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Abstract: The iterative reconstruction algorithms for X-ray CT image reconstruction suffer from their high 

computational cost. Recently Nvidia releases common unified device architecture (CUDA), allowing devel-

opers to access to the processing power of Nvidia graphical processing units (GPUs), in order to perform 

general purpose computations. The use of the GPU, as an alternative computation platform, allows de-

creasing processing times, for parallel algorithms. This paper aims to demonstrate the feasibility of such an 

implementation for the iterative image reconstruction. The ordered subsets convex (OSC) algorithm, an it-

erative reconstruction algorithm for transmission tomography, has been developed with CUDA. The per-

formances have been evaluated and compared with another implementation using a single CPU node. The 

result shows that speed-ups of two orders of magnitude, with a negligible impact on image accuracy, have 

been observed. 
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Introduction 

The Feldkamp algorithm[1] is the conventional tool to 
reconstruct images, in cone beam computed tomogra-
phy (CT). Such algorithm is easy to implement, gives 
relatively good-quality images at high radiation doses, 
and can be started as soon as the acquisition process 
begins. Due to the large amount of data to be processed, 
in transmission tomography, the Feldkamp algorithm is 
often preferred compared to iterative algorithms that 
are more time-consuming. However, the image quality 
suffers from artifacts such as streaks due to detector or 
source characteristics. 

Indeed several iterative reconstruction algorithms 
have been proposed for the X-ray CT image recon-
struction, including the family of algebraic techniques[2] 
commonly known as algebraic reconstruction tech-
nique (ART), simultaneous iterative reconstruction 

technique (SIRT), as well as statistically based meth-
ods like maximum likelihood-expectation maximiza-
tion (ML-EM)[3] and ordered subsets convex algorithm 
(OSC)[4]. Generally speaking, these algorithms are 
considered to produce images of high quality, but the 
computational cost is unfortunately also high. Due to 
recent advances in computer technology, the iterative 
reconstruction may prove to be practicable. Such itera-
tive algorithms are good candidates for an implemen-
tation on graphical processing unit, as they are highly 
parallelizable. 

Statistical algorithms allow correcting image arti-
facts and producing higher quality images, modeling 
the source emission, the photon transport, and the de-
tection physical process[5,6].  

Kole and Beekman[7] proposed an evaluation of it-
erative CT image reconstructions using the OSC algo-
rithm implemented on graphics hardware, OpenGL. 
Depending on the volume and the detector size, 
speed-ups of factor 40 to 220 can be achieved, com-
pared with the conventional CPU implementation. 

  
   

 Received: 2009-10-20; revised: 2009-12-10 

** To whom correspondence should be addressed. 
E-mail: damien.vintache@iphc.cnrs.fr; Tel: 33-3-88106350 



  Tsinghua Science and Technology, February 2010, 15(1): 11-16 

 

12 

Weinlich et al.[8] propose a comparison of high- 
speed ray casting on the graphical process unit (GPU) 
using common unified device architecture (CUDA) 
and OpenGL and have shown that the performance of 
the recent CUDA version is slightly better than an im-
plementation using OpenGL. Moreover, the OpenGL 
implementation requires much more knowledge in 
computer graphics and implementation time. 

In this article, we propose to implement the OSC 
algorithm using the Nvidia CUDA architecture. 

1 Statistical Algorithms for Trans-
mission Image Reconstruction 

1.1  Statistical algorithms for transmission  
tomography 

Lange and Fessler[3] first proposed to compute the 
maximum-likelihood estimate of transmission images 
via an EM algorithm based on Poisson statistics. For 
twenty years, several reconstruction algorithms based 
on the Poisson statistical model for transmission im-
ages and converging faster than the original ML-EM 
algorithm were introduced[4,7,9,10]. 

Iterative algorithms are based on the same scheme: 
to reconstruct a 3-dimensional (3-D) image from 
2-dimensional (2-D) projections. An estimated volume 
image is chosen, this volume is projected in the detec-
tor plan for each acquisition angle. Then estimated 
projections are compared to acquired projections, cor-
rection coefficients are computed and applied to the 
estimated volume image. 

Using ordered subsets is one way to reduce recon-
struction time in statistical algorithms. Instead of 
modifying the estimated image volume for each pro-
jection angle, the correction is applied for each subset 
of projection angles. The reconstruction time decreases 
but this does not impact image quality. 

1.2  Ordered subsets convex algorithm 

In this article, we focus on one of these OSC algo-
rithms, introduced by Beekman and Kamphuis[4], 
which iteratively tries to improve an image estimate to 
a solution[11-13]. 

As described in Ref. [14], this algorithm is based on 
the following update equation: 
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where ν denotes a given subset. fν is the estimation of 
the attenuation coefficient for the subset ν. pν is the set 
of measured projections for the subset ν. Rν denotes 
the projection operator from the volume image space 
to the detector plane space for subset ν. Rν fν  is the 
estimated projection of f at subset ν. Rν

T is the trans-
posed operation, backprojection from detector plane 
space to volume image space for subset ν.  

