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Abstract: A consistency condition is developed for computed tomography (CT) projection data acquired from 

a straight-line X-ray source trajectory. The condition states that integrals of normalized projection data along 

detector lines parallel to the X-ray path must be equal. The projection data is required to be untruncated only 

along the detector lines parallel to the X-ray path, a less restrictive requirement compared to Fourier condi-

tions that necessitate completely untruncated data. The condition is implemented numerically on simple im-

age functions, a discretization error bound is estimated, and detection of motion inconsistencies is demon-

strated. The results show that the consistency condition may be used to quantitatively compare the quality of 

projection data sets obtained from different scans of the same image object.   
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Introduction 

Computed tomography (CT) is the extension of X-ray-    
based medical imaging from the familiar two-dimen-
sional (2-D) shadowgrams to full three-dimensional 
(3-D) reconstructions of a patient’s internal structure. 
CT scanners measure the approximate line integrals of 
a patient’s linear attenuation coefficient along the 
X-ray path. Reconstructing an image from CT data 
requires solving the following inverse problem: given a 
set of measured line integrals, estimate the patient’s 
attenuation distribution function. In reality there are 
several setbacks to determining the exact image func-
tion. First, the data collected from a real CT system is 
not continuous, thus real CT reconstruction involves 
solving the discrete version of a continuous model 
equation which introduces unavoidable discretization 

errors. Second, the continuous model is an ideal model 
(idealization) that depends on perfect projection data. 
However real projection data is far from perfect; the 
data is wrought with inconsistencies due to practical 
considerations such as X-ray scatter, noise, beam hard-
ening effects, patient motion, and machine calibration.  

The aim of this article is to develop quantitative 
methods for evaluating the quality of projection data 
by deriving consistency conditions on the projection 
data so that inconsistencies may be systematically re-
duced prior to reconstruction. Conditions for 2-D par-
allel- and fan-beam CT geometries are well-known but 
those for cone-beam CT and other more practical con-
figurations are less understood. In general redundan-
cies in the projection data can be expressed by an ul-
trahyperbolic partial differential equation derived in 
1938 by the mathematician Fritz John. Working years 
before the development of tomography, John observed 
that the X-ray integral naturally depends on four inde-
pendent variables while the image function itself relies 
only on three, so that the reconstruction problem must 
contain redundancies[1]. Recent works have shown that 
John’s equation may integrated to determine cone-    
beam projections for certain point sources located near 
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the X-ray trajectory[2,3]. Exact reconstruction may then 
be more readily achieved by first obtaining a new set 
of cone-beam projection data. John’s equation has 
been also applied to rebinning algorithms for helical 
cone-beam CT and has been extended beyond CT to 
include derivation of an exact rebinning algorithm for 
3-D positron emission tomography (PET)[4]. However, 
the application of John’s equation to improve quality 
of known projection data has not been sufficiently  
explored.  

1  Consistency Conditions and John’s 
Equation 

Let 2
0f C∈  be a real image function with compact 

support. The X-ray transform of f  is defined as  
( , ) ( ( ))dg f t t= + −∫ξ η ξ η ξ

R
         (1) 

where ξ  and η  denote locations on the X-ray 
source trajectory and detector plane, respectively, and 
g  is the measured projection data. The normalized 
projections  

1( , ) ( , )g g=
| − |

ξ η ξ η
η ξ

           (2) 

are the measured projections scaled by ,| − |η ξ     
the length of a line segment beginning at ξ  on the 
source trajectory and ending at η  in the detector 
plane.  

We consider a mathematically convenient setup in 
which the X-ray trajectory lies in a plane parallel    
to and unit distance above the detector plane. As 
shown in Fig. 1 the projection data g  (as well as   
the normalized data g ) depends on four independent  

 
Fig. 1  Geometrical illustration of redundancies in the 
X-ray transform Eq. (1). The path from a source 
ξ = ξ ξ1 2( , ,1)  to a point on the detector η = η η1 2( , ,0)  is 
parametrized by four independent variables while the 
object lying between the source and detector planes can 
be a function of at most three independent variables. 

variables, 1 2 1, , ,ξ ξ η  and 2.η  The image function f  
can be at most a function of three independent spatial 
variables , ,x y  and ,z  so that Eq. (1) necessarily 
contains redundancies. The ultrahyperbolic partial dif-
ferential equation,  

2 2

1 2 2 1

( , ) 0g
η ξ η ξ

⎛ ⎞∂ ∂
− =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

ξ η         (3) 

known as John’s equation, expresses these redundan-
cies as a consistency condition, and the solution of Eq. 
(3) under appropriate boundary conditions yields a 
solution to the integral problem (1).  

