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Abstract: Dramatically increasing amounts of digital data are placing huge requirements on storage systems. 

IP-networked storage systems, such as the network file system (NFS)-based network-attached storage (NAS) 

systems and the iSCSI-storage area network (SAN) systems, have become increasingly common in today’s 

local area network (LAN) environments. The emergence of new storage techniques, such as object-based 

storage (OBS) and content aware storage (CAS), significantly improves the functionality of storage devices 

to meet further needs for storage sub-systems. However, these may impact system performance. This paper 

compares the performance of NFS, iSCSI storage, object-based storage devices (OSDs), and CAS-based 

storage systems in an environment with no data sharing across host machines. A gigabit ethernet network is 

used as the storage network. Test results demonstrate that the performances of these systems are compa-

rable with CAS being much better than the others for write operations. The performance bottlenecks in these 

systems are analyzed to provide insight into how future storage systems may be improved and possible op-

timization methods. The analysis shows how the I/O interfaces in these systems affect the application per-

formance and that network-based storage systems require optimized I/O latency and reduced network and 

buffer processing in the servers.  
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Introduction 

The era of data and information significantly affects 
every aspect of our lives. Large amounts of new data 
are generated by humans every year. One study[1] es-
timated that in 2007 about 255 exabytes (255 billion 
gigabytes) of information would be created and repli-
cated with the amount of information created surpass-
ing available storage capacity for the first time. The 

study predicted that the information added annually 
would increase more than six fold from 161 exabytes 
to 988 exabytes between 2006 and 2010, growing by 
57% a year. The demands on storage devices and storage 
systems are growing rapidly and persistently. 

With the advent of high-speed local area network 
(LAN) technologies such as the gigabit ethernet, 
IP-networked storage has become increasingly com-
mon in client-server environments. Ten gigabit 
ethernet interconnects will soon become commodity, 
accelerating this trend further.  

An IP-networked storage permits access to remote 
data. The traditional and widely used method for net-
working storage over IP is to simply employ a network 
file system (NFS)[2]. In this approach, the server makes 
a subset of its local namespace available to the clients 
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and the clients access metadata and files on the server 
using a remote procedure call (RPC)-based protocol.  

An alternate approach for accessing remote data is 
to use an IP-based storage area networking (SAN) 
protocol such as iSCSI[3]. iSCSI is a block-level pro-
tocol that encapsulates standard SCSI commands into 
TCP/IP packets. iSCSI connects a SCSI initiator port 
on a host to a SCSI target port on a storage subsystem. 
The initiator and the target look like a client and a 
server in an NFS system. In an iSCSI storage system, a 
remote disk exports a portion of its storage space to a 
client as an SCSI device. The client handles the remote 
disk no differently than its local disk. It runs a local 
file system that reads and writes data blocks to the re-
mote disk. Remote blocks are accessed by encapsulat-
ing SCSI commands into TCP/IP packets. Thus, iSCSI 
extends the SAN network to a remote area and enables 
new applications like data mirroring, remote backup, 
and remote management. It also unifies the storage and 
data networks, thus greatly reducing management cost.  

The two techniques for accessing remote data em-
ploy fundamentally different abstractions. A network 
file system accesses remote data at the granularity of 
files, while SAN protocols access remote data at the 
granularity of disk blocks. In the network file approach, 
the file system resides at the server, whereas in the 
SAN approach it resides at the client. Consequently, 
the network I/O consists of file operations (file and 
metadata reads and writes) for network file systems 
and block operations (block reads and writes) for SAN 
protocols. NFS and iSCSI provide fundamentally dif-
ferent data sharing semantics. NFS is inherently suit-
able for data sharing since it enables files to be shared 
among multiple client machines while iSCSI supports 
a single client for each volume on the block server. 
Consequently, iSCSI permits applications running on a 
single client machine to share remote data, but it is not 
directly suitable for sharing data across machines.  

TCP/IP is inherently slow due to several factors 
such as checksum generation, protocol processing, 
memory copy, and context switching. In addition, 
since the IP network is not a secure network, it is cru-
cial to have the iSCSI commands and data traversing 
an IP network encrypted. This adds more overhead and 
further exacerbates the iSCSI performance. 

