
TSINGHUA SCIENCE AND TECHNOLOGY 
I S S N 1 0 0 7 - 0 2 1 4 0 7 / 2 1 p p 3 1 6 - 3 2 2 
V o l u m e 10, N u m b e r 3 , J u n e 2 0 0 5 

Approximation of NURBS Curves and Surfaces Using Adaptive 
Equidistant Parameterizations 

Aziguli Wulamu (M&'frm • - § - 4 Μ φ 2 ' * * , GOETTING Marc3, ZECKZER Dirk3 

1. School of Information Engineering, University of Science and Technology Beijing, Beijing 100083, China; 

2. School of Information Science and Engineering, University of Xinjiang, Urumq 830046, China; 

3. Department of Computer Science, University of Kaiserslautern, D-6753, Germany 

Abstract: Non -un i fo rm rat ional B-spl ine ( N U R B S ) cu rves a n d su r faces are ve ry impor tan t too ls for m o d e l -

l ing cu rves and sur faces . Severa l impor tan t deta i ls , s u c h as the cho ice of the s a m p l e po in ts , of the p a r a m e -

ter iza t ion , and of the te rm ina t ion cond i t i on , a re h o w e v e r not wel l desc r i bed . T h e s e deta i ls have a great in -

f l uence on the pe r f o rmance of the app rox ima t i on a lgo r i t hm, both in t e rms of qual i ty as wel l as t ime and 

s p a c e usage . Th is paper desc r ibed h o w to s a m p l e po in ts , exam in ing two s tanda rd paramete r i za t ions : equ i -

d is tant a n d chorda l . A n e w and local pa ramete r i za t i on , name l y an adap t i ve equ id is tan t m o d e l , w a s pro-

p o s e d , wh i ch e n h a n c e s the equ id is tan t mode l . Loca l iza t ion can a lso be used to e n h a n c e the chorda l 

pa ramete r i za t ion . For N U R B S sur faces , one mus t c h o o s e w h i c h d i rect ion wil l be app rox ima ted f irst and 

mus t pay spec ia l a t tent ion to su r faces of deg ree 1 wh ich have to be hand led as a spec ia l case . 
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Introduction 

Curves and surfaces can be represented using 

coefficients and a set of basis functions [ 1 ] . In the 

following, only curves are considered, but all 

statements apply equally to surfaces. Different 

representations use different sets of basis functions. 

These basis functions can be, for example, polynomials 

for polynomial curves, Bernstein-polynomials for 

Bezier curves, or B-spline basis functions for B-spline 

curves. As long as the general representation is of the 

form: 
η 
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where ar is the coefficient and pr(u) the basis function. 

One of these representations can be converted to 

another in a more or less straightforward manner. 

Unfortunately, these representations are not 

sufficient for all cases. Consequently, rational Bezier 

and B-spline curves were developed. These curves can 

be used to represent such curves as circles, which is 

otherwise not possible using representations without a 

rational part. Non-uniform rational B-spline (NURBS) 

curves are generalized rational B-spline curves, while 

NUBS curves are B-spline curves without rational 

parts, i.e., all weights are equal to 1. 

NURBS curves and surfaces are used in computer-

aided design (CAD) and computer-aided geometric de-

sign (CAGD) not only to describe mechanical parts but 

also to determine offset curves and surfaces [ 2 ] and 

curves and surfaces bases for various measurements^ , 

e.g., in the automotive industry. NURBS curves and 

surfaces are also used for approximating various other 
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curves, e.g., circles [ 4 ] or multiple curves given by B-

spline curves having different knot vectors [ 5 ] . Further, 

NURBS curves and surfaces are used in computer 

animation to describe such things as objects and cam-

era trajectories. 

In CAD, different CAD-systems use different repre-

sentations and thus converting data from one CAD-

system to another implies converting one curve repre-

sentation to another. In fact, there are also several in-

dependent data formats used to exchange data between 

CAD-systems, each of which uses different representa-

tions for curves. 

Converting any curve without rational part to a 

NURBS curve is quite straightforward. First, the curve 

is converted into a non-uniform B-spline (NUBS) 

curve using a basis transformation. Then, the weights 

are added such that all weights are equal to 1. 

To convert NURBS curves to polynomial curves, 

two cases must be considered. The first case is where 

all weights of the NURBS curve are equal to 1. The 

curve is in fact a NUBS curve which can directly be 

converted using well-known algori thms [ 1 ' 6 _ 9 ] . However, 

if there is at least one weight having a value different 

from 1, the curve can no longer be converted directly. 

