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Abstract: The network design problem (NDP) is one of the most difficult and challenging problems in trans-

portation. Traditional NDP models are often posed as a deterministic bilevel program assuming that all rele-

vant inputs are known with certainty. This paper presents three stochastic models for designing transporta-

tion networks with demand uncertainty. These three stochastic NDP models were formulated as the ex-

pected value model, chance-constrained model, and dependent-chance model in a bilevel programming 

framework using different criteria to hedge against demand uncertainty. Solution procedures based on the 

traffic assignment algorithm, genetic algorithm, and Monte-Carlo simulations were developed to solve these 

stochastic NDP models. The nonlinear and nonconvex nature of the bilevel program was handled by the 

genetic algorithm and traffic assignment algorithm, whereas the stochastic nature was addressed through 

simulations. Numerical experiments were conducted to evaluate the applicability of the stochastic NDP 

models and the solution procedure. Results from the three experiments show that the solution procedures 

are quite robust to different parameter settings. 
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Introduction 

The network design problem (NDP) is one of optimiz-
ing the improvement of a transportation network with 
respect to a system-wide objective while considering 
the route choice behavior of network users[1]. It has 
been extensively studied by engineers, mathematicians, 
operations research analysts, and planners. It is con-
sidered as one of the most difficult and challenging 
problems in the transportation field (see Boyce[2], 
Magnanti and Wong[3], Friesz[4], and Yang and Bell[5] 

for a review of the modeling, algorithm development, 
and applications on this topic). The NDPs can be cate-
gorized into three types based on the design variables. 

(1) Discrete NDPs: the addition of new links[6,7], se-
lection of one-way and two-way streets[8], and design 
of links and facility locations[9]; 

(2) Continuous NDPs: capacity enhancement[10-14], 
road pricing[15-17], signal timing[18-23], and ramp     
metering[24]; 

(3) Mixed NDPs: combined land-use-network de-
sign problems[25], simultaneous location-network de-
sign problems[26], and cordon-based network conges-
tion pricing in discrete and continuum networks[27,28]. 

Most of the NDP models in the literature have been 
posed as deterministic problems where all the relevant 
inputs are assumed to be known with certainty. For 
example, travel demands are often assumed to be 
known exactly in the future, but there is no guarantee 
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that the travel demand forecast would precisely mate-
rialize due to uncertainties.  Because travel demand 
forecasts are affected by many factors such as eco-
nomic growth, land-use patterns, and socioeconomic 
characteristics, all these factors cannot be measured 
accurately, but can only be roughly estimated. Evalua-
tion of network performance without accounting de-
mand uncertainty can potentially lead to biased in-
vestment decisions[29]. To account for demand uncer-
tainty, a few recent studies have extended the NDP to 
consider the uncertainty regarding future travel de-
mands by defining a number of possible future scenar-
ios. These include optimizing the expected perform-
ance of the system[30,31], optimizing the mean-variance 
performance of the system[32], maximizing the prob-
ability of achieving a predefined threshold of the sys-
tem performance[33-35], and optimizing the α-quantile 
of the system performance[36]. This paper gives three 
stochastic models for the network design problem with 
demand uncertainty. These three stochastic NDP mod-
els are an expected value model, chance-constrained 
model, and dependent-chance model in a bilevel pro-
gramming framework using different criteria to address 
the demand uncertainty. These stochastic models can 
be considered as a subset of uncertain programming[37] 
which has been developed for a variety of applications, 
including topological optimization[38], capacitated lo-
cation-allocation[39], redundancy optimization[40], pro-
ject scheduling[41], and path finding[42,43]. This paper 
focuses on capacity enhancement by adopting different 
criteria to develop three stochastic models and the de-
velopment of a simulation-based genetic algorithm for 
solving the stochastic NDP models. 

1  Notations and Model Formulations 

This section describes the stochastic network design 
problem for optimal capacity enhancement with de-
mand uncertainty. 

1.1  Notations 

A : set of links in the network 
A : set of capacity enhancement links in the network 
W : set of origin-destination (O-D) pairs 

wR : set of paths between O-D pair, w W∈  
w

rf : flow on path wr R∈  between O-D pair, 
w W∈  

f: vector of path flows T( , , )w
rf=f … …  in the 

lower-level subproblem 
av : link flow on link, a A∈  

v: vector of link flows T( , , )av=v … …  in the 
lower-level subproblem 

au : capacity enhancement of link, a A∈  
max
au : upper bound of capacity enhancement on link, 

a A∈  
u: vector of link capacity enhancements 

T( , , )au=u … …  in the upper-level subproblem 
( , )a a at v u : travel time on link a A∈ , which is a 

function of link flow av  and link capacity enhance-
ment au  

w
rc : travel time on path wr R∈  between O-D pair, 

w W∈  
wπ : minimum travel time between O-D pair, 

w W∈  
wQ : random demand between O-D pair, w W∈  

wq : realization of wQ  
Q:  vector of random variables wQ  
q: vector of realization wq  

