
TSINGHUA SCIENCE AND TECHNOLOGY
IS SN l l 1 0 0 7 - 0 2 1 4 l l 0 2 / 2 0 l l p p 1 1 - 1 6
Volume 15, Number 1, February 2010

Iterative Reconstruction for Transmission Tomography on
GPU Using Nvidia CUDA

Damien Vintache**, Bernard Humbert, David Brasse

Institut Pluridisciplinaire Hubert Curien, CNRS/IN2P3, 23 rue du Loess BP28 67037 Strasbourg, France

Abstract: The iterative reconstruction algorithms for X-ray CT image reconstruction suffer from their high

computational cost. Recently Nvidia releases common unified device architecture (CUDA), allowing devel-

opers to access to the processing power of Nvidia graphical processing units (GPUs), in order to perform

general purpose computations. The use of the GPU, as an alternative computation platform, allows de-

creasing processing times, for parallel algorithms. This paper aims to demonstrate the feasibility of such an

implementation for the iterative image reconstruction. The ordered subsets convex (OSC) algorithm, an it-

erative reconstruction algorithm for transmission tomography, has been developed with CUDA. The per-

formances have been evaluated and compared with another implementation using a single CPU node. The

result shows that speed-ups of two orders of magnitude, with a negligible impact on image accuracy, have

been observed.

Key words: tomography; image reconstruction; parallel processing

Introduction

The Feldkamp algorithm[1] is the conventional tool to
reconstruct images, in cone beam computed tomogra-
phy (CT). Such algorithm is easy to implement, gives
relatively good-quality images at high radiation doses,
and can be started as soon as the acquisition process
begins. Due to the large amount of data to be processed,
in transmission tomography, the Feldkamp algorithm is
often preferred compared to iterative algorithms that
are more time-consuming. However, the image quality
suffers from artifacts such as streaks due to detector or
source characteristics.

Indeed several iterative reconstruction algorithms
have been proposed for the X-ray CT image recon-
struction, including the family of algebraic techniques[2]
commonly known as algebraic reconstruction tech-
nique (ART), simultaneous iterative reconstruction

technique (SIRT), as well as statistically based meth-
ods like maximum likelihood-expectation maximiza-
tion (ML-EM)[3] and ordered subsets convex algorithm
(OSC)[4]. Generally speaking, these algorithms are
considered to produce images of high quality, but the
computational cost is unfortunately also high. Due to
recent advances in computer technology, the iterative
reconstruction may prove to be practicable. Such itera-
tive algorithms are good candidates for an implemen-
tation on graphical processing unit, as they are highly
parallelizable.

Statistical algorithms allow correcting image arti-
facts and producing higher quality images, modeling
the source emission, the photon transport, and the de-
tection physical process[5,6].

Kole and Beekman[7] proposed an evaluation of it-
erative CT image reconstructions using the OSC algo-
rithm implemented on graphics hardware, OpenGL.
Depending on the volume and the detector size,
speed-ups of factor 40 to 220 can be achieved, com-
pared with the conventional CPU implementation.

 Received: 2009-10-20; revised: 2009-12-10

** To whom correspondence should be addressed.
E-mail: damien.vintache@iphc.cnrs.fr; Tel: 33-3-88106350

 Tsinghua Science and Technology, February 2010, 15(1): 11-16

12

Weinlich et al.[8] propose a comparison of high-
speed ray casting on the graphical process unit (GPU)
using common unified device architecture (CUDA)
and OpenGL and have shown that the performance of
the recent CUDA version is slightly better than an im-
plementation using OpenGL. Moreover, the OpenGL
implementation requires much more knowledge in
computer graphics and implementation time.

In this article, we propose to implement the OSC
algorithm using the Nvidia CUDA architecture.

1 Statistical Algorithms for Trans-
mission Image Reconstruction

1.1 Statistical algorithms for transmission
tomography

Lange and Fessler[3] first proposed to compute the
maximum-likelihood estimate of transmission images
via an EM algorithm based on Poisson statistics. For
twenty years, several reconstruction algorithms based
on the Poisson statistical model for transmission im-
ages and converging faster than the original ML-EM
algorithm were introduced[4,7,9,10].