In such case, the curve must then be approximated [ 1 ' 1 0 ] . 

While there exist several algorithms which deal with 

this approximation case, only the cores of the algo-

rithms are described. Several important details are not 

usually described and must be determined by those try-

ing to implement the approximation algorithm. The 

following will analyze these difficulties, describe how 

the required details can be chosen, and analyze what 

impact those choices have on the behaviour of 

the algorithm. 

1 Approximation of NURBS Curves 

1.1 Definition 

A detailed introduction to non-uniform rational 

B-spline curves can be found in Ref. [1]. Non-

uniformity is a property of the knot vector where two 

knots need not have the same distance; B-spline refers 

to the kind of basis functions used (see Ref. [1]). 

A B-spline curve of degree ρ is defined by n+l 

control points Ph z-0, ... , η with knot vector U of 

length m = η +p + 2: 

£/=(0, . . . , 0 , 

In fact, we have p+l zeros and p+l ones at the 

beginning and the end of the knot vector, respectively. 

This leads to end point interpolation, i.e., P0 is the first 

point and Pn is the last of the resulting curve. The 

knots determine which control points influence which 

part of the curves and thus determine the boundaries of 

different segments. The control points Pr form the 

control polygon which has a bounding box property. 

Let Nhp be the respective B-spline basis function. 

Then, the NUBS curve C{u) is given by 
η 

C(u)=J]PrN,p(u), 
1=0 

while the NURBS curve Cw(u) is given by 

Cw(u)=^ , 

i=0 

where wl is the weight. 

1.2 Approximation 

There are two obvious possibilities for the choice of 

the basis functions used to approximate a given 

NURBS curve. The first one is to use a curve 

representation where the basis is the same as that in the 

final representation, e.g., polynomials. Another one is 

to use NUBS to approximate NURBS. The second one 

has several advantages: 1) the NUBS representation 

gives a lot of control over the shape of the resulting 

curve; 2) there exist already some algorithms which 

can be used to perform this approximation; 3) we do 

not need to worry about segments or the degree of the 

polynomials; 4) we can transform a NUBS curve 

directly into a number of Bezier curves of a given 

degree and these Bezier curves can then be converted 

to the polynomial curves. Thus, the second approach is 

chosen here. 

Further, we have the choice between two types of 

approximation algorithms, namely local and global 

ones. Local ones give better results for local segments 

of curves that are difficult to handle. Furthermore, 

the amount of data used for the approximations 

is smaller. However, special handling is needed to join 

the local curves with given constraints. Global meth-

ods require the handling of larger sets of data, but they 
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can treat the curve as a whole. Moreover, as will be 

shown later, carefully chosen parameterizations can be 

used to recover a local influence as well. 

Thus, the least-squares method was chosen as the 

approximation algorithm to be implemented. A 

detailed description of this algorithm can be found in 

Ref. [1]. 

1.3 Determination of the sample points and the 
parameterization 

The least-squares method is a discrete algorithm based 

on a number of sample points from the original curve 

and tries to minimize the difference between these 

sample points and the respective points on the ap-

proximating curve. 

First, a certain number of sample points together 

with an initial parameterization are chosen. As the 

original curve is in parameter form, in fact, a set of pa-

rameters thi=l,...,m are chosen first. Evaluating the 

curve at these parameters yields the control points Ql = 

C(tj) on the curve C(ti). The least-squares algorithm 

then works by determining the approximating curve 

C {tl) such that the following sum is minimized: 

m 

where Ö = C ^ ) . 

Therefore, first of all, the initial parameters have to 

be chosen. In order to solve the minimization problem, 

a matrix is used. A sufficient number of parameters is 

needed to obtain a nonsingular matrix. If too many pa-

rameters are used, the algorithm becomes too computa-

tionally expensive. Thus, the minimum number of pa-

rameters required to obtain good results should be used 

to keep the computational costs low. 

The number of initial parameters was empirically 

determined as I2n. Further, these parameters were 

chosen to be equidistant. 

The second problem is the type of parameterization. 

After having computed the sample points from the ini-

tial set of parameters, there are two possibilities for the 

parameterization. One is the equidistant parameteriza-

tion, in which case we can use the initial parameteriza-

tion. The other is the chordal parameterization, and is 

preferred in many CAD applications. In this case, we 

have to compute the chordal parameterization. 

Next, one approximation step is performed using the 

least-squares algorithm. If the approximation is not 

good enough after this step, new control points are in-

serted. The addition of new control points can lead to a 

singular matrix; in this case, new sample points and 

parameters also have to be added. New parameters are 

only required for those parts of the curve where new 

control points are inserted: if we simply increase the 

number of the initial parameters and spread them equi-

distantly over the curve, parts of the curve which are 

not influenced by the new control points will also get 

more parameters, although they are not needed there. 