( )a ag u : capacity expanding cost for link, a A∈  
w
arδ : 1 if path r of O-D pair w uses link a, and 0   

otherwise 
B: a fixed improvement budget 
α: confidence level in the chance-constrained model 
TTTB: total travel time budget in the 

chance-constrained model 
TTTR: total travel time requirement in the depend-

ent chance model 

1.2  Stochastic bilevel mathematical program 

The NDP is generally formulated as a bi-level optimi-
zation problem to reflect the different aims of the two 
decision makers who are the network users and the 
planner. The network users are free to choose their 
routes such that their individual travel costs are mini-
mized, whereas the planner aims to make the best use 
of limited resources to optimize network performance 
(e.g., reducing congestion, minimizing environmental 
impact, and maximizing throughputs), taking into ac-
count users’ route choice behavior. The general stochas-
tic bilevel mathematical program can be formulated  
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as follows: 
(UP)  Minimize ( , ( , ))F

u
u v u ε         (1) 

subject to  ( , ( , )) 0G u v u ε          (2) 
where v(u, ε) is implicitly defined by 

(LP)  Minimize ( , ( , ))f
v

u v u ε         (3) 

subject to  ( , ( , )) 0g u v u ε          (4) 
where F is the objective function and u is the design 
vector of the upper-level subprogram (UP), G is the 
constraint set of UP, f is the objective function and 
v(u, ε) is the decision variable vector of the lower-level 
subprogram (LP) as a function of the design vector u 
as well as a random vector ε, and g is the LP constraint 
set. The upper-level subprogram describes the leader or 
planner problem, and the lower-level subprogram 
represents the follower or user’s behavioral problem.  

This paper considers the continuous NDP, where 
link capacity enhancements are treated as continuous 
design variables u. In the capacity enhancement NDP, 
the upper-level subprogram determines the optimal 
capacity enhancements u in a transportation network 
by optimizing a system-wide objective with demand 
uncertainty Q, while the lower-level subprogram de-
termines the route choice behavior of network users for 
a given capacity enhancement with demand uncer-
tainty v(u, Q). The system-wide objective function is to 
minimize the total travel time (i.e., reducing conges-
tion) defined as 

( , ( , )) ( , ( , )) ( , )a a a a
a A

F t u v v
∈

= ∑u v u Q u Q u Q     (5) 

where ( , ( , ))a a at u v u Q  and ( , )av u Q  are the travel 
time and the flow on link a for the design vector u and 
the random demand vector Q. Hence, the performance 
measure is a random variable. 

Let T( , , )wQ=Q … …  be the random demand vector 
defined on the probability space ( , ,Pr )Ω Θ  where 
Ω  is a set of all outcomes of a random experiment (a 
non-empty set), Θ  is called a σ-algebra, and Pr is 
referred to as a probability measure. For each Ω∈ω , 

( )=q Q ω  is a realization of the random demand vec-
tor Q. In the three stochastic models to be described 
later, the lower-level subprogram is modeled as a 
standard user equilibrium traffic assignment prob-
lem[44]. For a given design vector determined by the 
upper-level subprogram u and for each realization of 
the random demand vector q, the lower-level subpro-
gram solves the following traffic assignment problem: 

0
min ( , )dav

a av a A
t x u x

∈
∑∫             (6) 

subject to ,
w

w
r w

r R

f q w W
∈

= ∀ ∈∑        (7) 

,
w

w w
a r ar

w W r R
v f a Aδ

∈ ∈

= ∀ ∈∑ ∑           (8) 

0, ,w
r wf r R w W∀ ∈ ∈             (9) 

where Eq. (6) is the objective function for the 
user-equilibrium (UE) traffic assignment problem (i.e., 
the sum of the integrals of the link cost function), Eq. 
(7) is the flow conservation constraint, Eq. (8) repre-
sents the link-path flow relationship, and Eq. (9) en-
sures the non-negativity of the path flows. The optimal 
solution * T( , , )w

rf=f … …  to the problem satisfies 
the following user equilibrium conditions: 

0 if 0,
( ) ( ) ,

0 if 0,

w
w r
r w ww

r

f
c r R w W

f
π∗ ∗ = >⎧

− ∀ ∈ ∈⎨
=⎩

f f
,

,
 

   (10) 
where ( ) ( )w w

r a a ar
a

c t v δ∗ = ∑f  is the travel time on path 

wr R∈  between the O-D pair, ,w W∈  and ( )wπ ∗ =f  
min { ( ), }w

r wc r R∗ ∀ ∈f  is the minimum travel time 
between the O-D pair, .w W∈  When the travel time 
on path r is larger than or equal to the minimum travel 
time, the flow on that path is zero or the path is not 
used. When the travel time on path r is equal to the 
minimum, its flow is greater than zero or the path is 
used. For simplicity, this widely used UE model is 
used as the lower-level subprogram to model users’ 
route choice behavior in this paper. The stochastic 
bi-level mathematical program framework can also 
accommodate other route choice models (e.g., stochas-
tic user equilibrium (SUE), extended logit-based SUE 
model, generalized user equilibrium models, reliabil-
ity-based user equilibrium models, etc.). 

1.3  Expected value model 

The expected value model (EVM) is perhaps the most 
commonly used method for handling demand uncer-
tainty in the network design problem[30,31]. The main 
idea is to optimize the expected value of a linear (or 
additive) system-wide objective function subject to the 
budget constraint and the limit constraints on the deci-
sion variables. 

min E[ ( , ( , ))]
u

F u v u Q           (11) 
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subject to ( )a a
a A

g u B
∈
∑         (12) 

max0 ,a au u a A∀ ∈          (13) 
In the expected value network design model, the 

objective function in Eq. (11) is to minimize the ex-
pected total travel time in the networks, Eq. (12) en-
sures the links selected for capacity enhancements do 
not exceed the available budget, and Eq. (13) sets the 
lower and upper bounds of the possible link capacity 
enhancements.  

