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Abs trac t : The Mel-frequency cepstral coefficient (MFCC) is the most widely used feature in speech and 

speaker recognition. However, MFCC is very sensitive to noise interference, which tends to drastically de-

grade the performance of recognition systems because of the mismatches between training and testing. In 

this paper, the logarithmic transformation in the standard MFCC analysis is replaced by a combined function 

to improve the noisy sensitivity. The proposed feature extraction process is also combined with speech en-

hancement methods, such as spectral subtraction and median-filter to further suppress the noise. Experi-

ments show that the proposed robust MFCC-based feature significantly reduces the recognition error rate 

over a wide signal-to-noise ratio range. 
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Introduction 

Speaker recognition systems based on the Mel-
frequency cepstral coefficient (MFCC) feature can 
provide a high recognition rate for clean speech, but its 
performance degrades dramatically in noisy environ-
ments. Noise interference introduces mismatches be-
tween the pre-trained acoustic models and the input 
features. The techniques for robust speaker recognition 
can be classified into three categories based on the 
working spaces. The first category pre-processes the 
noisy speech signal to obtain a better estimation of 
clean speech, such as the traditional spectral subtrac-
tion (SS) [ 1 ] and minimum mean-square error estima-
tion^ methods. The second category focuses on robust 
feature representation of the speech, e.g., RASTA 
processing [ 3 ], cepstral mean subtraction [4 ], and adaptive 
component weighting [ 5 ]. In the third category, acoustic 
model parameters are adapted to match the noisy 
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speech, such as the parallel model combination^ 
method. 

This paper presents a method combining robust rep-
resentations in the feature space and speech enhance-
ment in signal space. The main objective in the feature 
space is to extract the acoustic features that give an ac-
curate description of the stochastic characteristics of 
the input speech. The features are expected to be ro-
bust to the noise and can be modeled by the hidden 
Markov model or Gaussion mixture model distribution. 
The standard MFCC feature analysis is very successful 
except when the noise is present. Because the log func-
tion in the MFCC generation is very sensitive to noise, 
a combined piecewise function was developed which 
combines a power law function and the log function 
(referred as PL) to replace the log function to improve 
the MFCC robustness. In signal space, the classical SS 
method effectively suppresses noise to improve the 
signal-to-noise (SNR) of the input speech. Most modu-
lation energy of speech is at around 4 Hz, so a median-
filter (MF) for filter-bank energies on time trajectory 
can be used to suppress spectral components that 
change more quickly than the speech. SS and MF 
methods can be combined together with newly 
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proposed transformation function to further increase 

the system robustness. 

1 Compression Function 

The standard MFCC analysis consists of five steps [ 7 ]: 

1) Pre-process the input speech and detect the end-
points; 

2) Perform an fast Fourier transform on the input 
speech signal; 

3) Calculate the Mel-frequency bank energies by in-
tegrating the spectral energy coefficients within trian-
gular frequency bins arranged uniformly on the Mel-
frequency scale; 

4) Perform the discrete cosine transform on the loga-
rithm of the filter-bank energies; 

5) Append first order differentials. 
In step 3, the log transformation nonlinearly com-

presses the filter-bank energies in accord with a human 
auditory response. However, the log transformation is 
sensitive to noise because its slope is very steep when 
the energy is low, so serious mismatches are intro-
duced in low-energy log filter-banks. The effects of the 
large variation induced by the log transformation can 
be seen clearly in Fig. 1. 

Fig . 1 M i s m a t c h e s i n d u c e d b y log t r a n s f o r m a t i o n 

Assume that a noise signal Ax is added to χ at x\ or 
x2. The mismatch after the log transformation with the 
noise Ax is Ay χ for xi and Ay2 for x2. Clearly, noise in-
fluence on the log filter-banks at low energies is much 
larger than high-energy banks due to the log function 
effect. The log filter-bank energies of clean speech and 
noisy speech in white noise environment are shown in 
Fig. 2. The mismatches between the clean speech and 
the noisy speech are very large for low-energy banks 
on the ordinate. 

Since the low energy banks tend to be affected by 
the noise, a method was developed to increase the 
compression ratio for these banks. The lower segment 
of the log function was replaced by a power function as: 

\λχ~λ IC1 

x<C; 
[lgx + A- lgC, x>C. 

Clean speech 

Noisy speech 

Log filter-bank energy index 

Fig . 2 L o g filter-bank energ ies of c lean a n d no i sy 

speech 

Although the function is piecewise, it is still con-
tinuous and smooth. This function (/P1(*)) combines 
a power function and the log function, where C is the 
noise masking level and λ is the compression coeffi-
cient. However, some detail information is lost by the 
scheme. C and λ must be chosen carefully to make a 
trade-off between the compression increase and the in-
formation loss. C should be chosen according to the 
noise level with the best value about equal to the Mel-
frequency bank energies of the background noise, λ 

should be selected to reduce the effects of noise while 
reserving as much speech information as possible to 
provide high clean recognition accuracy. The filter-
bank energies using the combined transformation with 
C=5xl0 6 and λ=2 are shown in Fig. 3. The mismatch 
is much less in Fig. 3 for low-energy banks. 

Clean speech 

Noisy speech 

Filter-bank energy index 

Fig . 3 F i l t er -bank energ ies us ing the c o m b i n e d 

t r a n s f o r m a t i o n 
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When C and λ equal different values, the functional 

forms are illustrated in Fig. 4 for several values of C 

and λ. When λ - » +oo , the function approximates the 

log function, so the log function is a special case of 

this combined function. Several different functions 

with different parameters were studied to choose the 

optimal function. 