This is also the case if afterwards we compute the 

chordal parameterization of the sample points associ-

ated with this new initial parameterization. 

Also, we can achieve a local control if we do not 

spread the new initial parameters over the whole curve. 

When introducing new control points, we only add 

new parameters there, if necessary and then only to 

avoid a singular matrix. Thus, the parts posing no 

problems with respect to the approximation will be un-

altered, whereas the parts where new control points 

were added will be given new parameters if necessary. 

We call this type of parameter insertion adaptive equi-

distant parameterization. 

One problem for the adaptive equidistant 

parameterization is the choice of the number of 

parameters to be inserted. While the number of 

iterations might be smaller if more parameters are 

inserted, the total number of parameters increases. 

Thus, even with a smaller number of iterations, the 

costs in terms of computation time and space needed 

might increase. However, more parameters inserted do 

not mean less iterations. Experiments have shown that 

the optimal number of parameters to be inserted to get 

a minimal number of iterations varies from curve to 

curve. Values of around 8 seem, however, to yield 

good results both with respect to the number of 

iterations and the number of parameters (sample 

points). 

Unfortunately, adding parameters locally is not as 

easily possible for chordal parameterizations. In fact, 

for these, we always have two parameterizations: the 

initial, equidistant one to determine the sample points, 

and the resulting chordal parameterization of these 

sample points. For each parameter interval indicating 

where to insert new sample points, we have to map this 

parameter interval back to the initial parameterization 
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used before the approximation step to determine the 

new sample points and the new initial parameterization 

for the next step in this case. Therefore, the algorithm 

needed for local chordal parameterization is much 

more complicated. In fact, chordal parameterization al-

ready yields the best results. The second best method is 

adaptive equidistant (local), while the equidistant 

parameterization is the worst. 

As an example, a curve is given in Fig. 1, together 

with its control polygon. In Fig. 2, the same curve is 

shown together with the sample points required based 

on an equidistant initial parameterization. 

Curve 

/ ^ ^ ^ >A Control —ι— 

4 . 0 - / \ \ / \ 

^ 3 . 0 - / \ / \ 
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I I I I I I I 
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X 

Fig. 1 An example curve together with its control polygon 
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X 

Fig. 2 Sample points based on an equidistant 

initial parameterization 

Figure 3 gives the maximal error after each iteration 

for the curve presented in Fig. 1 using the three param-

eterizations presented in this section. A logarithmic 

scale is used to display better the differences between 

the parameterizations. The termination condition was 

chosen to be: maximal error <1 X 10~4. Using the chor-

dal parameterization, the algorithm terminates after 7 

iterations; using the adaptive equidistant one, it 

terminates after 8 iterations; using the equidistant 

parameterization, it only terminates after 12 iterations. 

For the adaptive equidistant parameterization, 8 new 

parameters and control points were added where 

needed to prevent the matrix from becoming singular. 

The maximal error after each iteration is the smallest 

using the chordal parameterization, except for at the 

starting point. The adaptive equidistant parameteriza-

tion is the second best, while using the equidistant 

parameterization is worst. This observation holds for 

all examples tested. In Fig. 4, results are shown using a 

normal scale for the maximal error. 
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Fig. 3 Maximal error for different parameterizations 

(logarithmic scale) 
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Fig. 4 Maximal error for different parameterizations 

(normal scale) 

1.4 Determination of the error 

Another important choice is to determine the error be-

tween the original and the approximated curve. The 

simplest approach is to choose an oversampling 

parameterization, for example, choose three times as 

many parameters equidistantly, determine the respec-

tive points for both curves, and then compute the sum 

of the squared distances (section 0). In fact, any 
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number of parameters can be chosen, but at least as 

many are required as for the least-squares algorithm. 

Another method uses a projection [ 1 ] . This method is 

more difficult to implement and requires more re-

sources, but yields better results. However, because of 

the complexity of its implementation, the projection 

method is not considered further here. The crucial 

choice in both cases is the number of points on the 

curve required to determine the error between the 

original and the approximating curves. 