Beginning with Eq. (3) we take the Fourier trans-
form of g  with respect to the detector variable η ,  

2

2 2
2πi

1 2 2 1

( , )e d 0g
η ξ η ξ

−⎛ ⎞∂ ∂
− =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∫ η κξ η η
R

∙    (4) 

where κ  is the wave vector associated with the de-
tector variable .η  Integrating Eq. (4) by parts gives  

ˆ ( , ) 0g⊥ ∇ =ξ ξ κκ ∙              (5) 

a wave equation with solution  
ˆ ˆ( , ) ( , )g g τ τ⊥= + ∀ ∈ξ κ ξ κκ R       (6) 

The known boundary data are the normalized projec-
tions ( , )g ξ η  acquired from source points ξ  on the 
X-ray source trajectory. This data may be used together 
with Eq. (6) to compute certain transformed normal-
ized projections ˆ( , )g ξ κ  from source points not on 
the X-ray source trajectory. As shown in Fig. 2 when 
the X-ray source moves along a circular trajectory 

2 1,| | =ξ  one can compute ˆ( , )g ξ κ  for all 2 1| | <ξ  
and build up the two-dimensional partial Fourier space 
with the one-dimensional transformed projections. 
Then the unmeasured normalized projections inside the 
source trajectory can be recovered by inverting the 
two-dimensional transform[2].  

 
Fig. 2  The partial Fourier transform of the normal-
ized projections with respect to the detector variable 
can be computed for all points inside the circular 
X-ray source trajectory[2]. 
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In this article our goal is not to determine unmeas-
ured projection data; rather, we aim to use Eq. (6) to 
construct a metric to evaluate the quality of known 
projection data. We consider the situation where the 
source moves along a line; without loss of generality, 
the source ( ,0)ξ=ξ  moves in the ( ,0)κ⊥ =κ  direc-
tion. Equation (6) then reads  

ˆ ˆ( , ) ( , )g g t tξ κ ξ κ= + ∀ ∈R        (7) 
where ,t κτ=  and after inverting the partial Fourier 
transform, the consistency condition becomes  

( , )d ( , )dG g g t tξ η η ξ η η
∞ ∞

−∞ −∞
= = + ∀ ∈∫ ∫ R   (8) 

We therefore conclude from Eq. (8) that for any two 
point sources on a linear X-ray trajectory, the integrals 
of the normalized projections acquired from the two 
sources over the detector must be equal. The advantage 
condition (8) has over (6) is that (8) only requires 
untruncated projection data for lines on the detector 
parallel to the linear X-ray trajectory; condition (6) 
requires completely untruncated data everywhere to 
compute the Fourier transform. These conclusions are 
illustrated in Fig. 3. Condition (8) is somewhat remi-
niscent of Grangeat’s relation between cone-beam data 
and the radial derivative of the 3-D Radon transform. 
In fact, Grangeat’s relation can also be used to provide 
complimentary information to the condition developed 
here[5]. It is also worth noting that Eq. (8) is not 
equivalent to the parallel beam condition equating the 
integrals of projection data over the detector for each 
view. The latter is an equal area condition which is not 
the case here, as the data is weighted by the X-ray path 
length.  

 
Fig. 3  For any two sources ξ  and ξ + t  on a linear 
X-ray source trajectory, the integral of the normalized 
measured projections g  over a parallel line in the 
detector plane must be equal. Equation (8) may be 
used when the projection data is truncated. Only 
untruncated data from the line on the detector parallel 
to the X-ray path is required. 

Condition (8) was derived by assuming that two 
sources lie on a linear X-ray trajectory. This condition 
must be extended to general X-ray trajectories before it 
can be applied to practical circular and helical 
cone-beam scanning configurations. To do so, we let 
the linear trajectory in the earlier derivation be the in-
tersource line joining two sources on a general trajec-
tory. The integration in condition (8) is then performed 
along any projection of the intersource line onto the 
detector. The projection line is defined by a point 0x  
and a direction vector ln̂  and is determined from the 
intersection of a plane containing the two sources and a 
virtual detector plane, a plane parallel to the inter-
source line direction vector. For a given pair of sources 