Iterative algorithms are based on the same scheme:
to reconstruct a 3-dimensional (3-D) image from
2-dimensional (2-D) projections. An estimated volume
image is chosen, this volume is projected in the detec-
tor plan for each acquisition angle. Then estimated
projections are compared to acquired projections, cor-
rection coefficients are computed and applied to the
estimated volume image.

Using ordered subsets is one way to reduce recon-
struction time in statistical algorithms. Instead of
modifying the estimated image volume for each pro-
jection angle, the correction is applied for each subset
of projection angles. The reconstruction time decreases
but this does not impact image quality.

1.2 Ordered subsets convex algorithm

In this article, we focus on one of these OSC algo-
rithms, introduced by Beekman and Kamphuis[4],
which iteratively tries to improve an image estimate to
a solution[11-13].

As described in Ref. [14], this algorithm is based on
the following update equation:

T

1 T

(e e)1
(e)

R f p

R ff f
R f

ν ν ν

ν ν

ν
ν ν

ν ν ν

− −

+ −

⎛ ⎞−
= +⎜ ⎟

⎝ ⎠

R
R ∙

 (1)

where ν denotes a given subset. fν is the estimation of
the attenuation coefficient for the subset ν. pν is the set
of measured projections for the subset ν. Rν denotes
the projection operator from the volume image space
to the detector plane space for subset ν. Rν fν is the
estimated projection of f at subset ν. Rν

T is the trans-
posed operation, backprojection from detector plane
space to volume image space for subset ν.

After iterating through all angles of a subset, the es-
timated attenuation coefficients are updated for each
voxel of the volume. The numerator in Eq. (1) corre-
sponds to the backprojection of an error computed as
the difference for each pixel between the exponential
of the estimated value and the exponential of the
measured value. The denominator in Eq. (1) is the
backprojection of the product, for each pixel, of the
estimated value and the exponential of this estimated
value.

2 Operators

Two main functions, corresponding to the two geomet-
rical operators of the forward projection and the back-
projection, have been written to implement the OSC
algorithm.

2.1 Forward projection

This operator is the geometrical transformation from
the volume space to the detector plan space. For the
implementation, we need to compute the contribution
of each voxel of the volume to the value of each pixel
of the projection plan. The following algorithm is used:
For each pixel of the detector:

• Compute the unit vector on the ray from the
source point to the current pixel;

• Choose the integration direction given by the larg-
est coordinate of the unit vector;

• Scan all the voxels along this direction, compute
their contribution in the projection via a bilinear
interpolation;

• Set the value of the pixel intensity as the sum of
these contributions.

2.2 Backprojection

The backprojection is the geometrical transformation
from the detector plane space to the volume space. We
need to compute the contribution of each pixel of the

Damien Vintache et al.：Iterative Reconstruction for Transmission Tomography … 13

projection plan to the value of each voxel of the
volume. The following algorithm is used:
For each voxel of the volume:

• Get the coordinates of its projection point;
• Compute the intensity value of this projection

point via bilinear interpolation;
• Weight this value, according to the distance from

the voxel to the projection point;
• Add this weighted value to the current voxel at-

tenuation.
The forward projection, backprojection, and esti-

mated volume correction are the more computationally
expensive operations of the OSC algorithm and also
parallelizable tasks. To get an accurate image in a
shortest delay, we choose to perform these tasks on a
graphical processor unit using CUDA, the hardware,
and software architecture developed by Nvidia for
GPU computing.

3 Implementation
3.1 CUDA architecture

CUDA refers to the hardware architecture as well as
the software platform for massively parallel high per-
formance computing. Designed by Nvidia, CUDA in-
cludes C/C++ software-development tools, function
libraries, and an hardware abstraction mechanism that
hides the GPU hardware from developers[15].