The block interface to iSCSI storage systems is very 
narrow and cannot convey additional semantics to the 

storage for self management. Object-based storage de-
vices (OSDs) store and manage data containers called 
objects which can be viewed as a convergence of file 
and block technology[4]. Files have associated attrib-
utes which convey some information about the data 
that is stored within. Blocks, on the other hand, enable 
fast, scalable, and direct access to shared data. An 
OSD is capable of managing its capacity and present-
ing file-like storage objects to its hosts. Objects can be 
created and destroyed and can grow and shrink in size 
during their lifetimes. A single command can be used 
to read or write any consecutive stream of bytes con-
stituting a storage object. In addition to mapping data 
to storage objects, the OSD storage management com-
ponent maintains other information about the storage 
objects as attributes, e.g., size, usage quotas, and asso-
ciated user name. In an OSD-based iSCSI-SAN, the 
server components include the iSCSI server and the 
object storage server. The object storage server module 
manages the physical storage media and processes 
SCSI object commands.  

Content aware storage[5] (CAS) is a special kind of 
OSD, in which object identifiers are not user-defined 
names but cryptographic hash values generated based 
on their content. Since the hash values for a specified 
hash function are inherently globally unique and it is 
computationally infeasible to find two distinct inputs 
that hash to the same value[6], the hashes for different 
objects are unique. CAS uses this method to provide 
integrity checking of data, space efficiency, write-once 
characters, and overwrite protection. CAS is especially 
useful for storing fixed content data. 

Several studies have compared the performance of 
IP-networked storage systems. Some of these studies 
have focused on the iSCSI performance based on the 
data path overhead and latency[7,8]. One report[9] com-
pared a commercial iSCSI target implementation and 
an NFS system using metadata intensive benchmarks. 
The overhead introduced by the iSCSI systems, com-
pared to systems with directly-attached storage, is 
evaluated in the context of commodity iSCSI sys-
tems[10]. The tests used commodity personal computers 
with several disks as storage nodes and a gigabit 
ethernet network as the storage network. The Linux 
kernel was instrumented to provide detailed informa-
tion about the I/O activity and the overhead for the 
various kernel I/O layers. The NFS and iSCSI   
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performance for environments with no data sharing 
across machines was compared by Radkov et al.[11] in 
terms of protocol interactions, network latency, and 
sensitivity to different application workloads using a 
Linux-based storage system testbed. The results show 
that iSCSI and NFS are comparable for data-intensive 
workloads, while the iSCSI outperforms the NFS by a 
factor of two or more for metadata intensive workloads. 
They identified aggressive metadata caching and ag-
gregation of metadata updates in iSCSI to be the pri-
mary reasons for this performance difference.  

Du et al.[12] compared a reference implementation of 
the OSD T10 with iSCSI and NFS. Their tests showed 
that in general the raw read and write performance of 
an OSD operation is slower than that of the corre-
sponding iSCSI operation with larger transfer sizes 
yielding better throughput for both the iSCSI and OSD 
systems. The throughput saturated before reaching the 
network bandwidth limit of 1 Gbps. The OSD file sys-
tem throughput was significantly lower than that of the 
NFS and iSCSI systems. Liu et al.[13] compared the 
performance of OSD systems with iSCSI and NFS 
systems and found that the write performance of the 
object-based storage systems is much better, with the 
CPU usage on the client side greatly reduced. 

CAS, which is very useful for archival storage, digi-
tal information preservation, and data de-duplication, 
has received much attention recently. There are several 
studies focusing on building CAS prototypes for dif-
ferent research goals with performance evaluations. 
Most CAS prototypes were designed before iSCSI was 
available. Thus, the CAS systems could only be com-
pared with the NFS system as the only available 
IP-networked storage at the time. Most CAS perform-
ance studies have been performed on wide-area net-
works rather than local-area network. Pond[14], an 
OceanStore[15] prototype, outperformed NFS in wide-    
area networks by up to a factor of 4.6 on read-intensive 
phases, but underperformed NFS by as much as a fac-
tor of 7.3 on write-intensive phases. The Pond write 
performance was limited by the speed of the erasure 
coding and threshold signature generation. CFS[16] is a 
wide-area cooperative p2p read only storage system 
which delivers data to clients as fast as file transfer 
protocol (FTP). Ivy[17] is a multi-user read/write p2p 
network file system built atop the CFS storage layer 
which uses file system semantics much like those of an 

NFS v3 file server. On a wide-area network Ivy is two 
to three times slower than NFS. The main performance 
bottlenecks are the network latency and the cost of 
generating digital signatures for the data stored in the 
distributed hash. Venti[18] is several times slower than 
directly accessing disks over a 100-Mbps ethernet. 
CASPER[19], a distributed file system, was evaluated 
for benchmarks running at client-server bandwidths of 
10 Mbps, 1 Mbps, and 100 Kbps.  