1ξ  and 2ξ  lying on a general X-ray trajectory, there 
exist an infinite number of planes containing both.   
As shown in Fig. 4, a particular source plane may   
be chosen by specifying the plane normal vector s .n̂  
Consider one of these source planes, and a virtual de-
tector plane with normal vector dn̂  and which con-
tains the point 0d . Provided they are not parallel 
( d s ,ˆ ˆk≠n n  k∈R ), the source and virtual detector 
planes intersect in a line with direction vector 

l d s .ˆ ˆ ˆ= ×n n n  The point 0x  on the intersection line is 
found by solving linear system 0 =Mx b  where  

s s

d 0 d

l 0 l

ˆ ˆ
andˆ ˆ

ˆ ˆ

i⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

ξn n
M bn d n

n d n

∙

∙

∙

         (9) 

Here M  is always invertible. After finding 0x  and 
ln̂  for a given source plane, the consistency condition 

(8) may then be applied. Note that although the data 
( , )g ξ η  is acquired on a real detector, the integration 

in Eq. (8) is performed along lines on the virtual   
detector.  

2  Numerical Implementation 

The integral condition (8) is a quantitative metric for 
evaluating the quality of CT measured projection data. 
For perfect CT projection data,  

( , )d ( , )dQ g g tξ η η ξ η η
∞ ∞

−∞ −∞
= − +∫ ∫      (10) 

is identically zero, but in practical situations the data 
contain inconsistencies and Q  is nonzero. Further-
more, Eq. (8) is a continuous condition and must    
be discretized before implementation as real data is  
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Fig. 4  The intersection of a plane containing two 
sources ξ 1  and ξ 2  and the virtual detector is a line 
with direction ˆ ˆ×n ns d , parallel to the intersource line 

-ξ ξ2 1  (solid lines). The source plane is not unique. 
Different n̂s  result in translated intersection lines 
with the same slope (dashed lines). 

discrete and fixed by the number of bins on the detec-
tor. Discretization errors are thus unavoidable and are 
introduced independent from the quality of the projec-
tion data. Condition (8) is then only useful if one can 
distinguish between data inconsistencies (noise, sys-
tematic drift, etc.) and discretization errors.  

Let δ  be a bound for the discretization errors that 
result from numerical implementation of Eq. (8). Then 
Q δ  if the projection data is perfect or contain in-
consistencies with sufficiently small total error. An 
estimate for the error bound δ  can be determined 
quantitatively with perfect projection data by comput-
ing Q  numerically for a realistic number of equally 
sized detector bins. Consider for example an object 
composed of two squares with respective constant at-
tenuations 0f  and 1f , side lengths 02a  and 12 ,a  
and perpendicular distances 0h  and 1h  from the in-
tersource line as shown in Fig. 5. The analytical value  

 
Fig. 5  Geometrical setup employed to rewrite Eq. (8) 
in an analytically tractable form. The result for a 
square with constant image function f x y = f0( , ) ,  
side a02 ,  and center distance h0  from the inter-
source line is given by Eq. (11). 

of Eq. (8) for an individual square is computed by   
rewriting  

1

0
( , )d [ ( )]d dg f t tξ η η ξ η ξ η

∞ ∞

−∞ −∞
= + − =∫ ∫ ∫  

1

0
( , )d df t td tη η

∞

−∞
=∫ ∫ 0

( , ) d d
d f x y y x

y
∞

−∞
=∫ ∫  

0 0
0

0 0

2 ln h aaf
h a
+
−

              (11) 

using transformation , ,x t z tdη= =  and for an object 
composed of n  squares we then have  

0
( , )d 2 ln

n
i i

i i
i i i

h ag a f
h a

ξ η η
∞

−∞
=

+
=

−∑∫      (12) 

For the two sources we numerically integrate the 
corresponding normalized projections over the detector 
and plot the results as a function of the number of de-
tector bins .N  One can see in Fig. 6 that as the num-
ber of bins increases, the numerical integration con-
verges to the analytical value of the integral indicated 
by the red line. In particular, when there are a realistic 
number of bins ( 672N = ), the percent difference Q  
is on the order of 310−  and thus 0 001%δ .∼ , shown 
in Fig. 7. To measure the quality of the object’s real CT 
projection data, one would compute Q  for this real 
data and compare the result to 0 001%δ .∼ . If Q δ>  
we conclude that the real projection data has measur-
able inconsistencies and we rank the quality of projec-
tion data from different scans by the amount that Q  
deviates from .δ  However when Q δ  we cannot con-
clude that the projection data is free of inconsistencies;  

 
Fig. 6  Numerical values of G defined by Eq. (8) as a func-
tion of detector bin number N for a source (top) lying on a 
circular trajectory and separated from a second source 
(bottom) by polar angle °90 . The integration is for midplane 
projections of a square embedded within a larger square 
( /a = a = h =0 1 02.5, 1.25, 20 2, −h =h f = f =1 0 0 11, 1.0, 2.0 ). 
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Fig. 7  Top: percent difference Q  as a function of 
detector bin number N  for midplane projections for 
two sources separated by polar angle °90 . Bottom: 
discretization error is on the order of 310 %−  for 
N = 672 .  

we can only conclude that the errors from the incon-
sistencies cannot be resolved due to the presence of 
larger discretization errors.  