After iterating through all angles of a subset, the es-
timated attenuation coefficients are updated for each 
voxel of the volume. The numerator in Eq. (1) corre-
sponds to the backprojection of an error computed as 
the difference for each pixel between the exponential 
of the estimated value and the exponential of the 
measured value. The denominator in Eq. (1) is the 
backprojection of the product, for each pixel, of the 
estimated value and the exponential of this estimated 
value. 

2  Operators 

Two main functions, corresponding to the two geomet-
rical operators of the forward projection and the back-
projection, have been written to implement the OSC 
algorithm. 

2.1  Forward projection 

This operator is the geometrical transformation from 
the volume space to the detector plan space. For the 
implementation, we need to compute the contribution 
of each voxel of the volume to the value of each pixel 
of the projection plan. The following algorithm is used: 
For each pixel of the detector: 

• Compute the unit vector on the ray from the 
source point to the current pixel; 

• Choose the integration direction given by the larg-
est coordinate of the unit vector; 

• Scan all the voxels along this direction, compute 
their contribution in the projection via a bilinear 
interpolation; 

• Set the value of the pixel intensity as the sum of 
these contributions. 

2.2  Backprojection 

The backprojection is the geometrical transformation 
from the detector plane space to the volume space. We 
need to compute the contribution of each pixel of the 
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projection plan to the value of each voxel of the   
volume. The following algorithm is used: 
For each voxel of the volume: 

• Get the coordinates of its projection point; 
• Compute the intensity value of this projection 

point via bilinear interpolation; 
• Weight this value, according to the distance from 

the voxel to the projection point; 
• Add this weighted value to the current voxel at-

tenuation. 
The forward projection, backprojection, and esti-

mated volume correction are the more computationally 
expensive operations of the OSC algorithm and also 
parallelizable tasks. To get an accurate image in a 
shortest delay, we choose to perform these tasks on a 
graphical processor unit using CUDA, the hardware, 
and software architecture developed by Nvidia for 
GPU computing. 

3  Implementation 
3.1  CUDA architecture 

CUDA refers to the hardware architecture as well as 
the software platform for massively parallel high per-
formance computing. Designed by Nvidia, CUDA in-
cludes C/C++ software-development tools, function 
libraries, and an hardware abstraction mechanism that 
hides the GPU hardware from developers[15]. 

GPU is used as a data-parallel computing device 
capable of executing a very high number of automati-
cally managed threads. The compilation result of a C 
function is called “kernel”. This kernel is downloaded 
and executed on multiprocessors of the GPU, as batch 
of threads. 

With a minimal set of extensions to the C language, 
CUDA allows the developer to use the computing 
power of GPU without mapping the general purpose 
problem to the graphics application programmable in-
terface (API), e.g., OpenGL. 

Recently, several implementations of forward pro-
jection and backprojection using CUDA have been 
proposed by Refs. [16-18]. 

3.2  Implementation details 

To get the lowest computation times, we have to avoid 
memory transfers between CPU and GPU. Textures are 
of interest in our case, because they provide low   

latency to access the memory and are able to perform 
hardwired interpolations. 

Three kernels have been implemented to perform 
parallel computation on GPU, corresponding to the 
forward projection, backprojection, and estimated 
volume update operations. 

4  Tests Description 
4.1  Test-bench 

The machine used to perform the tests contained an 
Intel Core 2 Quad Q6600 2.4 GHz CPU, 1 GB RAM, 
and an Nvidia GeForce 8800 GT with 1 GB VRAM. It 
runs on a Linux operation system. 

4.2  Phantom and simulation set-up 

To test our framework, we use a 3-D version of the 
Shepp-Logan phantom. The voxel size is 0.1×0.1×0.1 
mm3. Five hundred projections have been generated 
using the CPU implementation of the forward projec-
tion operator and an angular gap between two consecu-
tive projections of 2xPI/500 radians. The size of the 
projection pixels is 0.05×0.05 mm2. The focal length 
(distance between the cone vertex and the detector 
plane) equals 100 mm and the distance between the 
cone vertex and the rotation center is 50 mm. 

Figure 1 presents the projection of the Shepp-Logan 
phantom at 0°. 

 
Fig. 1  Projection of the Sheep-Logan phantom at 0° 
on the 2562 detector grid 

As initial volume image estimate, a cube with a uni-
form attenuation factor of 0.01 is used. 

4.3  Assessment of image accuracy 

To assess the reconstructed image accuracy, four dif-
ferent figures of merit are described in Ref. [7]. 

For preliminary results, we just focus on the    
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normalized mean square error (NMSE) defined as 
2
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where µ(k) denotes the attenuation of the voxel k in the 
phantom and ν(k) denotes the reconstructed attenuation 
of the voxel k. 

5  Results 
5.1  Comparison between CPU and GPU  

implementations 

A basic CPU version of the OSC algorithm is imple-
mented to get a reference of image accuracy and proc-
essing time that we could expect. In this part the 
Sheep-Logan phantom is sampled on a 643 voxels grid  

and projected on a 2562 pixels grid. 
The basic CPU implementation only uses one thread 

on one processor core: no optimization has been    
performed. 