The current work differs from previous studies in 
that this study compares the CAS performance based 
on iSCSI with that of NFS, iSCSI storage, and 
iSCSI-based OSD to present CAS performance char-
acteristics for modern storage systems. 

These storage architectures are compared in Fig. 1. 
In a modern IP-SAN system, both OSD and CAS can 
be networked using the iSCSI protocol.  

Although OSD and CAS appear appealing, their 
impact on the system is not well defined. The adoption 
of an object interface in OSD and CAS introduces fur-
ther overhead. Moreover, additional layers in the I/O 
path, which include many computations such as the 
computation cost of chunking algorithms or crypto-
graphic hash algorithms, are performance bottlenecks. 
Thus, the performance characteristics of iSCSI-based 
OSD and CAS storage area networks (OSDN and 
CASN) must be understood to evaluate their impact on 
various applications. There should be an extra effort 
directed toward measuring and analyzing the perform-
ance parameters, and comparing the performance of 
OSD and CAS with traditional storage models. While 
there is some work on performance comparisons of 
iSCSI storage and NFS, there are few performance 
analyses comparing OSD with NFS and iSCSI systems. 
To our knowledge, there are no papers comparing the 
performance of CAS with iSCSI storage systems. This 
paper compares the performance of NFS, iSCSI stor-
age, OSDN, and CASN systems as specific examples 
of IP-networked storage systems. The objective is to 
study the real performance of these storage systems, 
the factors affecting their performance, and where 
performance bottlenecks occur. These systems were 
studied on a testbed to obtain real performance meas-
urements for these four typical IP-networked storage 
systems in terms of the raw I/O performance. The 
testbed uses a single client machine accessing one  
remote data storage (i.e., no data sharing across    
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Fig. 1  SAN, DAS, NAS, and OSD storage model architectures 

machines). Linux is currently the only open-source plat-
form able to implement NFS, iSCSI, and OSD, so a 
Linux-based storage system platform was used to com-
pare their performance. Since there is no open-source 
CAS system yet, a prototype of the CAS area networked 
storage (CASN) on Linux was used with the open-source 
Intel iSCSI[20] as the storage transport protocol. The re-
sults show that the performance of IP-networked storage 
systems such as NFS, iSCSI storage, OSDN, and CASN 
systems are comparable, with CASN much better than the 
others in terms of write operation performance, though 
some are more suitable for specific applications and   
scenarios.  

1  Implementation of CASN 

There are open source codes available for implement-
ing all the IP-networked storage systems except CASN. 
The NFS was implemented based on NFS v3[21,22] with 
Intel iSCSI[20,23] to implement both iSCSI and OSD 
area networks (OSDN). The CASN was based on the 
Intel iSCSI and OSD T10[24] . 

As shown in Fig. 2, the CASN system consists of (1) 
clients; (2) application servers, such as an e-mail server, 
a multimedia server running specific applications; (3) 
CAS servers; (4) metadata server in charge of metadata 
interactions with clients and security mechanisms such 

as authentication of clients and data access control; (5) 
a network connecting client hosts and application 
servers, which is usually the Internet; and (6) a storage 
area network (SAN) used to connect application serv-
ers and the CAS devices through a 1-Mbps IP-SAN 
based on Intel iSCSI v2.0[20,23]. 

1.1  Client, application server, and CAS appliances 

Clients deliver application requests to a specified ap-
plication server and handle responses returned from the 
application server.  

Application servers are located in the middle layer 
of the storage network architecture, communicating 
with both the clients and CAS servers. A specific ap-
plication server, such as a web server, an e-mail server, 
a file server, or a multimedia server, handles requests 
from various clients through packages usually de-
ployed on the Internet. To avoid frequent metadata 
communication with the metadata server (MDS), ap-
plication servers also locally cache triples (file path, 
offset, and object ID).  

Every application server is bound with a CAS ap-
pliance which divides files to be archived into objects, 
uses the OSD T10 standard interface to transfer objects 
to the CAS servers and stores file-object mappings as 
well as metadata describing the files and objects on the  
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Fig. 2  CASN architecture 

MDS for future restore and data retrieval operations. 
The CAS appliances transfer data from or to the CAS 
servers across the OSD T10 standard object interface.  