12r 

* ( x l 0 4 ) 

Fig. 4 Transformation functions corresponding to 

different parameters C and λ 

2 Combining Proposed Function 
with SS and MF 

Classic spectral subtraction is a simple and effective 

speech enhancement method. The median-filter for fil-

ter-bank energies on the time trajectory suppresses the 

spectral components that change more quickly than the 

speech. Therefore, a combination of these methods 

with the proposed transformation func t ion / P L (x) (re-

ferred to here as SS_MF_PL) was used to extract the 

robust feature. The standard MFCC analysis described 

in Section 1 was modified to include these methods in 

the feature extraction process. In step 1, the SS method 

was added with the noise estimation based on the first 

20 frames and the results of the endpoint detection. Af-

ter step 3, a median-filter was used to smooth the filter 

bank energies and to restrain the high-frequency com-

ponents, with the filter bank energies then normalized 

by the integral area of the corresponding triangular 

frequency bin. The normalization seeks to normalize 

the noise in every filter bank to facilitate selection of 

one noise mask C for all banks. Step 4 used the trans-

formation function f x ( x ) to replace the log function. 

3 Experimental Results 

The system was evaluated with a 26-dimensional 

MFCC_0_D and a 32-mixture Gaussion mixture model. 

A set of 30 speakers was selected from the dr6' region 

of the TIMIT database, including 16 females and 14 

males. Each speaker provided 10 sentences lasting 

about 3 s each with 8 sentences used to build the Gaus-

sian mixture models and the other 2 sentences used for 

the test. Silent sentences were removed by endpoint 

detection based on the frame energies. Gaussian white 

noise from the Noisex-92 database was added to test 

sentences artificially at different SNR levels of 0 dB, 5 

dB, 10 dB, 20 dB, and clean speech. 

Two tests were carried out with the first test evaluat-

ing the performances of the baseline system and en-

hanced systems using the SS and SS_MF (combination 

of SS and MF) methods, the second evaluating the 

combination method described in Section 2 with vari-

ous values of C and λ. 

3.1 Test 1 

Results from the first set of experiments for baseline, 

SS and SS_MF methods are illustrated in Fig. 5. The 

identification accuracy for clean speech was 99.7% for 

the baseline system and 99.5% for the SS enhanced 

system. With the SS_MF system, the identification ac-

curacy was reduced to 91.2% for clean speech. For 

noisy speech with SNR from 0 to 20 dB, the results in 

Fig. 5 show that the baseline system performance de-

graded rapidly with the SS method providing improved 

system performance in noisy environments and the 

SS_MF method providing better performance in the 

low SNR ranges. 
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Fig. 5 Performance of baseline, SS, and S S M F methods 

3.2 Test 2 

The second set of tests evaluated the combined 

SS PL MF method with various values of C and λ. C 

S S M F 
SS 
Baseline 
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was chosen to be ÉΟ 5, ÉΟ 6, 10 7 , and 10 8 with A equal to 

2 or 3. The results are shown in Figs. 6 and 7. 

The results in Figs. 6 and 7 show that the present 

improved system very effectively improves the system 

performance in very noisy environments compared 

with the SS and SS_MF methods. However, the system 

performance is dependent on the values of C and A. In-

creasing the value of C increases the identification ac-

curacy for low SNR while degrades the identification 

accuracy for high SNR because of the competing in-

fluences of the lost of speech information and the noise 

reduction. In general, the combined system with A =2 

performs better than with A =3. 

0 5 10 15 20 25 Clean 

SNR (dB) 

Fig. 6 Performance of S S P L MF system for λ =2 

0 5 10 15 20 25 Clean 
SNR (dB) 

Fig. 7 Performance of SS_PL_MF system for λ =3 

As described above, C should be chosen according 

to the noise level with the best value about equal to the 

Mel-frequency bank energies of the background noise. 

In the current tests, the noise filter-bank energies were 

close to 10 8 for SNR equal to 0 dB, 10 7 for 10 dB, and 

10 6 for 20 dB. For A =2, C=10 8 achieved the best per-

formance for 0 dB and 5 dB, while C=10 7 was better 

for 10 dB and C=10 6 was better for 20 dB, which vali-

dates that C should be equal to the Mel-frequency bank 

energies of the background noise. 

Considering the overall performance, A =2, espe-

cially for C=10 7 , performed the best because it kept 

high recognition accuracy with high SNR while im-

proving the system performance at low SNR. The sys-

tem performance with C=10 7 and A=2 was close to the 

performance of the optimal system using different C 

for different noise levels. Thus, in practice the system 

can use either optimal values of C and A for different 

background noise levels or just use C=10 7 and A =2 

directly without choosing C and A to simplify the ap-

plication. 

4 Conclusions 

An improved MFCC-based feature identification 

method was developed, which combines a piecewise 

transformation function with SS and MF. Test results 

using the TIMIT database show that the identification 

accuracy for the baseline system degrades rapidly in 

noisy environments and that the improved MFCC-

based feature method more effectively improves sys-

tem performance than the SS method. The system pa-

rameters can be optimized based on the background 

noise level. A =2 gave the best overall performance as 

a trade-off between preserving speech information and 

suppressing the noise. 
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