The same algorithms for the forward projection, the 
backprojection, and the volume correction, are imple-
mented using CUDA. 

Table 1 gives the time performance measurements 
for operators like the forward projection, the backpro-
jection, and the volume correction. The projection 
processing corresponds to the set of instructions related 
to the same projection (parameters initialization, meas-
ured projection reading, estimated volume forward 
projection, error, and product backprojection). GPU 
times are given with and without memory transfer be-
tween CPU and GPU. Speedup factors between CPU 
and GPU implementation are given in parenthesis. 

Table 1  Time performance measurements 

Operator CPU time (µs) 
GPU time with memory transfer in 

speedup (µs) 
GPU time without memory transfer in 

speedup (µs) 
Forward projection 110 730 10 910 (10) 9870 (11) 
Backprojection 10 050 1820 0(6) 522 (19) 
Projection processing 135 190 13 130 (10) 11 381 (12) 
Volume correction 4280 740 0(6) 105 (41) 

    

NMSE and total processing time depend on subset 
size and iteration number. Ten iterations have been 
performed for each test. We use two configurations in 
both GPU and CPU tests, varying the number N of 
projections in subsets. The projections in subsets are 
defined by the angle of projection, i.e. the subset Sn can 
be defined by the set θn of angles used to perform the 
projections. 

{ , , 2 , , , , ( 1) ,n n  n  n n k  n Nθ θ θ θ θ= +Δ + Δ … + Δ … + − Δ }∙ ∙ ∙

where n is varying from 0 to 500/N; Δθ is the angular 
gap between two successively acquired projections. 

Table 2 gives the normalized mean square error for 
GPU and CPU implementations with 10 subsets of 50 
projections or with 50 subsets of 10 projections.   
The volume correction is performed at the end of   
each subset processing: the configuration using 50   

subsets gives more accurate results. GPU and CPU 
implementations give the same NMSE value in both 
configurations. 

Table 2  NMSE for GPU and CPU 

NMSE 
Subset number 

CPU GPU 
10 subsets with 50 projections 4.8×10−2 4.8×10−2 
50 subsets with 10 projections 0.9×10−2 0.9×10−2 

 

As, in our case, a very small volume size is used, the 
volume correction time is lower than projection proc-
essing, the subset configuration does not affect total 
reconstruction time. 

Table 3 shows performances with 10 subsets of 50 
projections.  

Table 3  Time performance measurements for 10 subsets of 50 projections 

Operation CPU time (s) 
GPU time with memory transfer in 

speedup (s) 
GPU time without memory transfer in 

speedup (s) 
Subset processing 6.8   0.7 (10) 0.6 (11) 

Iteration processing 67.0   6.6 (10) 5.6 (12) 
Total reconstruction time 677.0   66.0 (10) 58.0 (12) 
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Figure 2 presents the central axial slice of the 
Sheep-Logan phantom (left image) and the central ax-
ial slice of the reconstructed volume using GPU with 
fifty subsets of ten projections after ten iterations (right 
image). In this case, NMSE is lower than 1×10−2. 

  
Fig. 2  Reconstruction results after ten iterations: 
Sheep-Logan phantom (left) reconstructed volume us-
ing GPU (right) 

5.2  Optimization 

The reconstruction qualities using CPU or GPU are  

very similar. We optimized the reconstruction time, 
using CUDA textures that allow us to perform hard-
ware interpolation and provide a cached memory ac-
cess, in read mode. 

In the forward projection step, the estimated volume 
is mapped to a 3-D texture. In the backprojection step, 
error and product projections are mapped to 2-D   
textures. 

Using textures gives us a speed-up factor of 7.5 
compared to the un-optimized GPU version and a 
speed-up factor of 76 compared to the un-optimized 
CPU version. 

Several configurations have been tested with differ-
ent volume and projection plan sizes. The times needed 
for each operation are given in Table 4. 

The read projection times and the backprojection 
times depend on the projection size. The correction 
time changes with the volume size. The projection time 
depends on the volume size and the projection size. 

Table 4  Time performance measurements for 10 subsets of 50 projections 

Time (s) 
Volume and projection sizes 

Read projection Projection Back projection Correction Total 

643 2562 1.1 5.5  0.3 1 9   

643 5122 4.0 17.0  1.0 1 25   

643 10242 172.0 64.0  2.0 1 240   

643 20482 654.0 242.0  8.0 1 907   

1283 10242 185.0 91.0  2.0 7 292   

1283 20482 662.0 333.0  8.0 8 1020   

3003 20482 621.0 656.0  8.0 88 1435   
 
 

6  Discussion 

CUDA implementation of the OSC algorithm gives us 
good performances, in terms of image quality and re-
construction time. The next step consists of recon-
structing small animal images and trying to reduce ar-
tifacts due to detector or source characteristics. 

7  Conclusions 

In this paper, we have shown that using a GPU as 
computing coprocessor for iterative image reconstruc-
tion in transmission tomography can easily yield 
speed-ups of two orders of magnitude, with negligible 
impact on image accuracy. Nvidia CUDA has been 
used to implement the OSC algorithm on graphics 

hardware, with a minimal learning cost and in a very 
short time. 
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