The structure of the CAS appliance is shown in the 
upper right part of Fig. 2. Files are archived and re-
trieved from the exposed file archive/restore interface 
of the CAS appliance. If a file operation is archiving, 
the file divider module is employed to divide the file 
into objects and the hash value of each object’s content 
is calculated as the object ID. The metadata informa-
tion is stored into the MDS for future access and   
retrieval.  

The key function of the CAS appliance is the file    
division, i.e., how to divide files into objects so as to 
most reduce the inter-file duplication. To reduce the 
complexity of this typical component, the CASN first 
used a fixed size object division method. 

1.2  MDS and security protocol 

The MDS functions can be classified into two types:  
(1) Managing the metadata for the files and objects. 

When a new file is created, the file attributes (such as 

the file path, inode information, and application attrib-
utes) are extracted and stored into an entry in the 
File_Attibutes_Table. Then the file is divided into ob-
jects by the file divider in the CAS appliance. The 
file-object mapping is then stored into the File_Object_     
Table. The object metadata is stored in the Object_     
Metadata_Table. When an application server wants to 
restore or retrieve a file, it first passes the file path and 
the byte offset within the file to the MDS. The MDS 
translates the request into the object index and searches 
the File_Object_Table to find which CAS server has 
the objects. When the location information is received, 
the application server directly communicates with the 
CAS server to transfer the data. Further requests for 
the same object will not involve the MDS. With this 
out-of-band mechanism, the MDS is only in the control 
path but not the data path, so it cannot become a sys-
tem bottleneck. Moreover, since the CASN, MDS, and 
application servers are all in the same high speed local 
area network, the latency of the interactions between 
servers can be ignored. 
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(2) Security authentication and access control. The 
MDS handles the client authentication, device opera-
tion authentication, and object operation access   
control.  

The T10 SCSI OSD Standard[24] includes an inte-
grated security protocol that protects the storage and 
specifies a credential-based access control policy for 
the core components. The resulting protocol is based 
on a secure capability-based model, enabling 
fine-grained access control that protects both the entire 
storage device and individual objects from unauthor-
ized access. A security protocol conforming to this 
standard was implemented to check not only a host’s 
identity but also authenticate qualified storage opera-
tions granted to a host. Moreover, it also provides data 
integrity checking by using a cryptographic hash func-
tion to prevent a malicious server from fulfilling a read 
request with fraudulent data.  

In the CASN, a client wishing to perform an I/O re-
quest should follow the steps described in Fig. 3. An 
application server can request an I/O operation to a 
CAS server only if its ID has been successfully au-
thenticated. When an application server requests an 
operation, it contacts the MDS to obtain the capability 
including the operation permission and a capability key 
to generate an integrity check value. The MDS creates 
a capability key with a key shared between the MDS 
and the CAS server, and a credential which contains 
the capability and capability key. After receiving the   

 
Fig. 3  CASN security protocol 

credential returned from the MDS, the application 
server copies the capability included in the credential 
to the capability portion of the command description 
block (CDB) and generates an integrity check value of 
the CDB with the received capability key. The CDB 
with the digested hash value called the request integ-
rity check value is sent to the CAS server. When the 
CAS server receives the CDB, it checks the validity of 
the CDB with the request integrity check value. 

Therefore, both the entire storage server and indi-
vidual objects can be protected from unauthorized ac-
cess by this security mechanism. To access objects, a 
user must acquire cryptographically secure credentials 
from the MDS. Each credential contains a capability 
that identifies a specific object, a list of operations that 
may be performed on that object, and a capability key 
that is used to securely communicate with the CAS 
server. Before granting access to any object, each CAS 
server checks whether the requestor has the appropriate 
credentials. Here, the credential is a data structure 
containing a capability prepared by the MDS and pro-
tected by an integrity check value. 