The expected value model only considers the aver-
age total travel time while its variability is totally ig-
nored. Under this model, the planner (network de-
signer) would consider two capacity enhancement 
plans that have equal expected total travel time but 
different total travel time variabilities to be equal. The 
capacity enhancement plan identified in this model can 
be risky since it may select a plan with higher total 
travel time variability. Such a plan is suboptimal for 
the planner who is concerned with the total travel time 
reliability. 

1.4  Chance constrained model 

The chance constrained model, originally developed by 
Charnes and Cooper[45], models stochastic decision 
systems with the assumption that the constraints will 
hold at least α times, where α is referred to as the con-
fidence level provided as an appropriate safety margin 
by the decision-maker. Its focus is on the system’s 
ability to meet the chance constraints (risk measures) 
with a certain reliability under uncertainty. Charnes 
and Cooper[45] suggested three different types of objec-
tive functions: (1) a function that optimizes the ex-
pected value of the objective function (the E model), 
(2) a function that minimizes the generalized mean 
square of the objective function (the V model), and (3) 
a function that maximizes the probability of satisfying 
an aspiration level of the objective function (the P 
model). The original chance constrained model re-
quires the users to specify both the threshold and the 
confidence level. However, it is sometimes difficult to 
determine the appropriate threshold in advance. Hence, 
a variant of the chance constrained model proposed by 
Liu[37] was used to determine the minimum threshold 
required to satisfy the chance constraint at a confi-
dence level α. The modified chance-constrained model 
is formulated as 

min TTTB
u

                (14) 

subject to  Pr( ( , ( , )) TTTB)F αu v u Q    (15) 
Eqs. (12) and (13), 

where TTTB is the total travel time budget required to 
satisfy the chance constraint at least α times. The ob-
jective function in Eq. (14) minimizes TTTB subject to 
the chance constraint in Eq. (15) that guarantees the 
probability that the total travel time less than TTTB is 
greater than or equal to the predefined confidence level 
α, subject to the budgetary constraint in Eq. (12) and 
the limit constraints in Eq. (13) on the set of link ca-
pacity enhancements. TTTB is a variable in the modi-
fied chance constrained model. The planner only needs 
to specify the confidence level α. A more risk averse 
planner can specify a higher α to control risk. 

1.5  Dependent chance model 

The dependent chance model, first introduced by 
Liu[46], maximizes the chance function of some events 
in an uncertain environment. In the network design 
problem, the planner specifies a goal to be attained (i.e., 
the congestion level or level-of-service) and the un-
derlying philosophy of the dependent chance model is 
to select the optimal design with maximum chance to 
meet the specified objective. 

max Pr( ( , ( , )) TTTR)
u

F u v u Q      (16) 

subject to  Eqs. (12) and (13), 
where TTTR is the total travel time requirement given 
by the planner. The objective function in Eq. (16) de-
termines a vector of capacity enhancement links (i.e., 
design variables) that will maximize the total travel 
time reliability which is defined as the probability that 
the total travel time is less than TTTR (a predeter-
mined threshold). The solution to the dependent chance 
model can be regarded as the most reliable NDP for a 
given total travel time requirement. The constraints are 
the same as the expected value model (i.e., budgetary 
constraint and limit constraints on the capacity en-
hancement links). 

2  Simulation-Based Genetic  
Algorithm 

Stochastic bi-level programs are generally difficult to 
solve by traditional calculus-based optimization meth-
ods. These network design models with demand   
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uncertainty were solved using a solution procedure 
consisting of a traffic assignment algorithm, genetic 
algorithm, and Monte-Carlo simulation to handle the 
different complexities involved in solving the stochas-
tic network design models in this paper. The demand 
uncertainty is addressed by the stochastic simulation. 
The nonlinear and nonconvex nature of the bilevel 
program is handled by the genetic algorithm. Bilevel 
mathematical programs are generally difficult to solve 
because evaluation of the upper-level objective func-
tion requires solving the lower-level subprogram. Here 
a standard traffic assignment algorithm (known as the 
Frank-Wolfe algorithm) is used to solve the lower-level 
subprogram[44].  

2.1  Computing uncertain functions 

Stochastic (or Monte Carlo) simulations are an impor-
tant tool for performing sampling experiments on sto-
chastic system models[37]. The simulations are based on 
sampling random variables from probability distribu-
tions to compute the uncertain functions. The uncertain 
functions used in the stochastic NDP models assume 
that a set of designs (i.e., capacity enhancements) have 
been determined by the genetic algorithm procedure. 
The three uncertain functions to be computed are the 
expected value function, chance constrained function, 
and probability function. 
2.1.1  Expected value function 
The objective function for the expected value model 
minimizes: 

1 : ( , ) [ ( , ( , ))]U E F→u v u v u Q       (17) 
This is computed using the following stochastic 

simulation procedure: 
Step 1 Set 1( , ) 0U =u v . 
Step 2 Generate ω  from Ω  according to the 

probability measure Pr. 
Step 3 For each ( )Q ω , solve the lower-level sub-

problem in Eqs. (6) to (9) and calculate 
( , ( , ( )))F u v u Q ω . 
Step 4 1 1( , ) ( , ) ( , ( , ( )))U U F← +u v u v u v u Q ω . 
Step 5 Repeat the second to fourth steps for N  

times, where N  is sufficiently large. 
Step 6 Return 1( , ) /U Nu v . 