1.5 Termination 

Perhaps the most difficult thing to determine is when 

to terminate the approximation process. A simple ap-

proach would be to choose some predefined limit for 

the error: if the error determined (section 0) is less than 

this chosen limit, the approximation will be terminated 

and the approximating curve will be considered to be 

good enough. Unfortunately, the choice of limit is not 

obvious, due to the fact that we do not know before-

hand which scale is used. If we choose a limit ofd\ = 

0.001, for example, this might be appropriate for 

curves in a [-5, 5] χ [-5, 5] χ [-5, 5] space. If, how-

ever, the scale is larger, e.g., [-100,100] x [-100,100] 

x [-100,100], this limit may no longer be appropriate 

and may be far too small. Conversely, if a smaller 

scale is used, e.g., [ - l x l O - 9 , l x l O " 9 ] χ [ - l x l O - 9 , 

l x l O " 9 ] x [ - l x l O - 9 , l x l O " 9 ] , the limit may be much 

too large. Thus, we have to consider the limit as a pa-

rameter in the approximation algorithm. 

Other possible termination conditions include: 

• When the number of iterations is greater than N\. 

• When the number of control points is greater 

than Nc. 

• When < 1, where di is the maximal error 
di+l 

in step z. 

Unfortunately, none of these termination conditions 

can be considered as realistic alternatives. The deter-

mination of Ni and Nc is even more difficult than the 

determination of d\. Moreover, the third condition, 

which depends on the maximal error ratio between two 

consecutive steps, might be fulfilled even if it would 

be better to continue (Fig. 3). For chordal parameteri-

zation, the maximal error decreases monotonously. 

However, this is not the case for both equidistant 

parameterizations. In the example previously given for 

the adaptive equidistant parameterization, the maximal 

error after iteration 7 is greater than after iteration 6. 

Nevertheless, after iteration 8, it falls below the limit 

chosen. For the equidistant parameterization, the 

maximal error after iteration 8 is worse for all itera-

tions but the last one. In fact, only after the last itera-

tion is the maximal error below the limit chosen. Thus, 

no better termination condition than using d\ as a limit 

was found in the literature. 

2 Comparison and Examples 

In this section, we present the example results for the 

evaluation of the three parameterizations presented in 

Section 1.3: equidistant, adaptive equidistant, and 

chordal. 

The first curve chosen is depicted in Fig. 1. The knot 

vector is (0, 0, 0, 0, 0.3125, 0.625, 1, 1, 1, 1); the six 

control points have the weights (1 , 1.82, 0.1, 1.16, 1.9, 

0.16). The effects of the weights can be seen in Fig. 2: 

if an equidistant parameterization is used, then the re-

spective points on the curve are very dense if the 

weight is high and they are very sparse if the weight is 

low. In particular, between the 4th and the 5th control 

points there are many samples, whereas between the 

5th and the 6th there are only two. 

Table 1 summarizes the results of an approximation 

of this curve using the equidistant and the adaptive 

equidistant parameterizations. The termination condi-

tion was chosen to be: maximal error < l x l O - 4 . The 

number of control points after each iteration is given 

for each parameterization. 

Table 1 shows that the adaptive equidistant parame-

terization needs fewer iterations, namely 8 compared 

to the 12 iterations needed for the equidistant parame-

terization. Furthermore, the number of control points is 

much lower: 69 compared to 97. A total of only 120 

parameters are generated for the adaptive equidistant 

parameterization compared to 972 parameters for the 

equidistant parameterization. Therefore, the computa-

tion of the approximating curve is much faster using 

the adaptive equidistant parameterization compared to 

the equidistant parameterization. During the first 5 

iterations, no additional parameters were needed. 
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Table 1 Approximation results using the equidistant and 

the adaptive equidistant parameterizations 

Iteration Equidistant Adaptive equidistant 
1 9 9 
2 15 15 
3 27 27 
4 50 50 
5 56 56 
6 69 65 
7 76 67 
8 79 69 
9 81 
10 90 
11 94 
12 97 

Table 2 shows results for the adaptive equidistant 

parameterization when adding different numbers of pa-

rameters after each iteration. The entries give the num-

ber of control points. 

Table 2 Adaptive equidistant parameterization with 
different number of parameters 

Number of parameters added 
Iteration 

4 8 16 128 

1 9 9 9 9 

2 15 15 15 15 

3 27 27 27 27 

4 50 50 50 50 

5 56 56 56 56 

6 65 66 67 69 

7 67 70 70 72 

8 69 72 76 

During the first 5 iterations, no new parameters are 

needed and thus the number of control points is the 

same for all four cases. After the 5th iteration, new pa-

rameters were added and the number of control points 

differs after the 6th iteration. Adding 8 new parameters 

results in the fewest number of iterations, but 70 con-

trol points are needed. Adding 4 new parameters re-

sults in 8 iterations, but only 69 control points. Those 

two are the best cases, as adding 16 or 128 new pa-

rameters both yield 8 iterations and 72 or 76 control 

points. The numbers of added parameters in total are 

120 (4), 160 (8), 264 (16), and 1736 (128). Thus, add-

ing only 4 parameters if an empty knot span is encoun-

tered, is the best one. 