1.3  CAS server and interface 

The inner architecture of a CAS server is shown in the 
lower part of Fig. 2. This autonomic system consists of 
commodity components such as processors, I/O chan-
nels, disk controllers, disks or disk arrays, and usually 
a large amount of memory, as well as network adapters 
to connect with other CAS servers, MDS, and applica-
tion servers to construct the SAN. The CAS API is 
wrapped with the OSD standard command library to 
work seamlessly with CAS servers from other venders 
while making use of the existing IP-SAN transport 
protocol. The location logic layer below the interface 
locates the object metadata inside the CAS devices. 
The next layer is the content object manager which is 
located above the block I/O manager and behaves as an 
abstract CAS device driver, supporting object man-
agement and immutability. Its functions include defin-
ing and managing metadata, mapping between the 
metadata and the data, managing free space, and allo-
cating (de-allocating) object space. The bottom layer is 
the block I/O manager, which separates a logical de-
vice from the underlying physical devices, regardless 
of the actual type (SCSI device, SATA device, or disk 
array). In the CASN, this layer is supported by the 
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logical volume management (LVM) mechanism of the 
Linux kernel. 

A CAS server uses a globally unique object ID (OID) 
to represent each object which includes the global 
name space design and management. The CASN uses 
cryptographic hash functions, such as MD5 or SHA1, 
to generate the object content hash value represented 
as the object’s ID. Fortunately, the hash values for a 
specified hash function are inherently globally unique 
and it is computationally infeasible to find two distinct 
inputs that hash to the same value[6].  

The units of storage accessed in a CAS server are 
classified as objects. Each object is associated with a 
metadata structure, similar to the relationship between 
a file and an inode in file systems. However, unlike file 
systems, the metadata is part of the object so it con-
tains the necessary and sufficient information to re-
trieve the real data. In the CASN design, the object 
metadata is organized as an XML file and the object 
attributes can be extracted for use as an index for 
building a search engine to dramatically speed up con-
tent search efficiency at the storage level. A metadata 
memory cache can speed up I/O operations. 

When a request comes to a specific CAS server, the 
CAS server first queries the hash-metadata map table 
to find the location of the metadata associated with the 
object, then gets the related metadata by which to re-
trieve the object content, and finally reads or writes the 
data from or to the CAS server. This flat namespace in 
the CAS servers gives significant performance im-
provements over traditional file systems which need 
several metadata access steps to traverse the file path 
tree. 

A CAS server needs to keep a hash-metadata map 
record for each object since each hash digest corre-
sponds to an object. With increasing number of stored 

objects, traversing the whole map table to find the 
specified hash-metadata record will cost more and 
more time. In the CASN, the hash-metadata map table 
is stored in a red-black tree[25] data structure, with the 
metadata in the hash-metadata map table stored in a 
fixed position on the disks, to function like a su-
per-block in a file system glossary. When a CAS server 
boots up, the system copies the metadata in the 
hash-metadata map table from the disks into the main 
memory to reduce the object location time. To increase 
reliability, the hash-metadata map table cache is peri-
odically written back to the disks when changes occur 
(new objects are inserted or old objects are deleted). 

Sectors associated with an object should be kept 
contiguous whenever possible. All blocks needed for a 
particular object are allocated in advance since object 
sizes do not change dynamically. 

A CAS server maintains a list of contiguous free 
blocks on the disks. Each entry in the list contains the 
address of the first sector and the number of free con-
tiguous sectors. The space track method is similar to 
the conventional track method. 

The interface of a CAS server is compliant with the 
OSD T10 standard so as to work seamlessly with CAS 
servers from various venders. It also directly makes 
use of the IP-SAN data transfer protocols (such as 
iSCSI and iFCP) without modification. The interface 
definition and operation descriptions are listed in   
Table 1. 

The operation API is embedded into the SCSI OSD 
standard command library at the CAS server interface. 
The OSD commands are described in detail in the OSD 
specification[4]. The commands and data are then en-
capsulated and transferred to the IP storage area net-
work. The CASN transport protocol uses iSCSI[20,23]. 

Table 1  CAS device interface 

CAS API Function prototype Description 

CREATE Hash Retval = CREATE(out Hash h, in Data data) 
Cause the CAS device to allocate and initialize one 

or more user objects 
REMOVE Status Retval = REMOVE(in Hash h)  Delete a user object 

READ Status Retval = READ(in Hash h, out Data data)  
Request that the CAS device returns data to the 

application client from the specified user object 
QUERY Status Retval = QUERY(in Hash h)  Indicate whether the specified object exists 

GET_ATTR Status Retval = GET_ATTR(in Hash h, out Attributes attr) 
Return the specified attributes for the specified 

object 
FORMAT Status Retval = FORMAT(in CAS_ID cas)  Format CAS device  
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2  Experimental Setup and Method 

The performances of four IP-network storage systems, 
NFS, iSCSI, OSDN, and CASN, were measured on a 
storage testbed. The storage testbed consisted of a cli-
ent, an application server, and a storage server con-
nected over an isolated gigabit ethernet LAN. 