2.1.2  Chance constrained function 
The objective function for the chance constrained 
model minimizes 

2 : ( , ) {TTTB | Pr( ( , ( , )) TTTB) }U F α→u v u v u Q  
    (18) 

The steps in the stochastic simulation procedure are 
as follows: 

Step 1 Generate 1 2, , , Nω ω ω…  from Ω  accord-
ing to the probability measure Pr, where N  is suffi-
ciently large. 

Step 2 For each ( )kQ ω , solve the lower-level sub-
problem in Eqs. (6) to (9) and denote the total travel 
time by ( , ( , ( )))kF u v u Q ω  for 1, 2, ,k N= " . 

Step 3 Set N ′  as the integer part of Nα . 
Step 4 Return the -thN ′  least element in 

1 2{ ( , ( , ( ))), ( , ( , ( ))), , ( , ( , ( )))}.NF F Fu v u Q ω u v u Q ω u v u Q ω"  
2.1.3  Probability function 
The objective function for the dependent chance model 
maximizes 

3 : ( , ) {Pr( ( , ( , )) TTTR)}U F→u v u v u Q    (19) 
The steps in the stochastic simulation procedure are 

as follows: 
Step 1 Set N ′  = 0. 
Step 2 Generate ω  from Ω  according to the 

probability measure Pr. 
Step 3 For each ( )Q ω , solve the lower-level sub-

problem in Eqs. (6) to (9) and calculate 
( , ( , ( )))F u v u Q ω . 
Step 4 If ( , ( , ( ))) TTTR,F u v u Q ω then 1.N N′ ′← +  
Step 5 Repeat the second to fourth steps for N  

times, where N  is sufficiently large. 
Step 6 Return /N N′ . 

2.2  Computing network equilibrium solutions 

For each realization of O-D demand ( )=q Q ω  gener-
ated by the Monte Carlo simulation, the Frank-Wolfe 
algorithm (also known as the convex combinations 
method) is used to solve the lower-level subprogram in 
Eqs. (6) to (9). The algorithmic steps are summarized 
below.  

Step 0 Initialization. Set iteration counter n = 1. Find 
an initial feasible flow pattern (1){ }av . 

Step 1 Link travel time update. Calculate ( )n
at =  

( )( ),n
a at v a A∀ ∈ . 

Step 2 Direction finding. Perform all-or-nothing 
(AON) assignment based on ( )n

at  to obtain a set of 
auxiliary flows ( )n

ay . 
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Step 3 Move size. Find ( )nα  which minimizes the 
objective function along its descent direction. 

( ) ( ) ( ) ( )

( )

( )

0
min ( , )d

n n n n
a a a

n

v y v

a a
a A

t x u x
α

α

+ −

∈
∑∫ . 

Step 4 Flow update. Compute ( 1) ( ) ( ) ( )(n n n n
a a av v yα+ = + −  

( ) )n
av , a A∀ ∈ . 
Step 5 Convergence test. If a specified criterion 

(e.g., changes in link flows or maximum iterations) is 
met, then terminate; otherwise, set n = n + 1 and go to 
Step 1. 

2.3  Computing optimal designs 

For the network design problem, the lower-level sub-
program can be analyzed as a set of nonlinear con-
straints. This often makes the bi-level mathematical 
programs non-convex and difficult to solve by standard 
optimization methods[5]. Many heuristic algorithms 
have been developed to solve the bi-level network de-
sign problem. A summary survey is provided by Yang 
and Bell[5]. To tackle the non-convexity issue in net-
work design problems, Friesz et al.[47] and Meng and 
Yang[12] used simulated annealing (SA), while Chen 
and Yang[30], Yin[48], and Chen et al.[49] employed a 
genetic algorithm (GA). Both meta-heuristics are sto-
chastic search methods that have the potential of ob-
taining the global optimal solution by providing a 
means to escape local optima (i.e., accept moves that 
worsen the objective value). The main mechanism 
driving the optimization is a simple search operator 
inspired by different natural based phenomena (i.e., 
physical annealing of solids for the SA and natural se-
lection based on the principle of evolution-survival of 
the fittest for the GA). The GA is used in this study to 
determine the optimal capacity enhancements because 
it can work with continuous and discrete parameters, 
differentiable and non-differentiable functions, and 
uni-modal and multi-modal functions as well as con-
vex and non-convex feasible regions[50]. In addition, 
GA has been widely applied in many fields because of 
its globalization, parallelism, and robustness[51]. Typi-
cal GA implementations involve coding the design 
variables in the upper-level subprogram as chromo-
somes, evaluating the fitness of the chromosomes, and 
performing the basic GA operators (i.e., reproduction, 
crossover, and mutation) to evolve the chromosomes to 
obtain better solutions. This section provides a brief 