Finally, Table 3 shows the results for approximating 

a circle using all three parameterizations. The error 

bound was again chosen to be 10~4. The entries give 

the number of control points. 
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Table 3 Approximating a circle using all three 
parameterizations 

Iteration Equidistant Adaptive equidistant Chordal 

1 16 16 16 

2 30 30 30 

3 58 58 36 

4 63 63 38 

5 70 

Table 3 shows that the chordal parameterization is 

best, creating an approximating NUBS curve with only 

38 control points, while the adaptive equidistant 

parameterization generates an approximating NUBS 

curve with more than 6 5 % more control points; the ap-

proximating NUBS curve generated by the equidistant 

parameterization has 7 more control points. The chor-

dal parameterization generates 108 new parameters 

compared to 116 generated by the adaptive equidistant 

one and 756 by the equidistant one. Thus, the chordal 

parameterization produces the best results compared to 

both the adaptive equidistant parameterization and the 

equidistant parameterization in this case. 

3 Approximation of NURBS Surfaces 

3.1 Definition 

A NURBS surface is given with respect to a two-

dimensional parameter space (u, v). Let ρ be the degree 

in the ^-direction and q be the degree in the v-direction. 

For each dimension there is a separate knot vector. We 

can then consider a NURBS surface as a product of 

two NURBS curves. In fact, there are («+l ) x (m+l) 

control points Php and the basis functions are the 

products of the basis functions of the respective curves. 

We obtain isoparametric curves in the v-direction for 

fixed u, and in the ^-direction for fixed v. 

The NUBS surface S(u, v) is then given by 
Η M 

S(u,v)=^Pu.Nip(u).Njq(v), 
i=0 7 = 0 

while the NURBS surface Sw(u, v) is given by 
Η M 

Σ Σ ^ · ^ > ) · ^ > ) 

z=0 7 = 0 

where wl is the weight. 

Approximation of NURBS Curves and Surfaces 
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3.2 Computation of the approximation 

NURBS surfaces can be approximated using NUBS 

surfaces. In fact, the algorithm used for approximating 

curves can be used as parts of the surface approxima-

tion algorithm. The difficulty is to determine whether 

to approximate first in the u- or in the v-direction: the 

results will differ from each other in general. It is pos-

sible in fact to find examples where each of the two 

possibilities yields better results. A simple example 

will be a cylinder. In one direction, the curves are sim-

ply lines; and in the other direction, they are circles. If 

u and ν are exchanged, the results will also change. 

3.3 Boundaries 

Another problem with NURBS surfaces is the bounda-

ries. With NURBS curves, the starting and end points 

of the curve can be interpolated. Thus, a continuous 

transition between two adjacent curves is always pos-

sible for the approximated curves, provided this was 

already the case for the NURBS curves. However, for 

faces only the four corner points of the surface have 

this property. The boundary curves themselves cannot 

be interpolated. In the example of a cylinder, two of 

the boundary curves are circles. These circles can only 

be approximated within a certain error boundary, and 

therefore, topological information is needed to prevent 

holes between two adjacent surfaces. 

4 NURBS Curves and Surfaces with 
Degree 1 

NURBS curves of degree 1 cannot be handled by the 

approximation algorithm. In fact, such curves consist 

of adjacent line segments. An initial parameterization 

of the curve will sample points anywhere on the curve 

and the end points of the respective line segments 

might not be included in this set of parameters, though 

they could be added. Thus, running an approximation 

algorithm does not make sense in this case. A better 

way is to compute the end points of the line segments 

and compute the NUBS curve directly from the result-

ing points. The same holds for NURBS surfaces with 

degree 1. 

5 Summary 

This paper presented some possible choices for ap-

proximating NURBS curves and surfaces together with 

an analysis for: 1) the approximation algorithm to be 

used; 2) the sample points to start with; 3) how to add 

new sample points; 4) which parameterization to 

choose; 5) the determination of the error; and 6) the 

termination condition. For NURBS surfaces, one has to 

choose which direction will be approximated first, and 

special attention has to be paid to boundaries. Finally, 

NURBS curves and surfaces with degree 1 have to be 

handled as a special case. The choices presented in this 

paper represent only a small part of the possible 

choices but are considered sufficient to demonstrate 

the problems involved. 
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