPE, 2

HT  and 
2

newT  statistics.  

2.1  Sensitivity to the off-set faults 

Recall that the covariance matrices of pc res,z z  are re-

spectively pcΛ  and res ,Λ  furthermore  

min pc max res 1( ) ( ) .l lσ σ σ σ += >> =Λ Λ  

As a result, the 2
resT  statistic can be (significantly) 

more sensitive to the off-set fault than the 2T  statis-
tic. To demonstrate it, consider the Hawkin’s 2

HT  sta-
tistic and Hotelling’s 2T statistic. It holds, for a sig-
nificance level ,α   
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Thus, if a fault f  causes  
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i.e., this fault can be, with the significance level α,  
detected. Note that Eq. (9) is a sufficient condition that 
a fault can be detected. On the other hand, we have 
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Assume that  
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we finally have 
2

T 1 T 2
pc pc pc th,

( ) ( )
T

E X l Jα
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It follows from Eq. (13) that f  is expectably unde-
tected under condition Eq. (12), although it is detect-
able using the Hawkin’s 2

HT  (see Eq. (10)) and for 
T T

pc pc ≈f P P f T T
res resf P P f .  

The previous analysis reveals that a statistic associ-
ated with T

resP x  is more sensitive to an off-set fault 
than the 2T  statistic when the fault has the same in-
fluence on both statistics, i.e., T T

pc pc ≈f P P f T T
res res .f P P f   

2.2  Sensitivity to the scaling faults 

For our purpose, we now compare the Hawkin’s 2
HT  

statistic and Hotelling’s 2T statistic in detecting   

scaling faults. To simplify the study, it is assumed that 
the scaling fault is modelled by  

, 1, and 1 faulty.f f fα α α= > ⇒F I  
It turns out that 
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Remember that for the same significance level ,α   
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Replacing 
o

T 1 T
( ) o res res res omax ( ),N

−
∈ ,x Σ x P Λ P x0  

o

T 1 T
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−
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J J  and defining the fault sensitivity by 
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This analysis demonstrates that the Hawkin’s 2
HT  

statistic and Hotelling’s 2T statistic may offer the 
similar performance in detecting scaling faults.  

2.3  Combined indices and a detection scheme 

Notice that in the previous study, it has been assumed 
that both the off-set and scaling faults have a similar 
influence on T

pc pc=z P x  and T
res res= .z P x  Removing 

this assumption, it is clear that matrices T T
pc res,P P  may 

also considerably affect the fault sensitivity. For in-
stance, those faults that belong to the (left) null- sub-
space of T T

pc res,P P  can not be, independent of the “size” 

of the faults, detected by the 2T statistic and 2
resT  

statistic, respectively. In order to reduce or eliminate 
the influence of the mapping matrices T T

pc res,P P  on the 

fault sensitivity, the so-called combined indices can be 
used[2,3], which are generally formulated as 

2 2 2
c 1 2 resT T Tβ β= +            (14) 

with known constants 1 2, 0β β > . Rewriting Eq. (14) 
into  

1
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makes it clear that a combined index is a quadratic    
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statistic of signal T ,P x  where  
1 2 2

res res H
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Since T ( , ),NP x Λ∼ 0  T 1 T−x PΛ P x  is 2X -distrib-
uted with m  degrees of freedom. This fact motivates 
us to introduce the following (combined) statistic.  

Considering the possible numerical difficulty with 
the computation of 1,−Λ  we propose  

2 2
2 T T

c,new 2 2
1 1

, diag , , ,1m m

m

T σ σ
σ σ −

⎛ ⎞
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⎝ ⎠
x PΞP x Ξ …   (15) 

which is a combined index given by  
2 T T 2 2 2 2 2 2

c,new new H( )m mT T T T Tσ σ= = + = +x PΞP x  (16) 

It is clear that the corresponding threshold is 
2 2

th,c,new ( )mJ X mασ=  
for a given significance level α.   

Next, we would like to analyze the combined test 
statistic briefly. To simplify our study but without loss 
of generality, we use 2

c,newT  representing the combined 

index 2
cT  for our study. Since 

2 2 2 2( ) ( ), ( ) ( ),X m X l X m X m lα α α α> > −  

the combined index may be of a lower fault sensitivity 
than the separate use of 2 2

H , .T T To illustrate this, we 
consider those faults satisfying T

pc .=P f 0  In this case, 

f  will cause the same change in 2
HT  and 2

c .T  Re-
call that the threshold corresponding to 2

cT  is consid-
erably higher than the one associated with 2

H .T  Thus, 
2

HT  is much more sensitive to these faults than the 2
cT  

index.  
On the other hand, considering that it often holds  

2 2 2( ) ( ) ( ),X m X l X m lα α α< + −  
there do exist faults which result in  

2 T 1 T 2
c ( ) ( )T x X mα

−= >x PΛ P x  
but  

2 2 2 2
H( ) ( ) and ( ) ( ).T x X l T x X m lα α< < −  

That means, in this case a combined index is more 
sensitive to the faults than using  

2
2 2

th,H H th,
( ( ) 0) ( ( ) 0) 0

T
J T x J T x− < ∪ − < >  

faulty, otherwise fault-free⇒       (17) 
The previous discussion reveals that  

• the use of a combined index is of advantage when 
the distribution of 1−Λ f  is nearly uniform in the 

measurement subspace and  
• the separate use of two test statistics, as described   

in Eq. (17), will improve the fault sensitivity if it   

can be assumed that 
T T T T

pc pc res res>>f P P f f P P f  or 

T T
res res >>f P P f T T

pc pc .f P P f   

3  Fault Identification 

In this section, we shall first study the problems of 
identifying off-set and scaling faults respectively, and 
then present a procedure for the fault identification.  