description of the GA implementation. Readers can 
refer to Goldberg[50] and Gen and Cheng[51] for more 
details. 
2.3.1  Chromosome representation 
In general, the two chromosome representations are 
binary and real. Since the decision variables in the up-
per-level subprogram are real, the real representation 
was used to represent the design variables, au , with a 
length equal to the number of capacity enhancement 
links in the network, | |A . The value of each gene 
represents the link capacity expansion, which is limited 
by the upper and lower limits of the constraint in 
Eq. (12). 
2.3.2  Reproduction operator 
Reproduction is a selection process that selects chro-
mosomes from a population pool based on their fitness 
for mating. The chromosome fitness implies the num-
ber of times each chromosome will be in the mating 
pool. The most commonly used selection schemes are 
the roulette wheel and tournament selection. This study 
uses the roulette wheel selection scheme. After evalu-
ating the fitness of all chromosomes in the population 
pool, they are ranked in ascending order based on these 
fitness values. Chromosomes with the highest chance 
will occupy a larger portion on the roulette wheel. The 
selection process is based on a random number be-
tween 0 and 1, and the solution associated with the 
intercepted portion of the wheel will enter the mating 
pool. 
2.3.3  Crossover operator 
Crossover is a means of exchanging genetic material 
between two parent chromosomes such that two new 
offspring chromosomes, containing genetic material 
from both parent chromosomes, are generated. Cross-
over occurs with a constant probability, which implic-
itly indicates the expected number of chromosomes in 
the mating pool undergoing crossover. There are many 
crossover schemes in the literature. Since the chromo-
some in the network design problem is coded using a 
real-code representation, arithmetic crossover is used. 
This method is similar to the linear combination of two 
solution vectors with a random fraction. 
2.3.4  Mutation operator 
Mutation alters the value of genetic units for the   
purpose of introducing new genetic structures to the 
new offspring. All new offspring are subject to the 
mutation operator with a predefined mutation rate. 
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Mutation allows the GA to explore new regions of the 
solution space and helps prevent convergence to a 
sub-optimal solution.  

2.4  Simulation-based genetic algorithm procedure 

This section summarizes the major steps of the simula-
tion-based genetic algorithm procedure for solving   
the stochastic network design models with demand 
uncertainty.  

Step 0 Define input parameters: population size, 
crossover and mutation rates, maximum number of 
generations, and maximum number of simulations. 

Step 1 Generate an initial population pool and ini-
tialize the generation index. 

Step 2 Evaluate the fitness of all chromosomes in 
the population pool using the traffic assignment and 
stochastic simulation procedures. 

Step 3 Check whether the predefined maximum 
generation number is reached. If yes, go to Step 6;   
otherwise, go to Step 4. 

Step 4 Rank the chromosomes based on their fitness  

values and use the tournament selection scheme to se-
lect parent chromosomes for reproduction. 

Step 5 Update the chromosomes using the crossover 
and mutation operators, increment the generation index, 
and go to Step 2. 

Step 6 Report the best chromosome as the optimal 
design. 

3  Numerical Experiments 

Three numerical experiments were used to evaluate the 
three stochastic NDP models introduced in Section 1. 
The network used for the three numerical experiments 
is the Sioux Falls network depicted in Fig. 1. The net-
work consists of 24 nodes, 76 links, and 528 O-D pairs 
with positive demand. The link characteristics, capac-
ity expansion cost functions, and O-D demands are 
available in Suwansirikul et al.[13] The random O-D 
demands were generated according to the triangular 
distribution (a,b,c), where a and b are the lower and 
upper limits and c is the mode. The mode c was set 
equal to the demand specified in Suwansirikul et al.[13],  

 
Fig. 1  Sioux Falls network 
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while a and b are set equal to ±50% of c for all O-D 
pairs. Ten links were selected for capacity enhance-
ment, i.e., links 16, 17, 19, 20, 25, 26, 29, 39, 48, and 
74. The budget was set at 5500 according to Meng and 
Yang[12].  

This study used the following parameters. 
• Population size (Pop-size) is 16-32 chromosomes. 
• The maximum number of generations is 400. 
• The maximum number of samples is 1000. 
• The probability of crossover is 0.3-0.5. 
• The probability of mutation is 0.1-0.3. 
• The lower and upper bounds for capacity en-

hancement are [0 veh/h, original link capacity veh/h]. 

3.1  Expected value model 

Experiment 1 uses the expected value model to    

determine the optimal link capacity enhancements with 
demand uncertainty. Table 1 presents the optimal ca-
pacity enhancements for the ten links in Fig. 1 for the 
various GA parameters of population size (16 and 32), 
crossover probability (Pc = 0.3 and 0.5), and mutation 
probability (Pm = 0.1, 0.2, and 0.3). In addition, the 
model objective value (Cost) and the percentage error 
are used to evaluate the GA performance for various 
parameter settings. The percentage error is computed 
using the best value among ten runs (i.e.,         

Error actual value best value 100%).
best value

−
= ×  As can be 

seen from Table 1, the percentage error among the ten 
runs with the different parameter settings does not ex-
ceed 0.6%. The results suggest that the solution pro-
cedure is quite robust to different parameter settings. 