3  Detection of Motion Inconsistencies 

One application of the consistency condition is in de-
tecting motion inconsistencies that occur in many to-
mographic systems such as image-guided radiation 
therapy (IGRT), C-arm CT, breast tomosynthesis and 
CT, and cardiac CT. Motivated by the cardiac CT ap-
plication, we studied motion detection for a circular 
cone-beam scan by comparing inconsistencies between 
views from two simulated heart phantoms, one sta-
tionary and one beating. The projection data from the 
stationary phantom was used as a baseline reference 
for which to compare the projection data from the   
dynamic phantom.  

Both phantoms were composed of an ellipsoidal 
chest with constant attenuation 1f =  and semi-prin-
cipal axes 20, 10.x y za a a= = =  In the stationary 
phantom, the heart was modelled by a sphere with 
constant attenuation 0 05f = .  and radius 5,r =  and 
the chest and heart were centered at the origin of the 
coordinate system. As shown in Fig. 8, the heart in the 
dynamic phantom varied sinusoidally in both radius 
and location with respect to the chest center. All simu-
lations were performed using an 512N =  bin detec-
tor. Figure 9 shows Q  as a function of the polar   
angle between views for both midplane and off-mid-
plane projection data. For both projection sets the  
motion inconsistencies are clearly detected and vary   

 
Fig. 8  Dynamic spherical heart phantom embedded 
in a stationary ellipsoidal chest. The heart attenuation 
was %5  larger than that of the background chest. 
Both the heart radius and center varied sinusoidally 
with frequency ω = 4  from r = 4  and −x =0 2  (left) 
to r = 6  and x =0 2  (right). 

 
Fig. 9  Q  as a function of polar angle between views 
θΔ  for the midplane (top) and an off-midplane (bottom) 

projection for both static (blue) and dynamic (red) heart 
phantoms. The angle between the two planes is 3 . The 
nonzero Q  for the static phantom is the discretization 
error associated with an N = 512  bin detector. 

sinusoidally with frequency ω . It can also be seen 
that the inconsistency measure Q  approaches a 
minimum for views at the same place in the simplied 
cardic cycle. The nonzero Q  for the consistent static 
data is a result of detector discretization since our de-
tector only had 512 bins. If we increased the number of 
bins to 1024, the measure Q  would be closer to zero, 
and only in the continuous limit N →∞  would we 
have 0Q = . The important point here is that motion 
inconsistencies in the dynamic heart are distinguish-
able despite using a detector with only 512 bins. This 
measure may prove particularly useful for irregular 
heartbeats which have the tendency to complicate the 
standard echocardiographic (ECG) gated-CT.  

Condition (8) is the only method currently available 
for testing motion inconsistencies between views. For 
a stationary subject it is possible to rebin the projection 
data to parallel beam and then apply conjugate ray 
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symmetry and moment conditions to assess inconsis-
tencies between views. However, this process becomes 
problematic for dynamic subjects. In this case the rays 
in each rebinned parallel view are measured at differ-
ent times and one could not expect the parallel consis-
tency conditions to hold. Furthermore applying conju-
gate ray and moment conditions after rebinning only 
works for the midplane projections, whereas Eq. (8) 
applies to other planes such as the one represented in 
the bottom of Fig. 8 where the angle is 3° between this 
plane and the midplane. Thus Eq. (8) allows for the 
possibility of combining the Q  from different planes.  

4  Conclusions 

This study shows that consistency conditions based on 
John’s equation may be used to quantitatively compare 
the quality of projection data sets obtained from dif-
ferent scans of the same image object. The projection 
data may be partially truncated; the only restriction is 
for the data to be untruncated on detector lines parallel 
to the X-ray path. The condition may prove useful for 
system calibration as well as in assessing quality when 
the data contains inconsistencies due to the presence of 
noise, X-ray beam polychromaticity and scatter, and 
metal. It is applicable to practical circular and helical 

cone-beam scanning configurations, and we have 
demonstrated the utility of the condition for detecting 
motion inconsistencies by implementing it on static 
and dynamic heart phantom data.  
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