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Abstract: Three-dimensional bending analysis is presented for a simply supported orthotropic functionally 

graded rectangular plate in this paper. Assuming that material properties have arbitrary variations along the 

plate-thickness direction, Peano-Baker series solution is obtained for the elastic fields of the functionally 

graded plate subjected to mechanical loads on its upper and lower surfaces by means of state space 

method. The correctness of the obtained series solution is validated through numerical examples. The in-

fluence of the structural response of the plate is also studied when material properties have different de-

pendence on the thickness-coordinate. The results show that the solution is valid for the material properties 

of arbitrary dependence on the thickness-coordinate of the plate. 
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Introduction 

Functionally graded materials (FGMs) are heterogene-
ous composite materials with gradient compositional 
variations of the constituents (e.g., metallic and ceramic) 
from one surface of material to the other which results 
in continuously varying material properties. This con-
tinuously varying composition eliminates interfacial 
discontinuity, thus, the stress distributions are smooth. 

In the past few years, a number of methods have been 
proposed to analyze the elastic behaviour of FGMs. 
Praveen and Reddy[1] analyzed the nonlinear static and 
dynamic response of functionally graded ceramic-   
metal plates using the first-order deformation theory. 
Della and Venini[2] developed a hierarchic family of 
finite elements according to the Reissner-Mindlin    

theory. Khoma[3] developed a method of constructing a 
general solution of the equilibrium equations for in-
homogeneous transversely isotropic plates with elastic 
moduli that depend linearly on the transverse coordi-
nate. Sankar[4] obtained an elasticity solution for a 
simply supported functionally graded plate under cy-
lindrical bending. Zhong and Shang[5] presented a 
three-dimensional analysis for a rectangular plate made 
of orthotropic functionally graded piezoelectric mate-
rial when the plate is simply supported and grounded 
along its four edges and mechanical and electric prop-
erties of the material are assumed to have the same 
exponent-law dependence on the thickness coordinate. 
Vel and Batra[6,7] obtained a closed form solutions for 
three-dimensional deformations of a simply supported 
functionally graded rectangular plate subjected to me-
chanical and thermal loads, and for free and forced 
vibrations of simply functionally graded rectangular 
plates. Bian et al.[8] developed a plate theory using the 
concept of shape function of the transverse coordinate 
to determine the stress distribution in an orthotropic 
functionally graded plate subjected to cylindrical 
bending. Martin et al.[9] solved the problem of an   
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unbounded, three-dimensional, elastic exponentially 
graded solid. Pan[10] presented an exact solution for 
three-dimensional, anisotropic, linearly elastic, and 
functionally graded rectangular composite laminates 
under simply supported edge conditions. The solution 
was expressed in terms of the pseudo-Stroh formalism, 
and the composite laminates can be made of multilay-
ered FGMs with their properties varying exponentially 
in the thickness direction. Woo and Meguid[11] devel-
oped series solutions for large deflections of function-
ally graded plate under transverse loading and a tem-
perature field using von Karman theory. Cheng and 
Batra[12] used an asymptotic expansion method to ana-
lyse three-dimensional thermoelastic deformations of 
functionally graded elliptic plates, rigidly clamped at 
the edges. Almajid et al.[13] applied a modified classi-
cal lamination theory to predict the stress and out-of-    
displacement of a newly proposed piezoelectric func-
tionally graded bimorph. 

In the above studies, most scholars used specific 
distribution of material properties. However, for arbi-
trary graded distribution, effective methods are very 
few. The objective of this work is to present a Peano-    
Baker series solution of a simply supported function-
ally graded rectangular plate of arbitrary graded dis-
tribution of material properties based on three-dimen-
sional elasticity theory. 

1  Formulation of the Problem  

Consider an FGM rectangular plate of uniform thick-
ness h, as shown in Fig. 1. Introduce a Cartesian coor-
dinate system { ix } ( 1,2,3i  ) such that the bottom 
and top surfaces of the undeformed plate lie in the 
plane 3 0x  and 3 .x h  The functionally graded 
plate is assumed to have length a and width b in 

1x - 2x  plane. In this paper, the Einsteinian summation 
convention over repeated indices of tensor components 
is used, with Latin indices ranging from 1 to 3 while 
Greek indices over 1 and 2. 