Table 1  Comparison of capacity enhancement solutions for the expected value model 

Optimal capacity enhancement 
No. Pop_size Pc Pm 

16 17 19 20 25 26 29 39 48 74 
Cost 

Error
(%) 

1 16 0.3 0.1 1.279 2.285 2.812 1.966  3.330 13.276 0.972 0.871 1.279 1.279 6930.1 0.6 
2 16 0.3 0.3 1.141 1.270 1.369 2.489  3.396 13.629 0.705 1.074 1.075 1.270 6913.2 0.4 
3 16 0.5 0.1 1.319 1.663 1.690 1.489  2.072 13.916 0.915 1.289 0.504 1.319 6889.0 0.0 
4 16 0.5 0.2 1.342 2.768 2.588 2.122  1.752 13.406 1.342 1.342 0.529 1.346 6927.6 0.6 
5 16 0.5 0.3 1.296 2.949 1.837 2.598 13.427  1.296 0.590 1.296 1.120 1.412 6905.5 0.3 
6 32 0.3 0.1 1.144 1.260 1.260 1.260  1.670 13.916 0.490 1.260 0.807 1.260 6892.1 0.1 
7 32 0.3 0.3 1.164 2.891 3.146 1.164  1.221 13.567 0.696 1.164 1.164 1.164 6921.1 0.5 
8 32 0.5 0.1 2.039 1.482 1.484 2.375  2.191 13.817 0.727 1.307 0.541 0.955 6887.3 0.0 
9 32 0.5 0.2 1.438 1.438 2.707 1.259  1.438 13.916 0.746 0.921 0.651 1.482 6888.3 0.0 

10 32 0.5 0.3 1.442 2.019 1.442 3.931  1.783 13.153 0.903 0.933 0.735 1.813 6901.9 0.2 
 

3.2  Chance constrained model 

Experiment 2 uses a variant of the chance constrained 
model to determine the optimal link capacity en-
hancements with demand uncertainty. This model can 
be interpreted as a value-at-risk (VaR) measure to ac-
count for the planner risk preferences by using a con-
fidence level of α = 0.9 on the total travel time reliabil-
ity. As with experiment 1, the optimal capacity en-
hancements for the ten links in Fig. 1 for the different 
GA parameter settings are listed in Table 2. The per-
centage error among the ten runs does not exceed 0.9%. 
The solution procedure appears to be robust and   
effective in solving the nonlinear and nonconvex   
probabilistic constraint in the chance constrained model. 

3.3  Dependent chance model 

Experiment 3 uses the dependent chance model to de-
termine the optimal link capacity enhancements with 
demand uncertainty with a total travel time require-
ment (TTTR = 7150). As with the previous two ex-
periments, the optimal capacity enhancements for   
the ten links listed in Fig. 1 are presented for the   
different GA parameter settings in Table 3. The maxi-
mum probability (Prob.) is reported instead of the mini-
mum cost. As indicated by the results, the maximum 
percentage error among the ten runs is less than 3%. 
Though the percentage error appears to be higher than 
in the previous two experiments, this is due to the scale 
(or unit) used to measure the objective function. In term 
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Table 2  Comparison of capacity enhancement solutions for the chance constrained model 

Optimal capacity enhancement 
No. Pop_size Pc Pm 

16 17 19 20 25 26 29 39 48 74 
Cost 

Error
(%) 

1 16 0.3 0.1 2.099 1.906 1.147 1.147  1.328 13.916 0.746 0.987 0.761 1.147 7159.4 0.6 
2 16 0.3 0.3 1.261 1.349 2.423 1.261  2.102 13.916 1.261 1.261 0.583 1.261 7166.9 0.7 
3 16 0.5 0.1 0.749 3.460 1.217 1.678  1.967 13.515 0.960 1.217 0.993 1.217 7179.5 0.9 
4 16 0.5 0.2 1.167 2.634 1.167 1.601  1.350 13.916 1.042 1.167 0.605 1.167 7151.3 0.5 
5 16 0.5 0.3 1.427 3.270 1.341 1.538 13.585 1.479 0.618 1.173 1.173 1.513 7168.1 0.7 
6 32 0.3 0.1 1.333 1.749 1.333 3.394  1.428 13.514 1.026 1.752 0.626 1.006 7155.7 0.6 
7 32 0.3 0.3 2.452 3.395 1.485 2.725  2.866 12.905 0.772 1.300 0.579 1.300 7155.2 0.6 
8 32 0.5 0.1 1.158 1.373 2.199 1.100  1.739 13.916 0.937 0.783 0.915 1.198 7146.1 0.4 
9 32 0.5 0.2 1.104 1.802 3.146 1.104  1.572 13.890 0.428 1.343 0.861 1.104 7134.3 0.3 

10 32 0.5 0.3 0.927 0.964 2.084 1.206 13.916  1.206 0.605 1.103 0.516 1.206 7115.5 0.0 

Table 3  Comparison of capacity enhancement solutions for the dependent chance model 

Optimal capacity enhancement 
No. Pop_size Pc Pm 

16 17 19 20 25 26 29 39 48 74 
Prob.
(%)

Error
(%) 

1 16 0.3 0.1 1.244 4.227 1.423 2.469 1.423 12.962 0.638 1.423 0.978 1.366 89.9 2.4 
2 16 0.3 0.3 1.171 2.920 1.413 2.644 2.009 13.467 1.083 1.171 0.618 1.022 90.5 1.7 
3 16 0.5 0.1 1.417 1.260 1.833 3.653 1.260 13.511 1.106 0.864 0.672 1.260 90.4 1.8 
4 16 0.5 0.2 1.247 1.247 1.607 1.467 2.823 13.916 1.247 1.247 0.408 1.247 89.4 2.9 
5 16 0.5 0.3 1.155 3.367 1.196 2.129 1.431 13.601 0.458 1.155 0.589 1.155 89.5 2.8 
6 32 0.3 0.1 0.768 1.990 3.462 2.004 3.047 13.369 0.480 1.264 0.843 1.264 91.4 0.8 
7 32 0.3 0.3 1.099 3.478 1.187 2.024 1.187 13.567 0.942 1.187 0.426 1.187 91.2 1.0 
8 32 0.5 0.1 1.184 1.184 3.276 2.117 1.184 13.836 0.413 1.184 0.611 1.266 91.4 0.8 
9 32 0.5 0.2 0.854 1.234 1.569 0.770 1.234 13.916 0.670 1.400 0.484 1.234 92.1 0.0 
10 32 0.5 0.3 0.867 2.318 2.129 2.426 3.399 13.266 0.833 0.567 0.683 2.152 91.8 0.3 