GPU is used as a data-parallel computing device
capable of executing a very high number of automati-
cally managed threads. The compilation result of a C
function is called “kernel”. This kernel is downloaded
and executed on multiprocessors of the GPU, as batch
of threads.

With a minimal set of extensions to the C language,
CUDA allows the developer to use the computing
power of GPU without mapping the general purpose
problem to the graphics application programmable in-
terface (API), e.g., OpenGL.

Recently, several implementations of forward pro-
jection and backprojection using CUDA have been
proposed by Refs. [16-18].

3.2 Implementation details

To get the lowest computation times, we have to avoid
memory transfers between CPU and GPU. Textures are
of interest in our case, because they provide low

latency to access the memory and are able to perform
hardwired interpolations.

Three kernels have been implemented to perform
parallel computation on GPU, corresponding to the
forward projection, backprojection, and estimated
volume update operations.

4 Tests Description
4.1 Test-bench

The machine used to perform the tests contained an
Intel Core 2 Quad Q6600 2.4 GHz CPU, 1 GB RAM,
and an Nvidia GeForce 8800 GT with 1 GB VRAM. It
runs on a Linux operation system.

4.2 Phantom and simulation set-up

To test our framework, we use a 3-D version of the
Shepp-Logan phantom. The voxel size is 0.1×0.1×0.1
mm3. Five hundred projections have been generated
using the CPU implementation of the forward projec-
tion operator and an angular gap between two consecu-
tive projections of 2xPI/500 radians. The size of the
projection pixels is 0.05×0.05 mm2. The focal length
(distance between the cone vertex and the detector
plane) equals 100 mm and the distance between the
cone vertex and the rotation center is 50 mm.

Figure 1 presents the projection of the Shepp-Logan
phantom at 0°.

Fig. 1 Projection of the Sheep-Logan phantom at 0°
on the 2562 detector grid

As initial volume image estimate, a cube with a uni-
form attenuation factor of 0.01 is used.

4.3 Assessment of image accuracy

To assess the reconstructed image accuracy, four dif-
ferent figures of merit are described in Ref. [7].

For preliminary results, we just focus on the

 Tsinghua Science and Technology, February 2010, 15(1): 11-16 14

normalized mean square error (NMSE) defined as
2

2

(() ())
NMSE

(())
k

k

µ k k

µ k

ν−
=

∑

∑
 (2)

where µ(k) denotes the attenuation of the voxel k in the
phantom and ν(k) denotes the reconstructed attenuation
of the voxel k.

5 Results
5.1 Comparison between CPU and GPU

implementations

A basic CPU version of the OSC algorithm is imple-
mented to get a reference of image accuracy and proc-
essing time that we could expect. In this part the
Sheep-Logan phantom is sampled on a 643 voxels grid

and projected on a 2562 pixels grid.
The basic CPU implementation only uses one thread

on one processor core: no optimization has been
performed.

The same algorithms for the forward projection, the
backprojection, and the volume correction, are imple-
mented using CUDA.

Table 1 gives the time performance measurements
for operators like the forward projection, the backpro-
jection, and the volume correction. The projection
processing corresponds to the set of instructions related
to the same projection (parameters initialization, meas-
ured projection reading, estimated volume forward
projection, error, and product backprojection). GPU
times are given with and without memory transfer be-
tween CPU and GPU. Speedup factors between CPU
and GPU implementation are given in parenthesis.

Table 1 Time performance measurements

Operator CPU time (µs)
GPU time with memory transfer in

speedup (µs)
GPU time without memory transfer in

speedup (µs)
Forward projection 110 730 10 910 (10) 9870 (11)
Backprojection 10 050 1820 0(6) 522 (19)
Projection processing 135 190 13 130 (10) 11 381 (12)
Volume correction 4280 740 0(6) 105 (41)

NMSE and total processing time depend on subset
size and iteration number. Ten iterations have been
performed for each test. We use two configurations in
both GPU and CPU tests, varying the number N of
projections in subsets. The projections in subsets are
defined by the angle of projection, i.e. the subset Sn can
be defined by the set θn of angles used to perform the
projections.