 
Fig. 1  Sketch of rectangular plate 

In the absence of body forces, the field equations of 

elastic equilibrium is 
, 0ij j!                   (1) 

where ij!  is the stress tensor, a comma denotes par-
tial differentiation with respect to the coordinate .ix  
The strain ij"  is related to the elastic displacements 
iu  through the following formula: 

, ,
1 ( )
2ij i j j iu u"  #              (2) 

The constitutive relationship of FGMs is 
ij ijkl klc! "                (3) 

where ijklc  is the elastic stiffness tensor, with the in-
terchanging symmetries ijkl jikl ijlk klijc c c c   . Unlike 
in a homogeneous material, ijklc is now functions of 
the coordinates ix ( 1,2,3i  ). In most real cases, the 
material property parameter is varied continuously in 
one direction, which is assumed to be in x3 direction 
for the present analysis.  

Next, an orthotropic functionally graded material 
was considered, for which the nonzero components of 
the elastic stiffness tensor are 1111c , 2222c , 3333c , 1122c , 

1133c , 2233c , 2323c , 1313c , and 1212c . Using state space 
method, the following relationships in matrix form can 
be obtained from Eqs. (1)-(3): 

3
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T[ ] &  " , T

11 22 12[ ]! ! ! $     (7) 
The operator matrices A, B, and %  contain the 

in-plane differential operators 1&  and 2& , and de-
pend on 3x only through the material moduli: 
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where  
2

1 1111 1133 3333/k c c c + , 2 2233 1133 3333 1122 1212/k c c c c c + + ,

3 1133 3333/k c c , 4 2233 3333/k c c , 2
5 2222 2233 3333/k c c c + ,
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and 6 2222 1133 2233 3333/k c c c c ! .  
For a rectangular plate that is simply supported on 

all its four lateral edges, the boundary conditions are 
given by 

11 2 3 1

22 1 3 2

0        at    0  and   ,
0        at    0  and   

u u x a
u u x b

 
 

! ! ! !

! ! ! !
    (11) 

Boundary conditions at the top and bottom surfaces 
are: 

at 3 0x !  (bottom surface), 
0 0 0

33 1 2 23 1 2 13 1 2( , ), ( , ), ( , )Z x x Y x x X x x   ! ! !  (12) 
at 3x h!  (top surface), 

33 1 2 13 1 2 23 1 2( , ), ( , ), ( , )h h hZ x x X x x Y x x   ! ! !   (13) 

2  Solutions 

The state variables that satisfy the boundary condition 
Eq. (11) can be assumed as 
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Substituting Eqs. (14) and (15) into Eq. (4), the fol-
lowing equation is obtained, 

3
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The solution to Eq.(16) can be written as[14] 
3 3( ) ( ) (0)mn mnx x!M T M           (19) 

where T(x3) is called a transfer matrix, which can be 
expanded with respect to mnK  into a Peano-Baker 
series as follows[15]: 

3 3 1

3 1 1 2 20 0 0
( ) ( )d ( )d ( )d

x x
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From Eq. (19), we can get 
( ) ( ) (0)mn mnh h!! " !            (21) 

If the mechanical loads on the top and bottom sur-
faces of the plate (see boundary conditions Eqs. (12) 
and (13)) can be further expanded as 
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Then, substituting Eqs. (14) and (15) into boundary 
conditions Eqs. (12) and (13), with Eqs. (22) and (23) 
being considered, the following equations are obtained. 

0(0)mn mnX X' , 0(0)mn mnY Y' , 0(0)mn mnZ Z'    (26) 
( ) h

mn mnX h X' , ( ) h
mn mnY h Y' , ( ) h

mn mnZ h Z'    (27) 
Substituting Eqs. (26) and (27) into Eq. (21), these 

six algebraic equations are solved for six unknowns, 
(0),mnU (0),mnV (0),mnW ( ),mnU h ( ),mnV h and ( ).mnW h  

Hence, all the components of (0)mnM  are obtained. 

3  Numerical Examples 

Example 1 
In this section, FGM square plate is numerically    
studied ( 1,a b' ' /h a '0.1), which is simply supported 
on its four lateral edges, and is made based on the 
above series solutions. The material chosen for the  

study has the material properties at 3 0x ' , as     
follows[16]: 

0 0
1111 3333 7.38 GPa,c c' ' 0

2222 173.41GPa,c ' 0
1122 2.31GPa,c '

0
1133 1.87 GPa,c ' 0

2233 2.31GPa,c ' 0 0
2323 1212 3.45 GPa,c c' '  

and 0
1313 1.38 GPa.c '  

Numerical results are presented for cases of sinu-
soidal loading for which only one term solution is 
needed ( 1m n' ' ). The cases considered here are  