 

of the total travel time at the 90 percentile (i.e., the 
performance measure used to evaluate the objective 
function), the percentage error does not exceed 0.6%. 
In engineering applications, this error is considered 
acceptable. 

4  Conclusions and Future Research 

This paper discusses three stochastic NDP models to 
determine optimal link capacity enhancements in road 
networks with demand uncertainty. These stochastic 
models used different criteria to account for planner 
risk preferences on the total travel time reliability. 
Stochastic bilevel programming formulations were 
provided in which the upper-level subprogram uses 
one of the stochastic models to determine the optimal 
link capacity enhancements and the lower-level   
subprogram is a user-equilibrium traffic assignment 
problem subject to demand uncertainty. A simula-
tion-based genetic algorithm procedure was used to 

solve the stochastic bilevel programming formulations. 
Numerical experiments were conducted to evaluate the 
applicability of the stochastic NDP models and the 
solution procedure. Several directions for future re-
search are possible. On the modeling side, only the 
demand uncertainty is considered in the current study. 
Future research should also consider supply uncer-
tainty (i.e., the degradation of network capacity) and 
route choice uncertainty (i.e., responses of road users 
to supply and demand uncertainty) in designing reli-
able roadway networks. In addition, multiple objec-
tives should be considered in the NDP to account for 
the needs of various stakeholders in making infra-
structure investment decisions. On the computational 
side, the efficiency of the simulation-based genetic 
algorithm procedure must be enhanced to solve 
large-scale problems. Finally, the mathematical proper-
ties and their relationships of the stochastic NDP    
models need to be further analyzed. 



  Tsinghua Science and Technology, June 2009, 14(3): 341-351 

 

350 

References 

[1] Bell M G H, Iida Y. Transportation Network Analysis. 
Chichester, UK: John Wiley and Sons, 1997. 

[2] Boyce D E. Urban transportation network-equilibrium and 
design models: Recent achievements and future prospects. 
Environment and Planning, 1984, 16A: 1445-1474. 

[3] Magnanti T L, Wong R T. Network design and transporta-
tion planning: Models and algorithms. Transportation Sci-
ence, 1984, 18: 1-55. 

[4] Friesz T L. Transportation network equilibrium, design and 
aggregation: Key developments and research opportunities. 
Transportation Research, 1985, 19A: 413-427. 

[5] Yang H, Bell M G H. Models and algorithms for road net-
work design: A review and some new developments. 
Transport Reviews, 1988, 18: 257-278. 

[6] Boyce D E, Janson B. A discrete transportation network 
design problem with combined trip distribution and as-
signment. Transportation Research, 1980, 14B: 147-157. 

[7] Gao Z Y, Wu J, Sun H. Solution algorithm for the bilevel 
discrete network design problem. Transportation Research, 
2005, 39B: 479-495. 

[8] Drezner Z, Wesolowsky G O. Selecting an optimum con-
figuration of one-way and two-way routes. Transportation 
Science, 1997, 31: 386-394. 

[9] Drezner Z, Wesolowsky G O. Network design: Selecting 
and design of links and facility location. Transportation 
Research, 2002, 37A: 241-256. 

[10] Abdulaal M, LeBlanc L J. Continuous equilibrium network 
design models. Transportation Research, 1979, 13B: 
19-32. 

[11] Davis G A. Exact local solution of the continuous network 
design problem via stochastic user equilibrium assignment. 
Transportation Research, 1994, 28B: 61-75. 

[12] Meng Q, Yang H. Benefit distribution and equity in road 
network design. Transportation Research, 2002, 36B: 
19-35. 

[13] Suwansirikul C, Friesz T L, Tobin R L. Equilibrium de-
composed optimization: A heuristic for the continuous 
equilibrium network design problem. Transportation Sci-
ence, 1987, 21: 254-263. 

[14] Yang H, Wang J Y T. Travel time minimization versus 
reserve capacity maximization in the network design prob-
lem. Transportation Research Record, 2002, 1783: 17-26. 

[15] Ferrari P. Road pricing and network equilibrium. Trans-
portation Research, 1995, 29B: 357-372. 

[16] Ferrari P. Road network toll pricing and social welfare. 
Transportation Research, 1997, 36B: 471-483. 

[17] Yang H, Bell M G H. Traffic restraint, road pricing and 
network equilibrium. Transportation Research, 1997, 31B: 
303-314. 

[18] Ceylan H, Bell M G H. Traffic signal timing optimization 
approach, including drivers’ routing. Transportation Re-
search, 2004, 38B: 329-342. 

[19] Chiou S W.  Optimization of area traffic control for equi-
librium network flows. Transportation Science, 1999, 33: 
279-289. 