3.1  Identification of off-set faults 

Given  
o o, ( , )m= + ∈x x f x N Σ∼R 0  

with known Σ  and unknown constant vector ,f  it 
is well known that  

1

1 M

i
i

x x
M =

= ∑  

delivers a GLR (generalized likelihood ratio) estimate 
for f  [9] ,  where , 1, , ,ix i M= …  are the M  sam-
ples of .x  It is interesting to note that for 1M =  the 
test statistic adopted by the GLR is the 2X - distribu-
tion analog to the one used in the PCA approaches.  

Suppose that using the standard PCA method a fault 
is detected with sample .kx We propose to use the fol-
lowing algorithm for identifying the detected fault :f   
• Collecting further M  samples and scaling the 

samples by 
11, , ,k k k Mk k k Mx x x x x xx x x+ ++ += − = − = −…� � �  (18) 

 where , ,k k Mx x +…� �  denote the (original) measure-
ments and x  the mean value achieved using the 
training data, as described in Subsection II-A.  

• Computing the estimate of ,f  denoted by f̂  
1ˆ

1

k M

i
i k

f x
M

+

=

=
+ ∑             (19) 

It is worth mentioning that the above algorithm can 
also be realized in a recursive manner.  

3.2  Identification of scaling faults 

Consider  
o , scaling fault= ≠ ⇒x Fx F I  

and suppose that a fault has been detected using a 
standard PCA method. Let , ,k k Mx x +…  be 1M +  
scaled samples collected after the fault has been   
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detected. We then have  
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Therefore,  
1 2 1 2 T

1 pc pc pc
ˆ / − /=F V Π Λ P            (20) 

with  
1 2

1pc 1 12diag( , , ), [ ], m l
lσ σ/ ×= = ∈Π V V V V… R  

delivering a reasonable estimate for .F   

3.3  A fault identification procedure 

In this subsection, we summarize the major results 
achieved in the previous subsections into the following 
algorithm aiming at identifying the faults. We assume 
that a fault has been detected using 2T , 2

resT  test   
statistics.  
• Collect 1M +  samples and scale the samples ac-

cording to Eq. (18), 
• Estimate the off-set fault using Eq. (19) and denote it 

by ˆ ,f   
• Re-scale the samples by 

1 1
ˆ ˆ ˆ, , , ,k k k Mk k k Mx f x f x fx x x+ ++ += − = − = −…  

• Form 
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+
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• and compute the following SVD, 
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⎢ ⎥ =⎢ ⎥
⎢ ⎥⎣ ⎦
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• Compute F̂  using Eq. (20).  

4  Conclusions 

In this paper, we have briefly studied the application of 
the standard PCA technique to fault detection and 
identification. In the standard PCA technique, 

T
pc pc=z P x  and T

res res=z P x  instead of T
pc pcˆ and=x P P x   

T
res res=x P P x� are essential for building the test statistic 

used in the standard PCA. Based on this fact, we have 
proposed a new test statistic, which is similar to the 
Hawkin’s 2

HT  statistic but without the numerical 
drawback. In comparison with the SPE statistic, the 
threshold setting associated with the new statistic pro-
posed in this paper is computationally (remarkably) 
simpler and statistically without approximation.  

In our study on the fault sensitivity, it has been 
demonstrated that the test statistic associated with resz  
can be more sensitive to the off-set faults. In compari-
son, the test statistic associated with pcz  and resz  
may be similarly sensitive to the scaling faults. We 
have further revealed the advantages and disadvan-
tages of using a combined statistic, and proposed a 
modified one.  

The final study has been dedicated to identifying 
off-set and scaling faults. To this end, two algorithms 
have been proposed.  

It is worth mentioning that the new statistic pro-
posed in this paper and the modifications on the stan-
dard PCA have been successfully tested using the data 
collected from real industrial processes.  

In conclusion, we would like to make a critical re-
mark on the application of the PCA technique to the 
fault diagnosis. It is well-known that the basic idea 
behind the PCA is to reduce the dimension of a data set, 
while retaining as much as possible the variation pre-
sent in the data set[1]. Viewing the standard PCA-based 
fault diagnosis methods, we can only identify the con-
sistence between the PCA-based fault diagnosis meth-
ods and the original idea of the PCA technique in de-
tecting and identifying the scaling faults under certain 
conditions, as shown by the discussion in Subsections 
2.2 and 3.2. In general, the facts are:  
• In the PCA-based fault diagnosis methods both pro-

jections onto the principal component subspace and 
residual subspace, pcz  and res,z  are used for di-
agnosis purposes. From the computational viewpoint, 
no reduction in the computation amount is realised.  

• In dealing with fault detection in practice, the   
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projection onto the residual subspace is often pre-
ferred, which is reasonable as demonstrated in Sub-
section 2.1 and considering that off-set faults are the 
most typical faults in practice. In fact, from the 
viewpoint of fault diagnosis, an earlier and more re-
liable fault detection can be achieved if the uncer-
tainty, which is expressed in terms of the covariance 
in a random process, is less dominant. This is ex-
actly the case for resz  in comparison with pc.z  
However, the application of the PCA technique to 
data compression, for example, is based on the use 
of the projection onto the principal component sub-
space, which contains the most information saved in 
the original data set.  
These observations motivate us to review the 

PCA-based fault diagnosis methods. Based on our 
study in this paper, we understand that the core of the 
PCA-based fault diagnosis methods consists of a nu-
merically reliable implementation of the 2X  statistic 
( F statistic when the sample number is not large 
enough) for fault detection, which is mainly achieved 
based on the SVD.  
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