1 2 0 1 2( , ) sin( / )sin( / ),hZ x x Z x a x b'  0 1 Pa,Z ' (  
0 0

1 2 1 2 1 2( , ) ( , ) ( , )hZ x x X x x X x x' ' '  
0

1 2 1 2( , ) ( , ) 0.hY x x Y x x' '  
In order to validate the correctness of the Peano-    

Baker series solutions, assuming that the material elas-
tic modulus ijklc  is an exponential distribution, i.e., 

0
3exp( / )ijkl ijklc c x h)'           (28) 

where )  is the material property gradient index, h is 
the plate thickness, 0

ijklc  is the value at the plane 
3 0.x '  When 1) ' , in Table 1, the result is listed at 

a location ( 1 / 0.25x a ' , 2 / 0.25x b ' , 3 / 0.25x h ' ), at 
the same time, listed in Table 1 also the exact solution 
according to Ref. [10]. 

Table 1  Comparison between the present solutions and the exact solutions�

 u1/(10(11m) u2/(10(11m) u3/(10(10m) *11/Pa *22/(10Pa) *33/(10(1Pa) *12/Pa *13/(10(1Pa) *23/Pa+
Exact solutions (4.4124 (2.9648 (4.5135 1.4105 2.0928 (1.0066 (1.0252 (2.3428 (2.1684

N=5 (2.3743 (1.8596 (2.4233 7.7622 1.3100 (5.8788 (5.8838 (1.2936 (1.2836
N=7 (3.9893 (2.7344 (4.0818 1.2787 1.9297 (9.1941 (9.3438 (2.1253 (1.9851
N=9 (4.3792 (2.9468 (4.4797 1.4001 2.0800 (9.9978 (1.0181 (2.3258 (2.1541

N=11 (4.4108 (2.9639 (4.5119 1.4100 2.0922 (1.0063 (1.0248 (2.3420 (2.1678
N=13 (4.4123 (2.9647 (4.5134 1.4104 2.0927 (1.0066 (1.0252 (2.3428 (2.1684

 
Table 1 shows that the present solution is rapid 

convergence to the exact solution with increasing the 
truncated terms N of the Peano-Baker series in Eq. (20). 
When the truncated terms N of the series is 9, the rela-
tive error between the present solutions and the exact 
solutions is less than 1%. In the next numerical exam-
ple, the truncated terms N of the series is taken as 9. 
Example 2 
Consider an FGM square plate ( 1 m,a b' ' /h a' 0.1),  
which is simply supported on its four lateral edges. 
The material properties at 3 0x '  and applied loading 
are the same as those in Example 1. Assuming that 
material properties have three power distributions as 
Eq. (29). 

, -0 3
3( ) / 1 1

n

ijkl ijkl
xc x c
h

) . /' 0 ( 1 2
3 4

       (29) 

where n is taken as 1/2, 1, and 2. 
The variation of displacements and stresses, as a 

function of the plate thickness coordinate 3x  for dif-
ferent material properties distribution, at a chosen   
location ( 1 / 4x a' , 2 / 4x b' ), are shown in Fig. 2.   
In Fig. 2, the width-to-thickness ratio is / 0.1a h '  
and the material property gradient index is 3.) ' The 
displacement 2 ,u  stresses 22 ,*  and 23*  are not   
depicted since their distributions along the plate thick-
ness direction are similar to those of 1u , 11,*  and 13* , 
respectively, due to the symmetry of the problem. Fig-
ure 2 shows that the transverse displacement 3u  
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demonstrates essentially uniform distribution along the 
plate thickness direction, while in-plane displacements 

1u  and 2u  show the linear variations across the 

thickness of the plate, which means that the classical 
Kichhoff assumptions for homogeneous thin plate are 
still valid for functionally graded thin plate. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 2  Variation of physical quantities with coordinate x3 at a location (x1=a/4 and x2=b/4) for different material distri-
butions: (a) in-plane displacement u1, (b) transverse displacement u3, (c) in-plane normal stress  11, (d) out-of-plane nor-
mal stress  33, (e) in-plane shear stress  12, and (f) out-of-plane shear stress  13 . 

4  Conclusions 

A three-dimensional solution based on Peano-Baker 
series is obtained for an FGM rectangular plate simply 
supported along its four edges by means of the state 
space method. The solution is valid for the material 
properties of arbitrary dependence on the thick-
ness-coordinate of the plate.  
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