{ , , 2 , , , , (1) ,n n n n n k n Nθ θ θ θ θ= +Δ + Δ … + Δ … + − Δ }∙ ∙ ∙

where n is varying from 0 to 500/N; Δθ is the angular
gap between two successively acquired projections.

Table 2 gives the normalized mean square error for
GPU and CPU implementations with 10 subsets of 50
projections or with 50 subsets of 10 projections.
The volume correction is performed at the end of
each subset processing: the configuration using 50

subsets gives more accurate results. GPU and CPU
implementations give the same NMSE value in both
configurations.

Table 2 NMSE for GPU and CPU

NMSE
Subset number

CPU GPU
10 subsets with 50 projections 4.8×10−2 4.8×10−2
50 subsets with 10 projections 0.9×10−2 0.9×10−2

As, in our case, a very small volume size is used, the
volume correction time is lower than projection proc-
essing, the subset configuration does not affect total
reconstruction time.

Table 3 shows performances with 10 subsets of 50
projections.

Table 3 Time performance measurements for 10 subsets of 50 projections

Operation CPU time (s)
GPU time with memory transfer in

speedup (s)
GPU time without memory transfer in

speedup (s)
Subset processing 6.8 0.7 (10) 0.6 (11)

Iteration processing 67.0 6.6 (10) 5.6 (12)
Total reconstruction time 677.0 66.0 (10) 58.0 (12)

Damien Vintache et al.：Iterative Reconstruction for Transmission Tomography … 15

Figure 2 presents the central axial slice of the
Sheep-Logan phantom (left image) and the central ax-
ial slice of the reconstructed volume using GPU with
fifty subsets of ten projections after ten iterations (right
image). In this case, NMSE is lower than 1×10−2.

Fig. 2 Reconstruction results after ten iterations:
Sheep-Logan phantom (left) reconstructed volume us-
ing GPU (right)

5.2 Optimization

The reconstruction qualities using CPU or GPU are

very similar. We optimized the reconstruction time,
using CUDA textures that allow us to perform hard-
ware interpolation and provide a cached memory ac-
cess, in read mode.

In the forward projection step, the estimated volume
is mapped to a 3-D texture. In the backprojection step,
error and product projections are mapped to 2-D
textures.

Using textures gives us a speed-up factor of 7.5
compared to the un-optimized GPU version and a
speed-up factor of 76 compared to the un-optimized
CPU version.

Several configurations have been tested with differ-
ent volume and projection plan sizes. The times needed
for each operation are given in Table 4.

The read projection times and the backprojection
times depend on the projection size. The correction
time changes with the volume size. The projection time
depends on the volume size and the projection size.

Table 4 Time performance measurements for 10 subsets of 50 projections

Time (s)
Volume and projection sizes

Read projection Projection Back projection Correction Total

643 2562 1.1 5.5 0.3 1 9

643 5122 4.0 17.0 1.0 1 25

643 10242 172.0 64.0 2.0 1 240

643 20482 654.0 242.0 8.0 1 907

1283 10242 185.0 91.0 2.0 7 292

1283 20482 662.0 333.0 8.0 8 1020

3003 20482 621.0 656.0 8.0 88 1435

6 Discussion

CUDA implementation of the OSC algorithm gives us
good performances, in terms of image quality and re-
construction time. The next step consists of recon-
structing small animal images and trying to reduce ar-
tifacts due to detector or source characteristics.

7 Conclusions

In this paper, we have shown that using a GPU as
computing coprocessor for iterative image reconstruc-
tion in transmission tomography can easily yield
speed-ups of two orders of magnitude, with negligible
impact on image accuracy. Nvidia CUDA has been
used to implement the OSC algorithm on graphics

hardware, with a minimal learning cost and in a very
short time.