[20] Wong S C, Yang C. An iterative group-based signal opti-
mization scheme for traffic equilibrium networks. Journal 
of Advanced Transportation, 1999, 33: 201-217. 

[21] Wong S C, Yang H. Reserve capacity of a signal-controlled 
road network. Transportation Research, 1997, 31B: 
397-402. 

[22] Yang H, Yagar S. Traffic assignment and traffic control in 
general freeway-arterial corridor systems. Transportation 
Research, 1994, 28B: 463-486. 

[23] Yang H, Yagar S. Traffic assignment and signal control in 
saturated road networks. Transportation Research, 1995, 
29A: 125-139. 

[24] Yang H, Yagar S, Iida Y, Asakura Y. An algorithm for in-
flow control problems on urban freeway networks with 
user-optimal flows. Transportation Research, 1994, 28B: 
123-139. 

[25] Lin J J, Feng C M. A bi-level programming for the land use 
network design problem. Annals of Regional Science, 2003, 
37: 93-105. 

[26] Melkote S, Daskin M. An integrated model of facility loca-
tion and transportation network design. Transportation 
Research, 2001, 35A: 515-538. 

[27] Zhang X, Yang H. The optimal cordon-based network 
congestion pricing problem. Transportation Research, 
2004, 38B: 517-537. 

[28] Ho H W, Wong S C, Yang H, Loo B Y P. Cordon-based 
congestion pricing in a continuum traffic equilibrium sys-
tem. Transportation Research, 2005, 39A: 813-834. 

[29] Waller S T, Schofer J L, Ziliaskopoulos A K. Evaluation 
with traffic assignment under demand uncertainty. Trans-
portation Research Record, 2001, 1771: 69-74. 

[30] Chen A, Yang C. Stochastic transportation network design 
problem with spatial equity constraint. Transportation Re-
search Record, 2004, 1882: 97-104. 

[31] Waller S T, Ziliaskopoulos A K. Stochastic dynamic net-
work design problem. Transportation Research Record, 
2001, 1771: 106-113. 



Anthony Chen et al：Models and Algorithm for Stochastic Network Designs 

 

351

[32] Chen A, Subprasom K, Ji Z. Mean-variance model for the 
build-operate-transfer scheme under demand uncertainty. 
Transportation Research Record, 2003, 1857: 93-101. 

[33] Chen A, Chootinan P, Wong S C. New reserve capacity 
model of a signal-controlled road network. Transportation 
Research Record, 2006, 1964: 35-41. 

[34] Chootinan P, Wong S C, Chen A. A reliability-based net-
work design problem. Journal of Advanced Transportation, 
2005, 39: 247-270. 

[35] Sumalee A, Watling D P, Nakayama S. Reliable network 
design problem: The case with uncertain demand and total 
travel time reliability. Transportation Research Record, 
2006, 1964: 81-90. 

[36] Chen A, Kim J, Zhou Z, Chootinan P. Alpha reliable net-
work design problem. Transportation Research Record, 
2007, 2029: 49-57. 

[37] Liu B. Theory and Practice of Uncertain Programming.  
Heidelberg: Physica-Verlag, 2002.  

[38] Liu B, Iwamura K. Topological optimization models for 
communication network with multiple reliability goals. 
Computers & Mathematics with Applications, 2000, 39: 
59-69. 

[39] Zhou J, Liu B. New stochastic models for capacitated loca-
tion-allocation problem. Computers & Industrial Engi-
neering, 2003, 45: 111-125. 

[40] Zhao R, Liu B. Stochastic programming models for general 
redundancy optimization problems. IEEE Transactions on 
Reliability, 2003, 52: 181-191. 

[41] Ke H, Liu B. Project scheduling problem with stochastic 
activity duration times. Applied Mathematics and Compu-
tation, 2005, 168: 342-353. 

[42] Chen A, Ji Z. Path finding under uncertainty. Journal of 
Advanced Transportation, 2005, 39: 19-37. 

[43] Ji X. Models and algorithm for stochastic shortest path 
problem. Applied Mathematics and Computation, 2005, 
170: 503-514. 

[44] Sheffi Y. Urban Transportation Networks: Equilibrium 
Analysis with Mathematical Programming Methods. NJ: 
Prentice-Hall, 1985.  

[45] Charnes A, Cooper W. Chance-constrained programming. 
Management Science, 1959, 6(1): 73-79. 

[46] Liu B. Dependent-chance programming: A class of sto-
chastic programming. Computers & Mathematics with Ap-
plications, 1997, 34: 89-104. 

[47] Friesz T L, Cho H J, Mehta N J, et al. A simulated anneal-
ing approach to the network design problem with varia-
tional inequality constraints. Transportation Science, 1992, 
26(1): 18-26. 

[48] Yin Y. Genetic-algorithms-based approach for bilevel pro-
gramming models. Journal of Transportation Engineering, 
2000, 126(2): 115-120.  

[49] Chen A, Subprasom K, Ji Z. A simulation-based 
multi-objective genetic algorithm (SMOGA) for 
build-operate-transfer network design problem. Optimiza-
tion and Engineering Journal, 2006, 7: 225-247. 

[50] Goldberg D. Genetic Algorithms in Search, Optimization, 
and Machine Learning. Reading, MA: Addison-Wesley, 
1989. 

[51] Gen M, Cheng R. Genetic Algorithms and Engineering 
Optimization. New York: John Wiley and Sons, Inc., 2000. 

 

 
 