References

[1] Feldkamp L A, Davis L C, Kress J W. Practical cone-beam
algorithm. Journal of the Optical Society of America A,
1984, 1(6): 612-619.

[2] Kak A C, Slanet M. Principles of Computerized Tomo-
graphic Imaging. New York: IEEE Press, 1988.

[3] Lange K, Fessler J A. Globally convergent algorithms for
maximum a posteriori transmission tomography. IEEE
Transactions on Image Processing, 1995, 4(10):
1430-1438.

[4] Beekman F J, Kamphuis C. Ordered subset reconstruction
for x-ray CT. Physics in Medicine and Biology, 2001, 46:
1835-1844.

 Tsinghua Science and Technology, February 2010, 15(1): 11-16 16

[5] Elbakri I A, Fessler J A. Statistical image reconstruction
for polyenergetic x-ray computed tomography. IEEE
Transactions on Medical Imaging, 2002, 21(2): 89-99.

[6] Chueh H S, Tsai W K, Chang C C, et al. An iterative re-
construction for poly-energetic X-ray computed tomogra-
phy. Medical Imaging and Informatics, 2008, 4987: 44-50.

[7] Kole J S, Beekman F J. Evaluation of accelerated iterative
x-ray CT image reconstruction using floating point graph-
ics hardware. Physics in Medicine and Biology, 2006, 51:
875-889.

[8] Weinlich A, Keck B, Scherl H, et al. Comparison of
high-speed ray casting on GPU using CUDA and openGL.
In: Proceedings of the First International Workshop on
New Frontiers in High-Performance and Hardware-Aware
Computing. Lake Como, Italy, 2008.

[9] Ollinger J M. Maximum-likelihood reconstruction of
transmission images in emission computed tomography via
the EM algorithm. IEEE Transactions on Image Process-
ing, 1994, 13(1): 89-101.

[10] Shetye A, Shekhar R. A statistical approach to high-quality
CT reconstruction at low radiation doses for real-time
guidance and navigation. In: Proceedings of SPIE Medical
Imaging 2007. San Diego, CA, 2007, 6510: 65105U.

[11] Kole J S, Beekman F J. Evaluation of the ordred subset
convex algorithm for cone-beam CT. Physics in Medicine
and Biology, 2005, 50: 613-623.

[12] Erdogan H, Fessler J A. Ordered subsets algorithms for
transmission tomography. Physics in Medicine and Biology,

1999, 44: 2835-2851.
[13] Quan E, Lalush D S. A faster orederd-subset convex algo-

rithm for iterative reconstruction in rotation-free micro-CT
system. Physics in Medicine and Biology, 2009, 54:
1061-1072.

[14] Kachelrieβ M, Berkus T, Kalender W. Quality of statistical
reconstruction in medical CT. In: Proceedings of IEEE
Nuclear Science Symposium Conference. Portland, 2003,
4: 2748-2752.

[15] NVIDIA. NVIDIA CUDA Compute Unified Device Ar-
chitecture Programming Guide. http://developer.download.
nvidia.com/computer/cuda/2.0/docs/NVIDIA_CUDA_Pro-
gramming-Guide_2.0.pdf, 2007.

[16] Yang H, Li M, Koizumi K, et al. Accelerating backprojec-
tions via CUDA architecture. In: Proceedings of the 9th
International Meeting on Fully Three-Dimensional Image
Reconstruction in Radiology and Nuclear Medicine. Lin-
dau, Germany, 2007: 52-55.

[17] Scherl H, Keck B, Kowarschik M, et al. Fast GPU-based
CT reconstruction using the common unified device archi-
tecture (CUDA). In: Proceedings of 2007 IEEE Nuclear
Science Symposium Conference. Honolulu, Hawaii, 2007:
4464-4466.

[18] Knaup M, Steckmann S, Kachelrieβ M. GPU-based paral-
lel-beam and cone-beam forward- and backprojection us-
ing CUDA. In: Proceedings of 2008 IEEE Nuclear Science
Symposium Conference. Dresden, Germany, 2008:
5153-5157.