A Sun Fire V40z server used as the storage server 
was equipped with 4 AMD dual-core processors at 
2.4 GHz (1 MB L2 cache per processor), 16 GB RAM, 
and 6 Ultra-320 SCSI disks (146 GB per disk). A SUN 
workstation used as the application server was 
equipped with 2 AMD dual-core processors at 1 GHz 
(1 MB L2 cache per processor), 8 GB RAM, and a 
250-GB Ultra-320 SCSI disk. The network connection 
was a 1-Gbps D-Link DGE550T switch. The open 
source Intel iSCSI was used to implement the iSCSI 
storage with a 4-KB blocksize. The client shared 
10 GB storage with the server. This client server ma-
chine combination was used for all four storage con-
figurations with the same disk partition at the server to 
ensure the disk performance remained constant for all 
configurations.  

The Linux operating system was kernel version 
2.6.9. The NFS version was v.3. Both synchronous and 
asynchronous modes were measured with default NFS 
parameter settings and with UDP as the transport pro-
tocol. The iSCSI system used the Intel iSCSI v2.0 with 
the default parameter settings. The CASN treated the 
whole file as an object, with the ObjectIDs generated 
using the MD5[6] hash algorithm. 

The NFS, iSCSI, OSDN, and CASN systems are 
typical low-level architecture implementations of 
IP-networked storage systems corresponding to storage 
domains in the SNIA shared storage model[26]. Every 
application executes on top of the storage domain layer. 
All the storage methods are transparent to the applica-
tions, regardless of which system is used in the sub-
strate. The performance characteristics of the NFS, 
iSCSI, OSDN, and CASN systems were evaluated us-
ing applications unrelated to the differences in their 
implementations. 

The main goal of the evaluation was to compare the 
primary performance parameters and to identify sys-
tem bottlenecks. The throughput and CPU utilization 
were measured during the transmission of network files 
to evaluate the system performance characteristics.  

IOmeter[27] was used as the testing benchmark since 
it is a configurable workload generator that has been 
used extensively for basic evaluations of I/O subsys-
tems. However, IOmeter can only test storage systems 
with block interfaces; therefore, parts of the IOmeter 
code were modified. The implemented IOmeter can 
extract both the test parameters and the test results. The 
test program acquires the state information from the 
Linux kernel files to calculate the system performance 
parameters. The application server initiated read/write 
operations with files having sizes from 1 KB to 1 GB 
to the storage server, recording both the operation start 
and stop times. The read/write throughput was ob-
tained from the data set size divided by the interval 
between the start and the stop times. 

3  Experimental Results and Analysis 
3.1  Performance comparison of NFS, iSCSI  

storage, and CASN 

Figure 4 shows the throughput of read/write operations 
for the NFS, iSCSI, and CASN systems.  

The write throughput in the first part of Fig. 4 dem-
onstrates that in the NFS system the throughput in the 
asynchronous write operation mode approaches 
60 MB/s for data sizes larger than 1 MB, but in the 
synchronous write mode the average throughput is 
only 1-2 MB/s because in the synchronous model the 
server doesn’t complete an NFS request (reply to the 
client) until the file system on the server has flushed all 
the data/metadata onto the disk, while the asynchro-
nous mode permits the server to reply to client requests 
as soon as it has processed the request and handed it 
off to the local file system, without waiting for the data 
to be written to disk.  

The iSCSI write throughput increases continuously 
and approaches about 50 MB/s for data sizes greater 
than 512 KB. For smaller data unit sizes (less than 
64 KB), the iSCSI write throughput doubles the NFS 
write throughput. 

In the CASN the write throughput increases more 
quickly, reaching the upper limit for data sizes larger 
than 64 KB. The CASN has nearly twice the write 
throughput of the other two systems for any data size 
because write operations are performed for immutable 
objects which are appended sequentially to the storage 
devices, so the CASN can fully make use of the device  
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(a) Write operation 

 
(b) Read operation 

Fig. 4  Throughput for the NFS, iSCSI, and CASN 
systems on a 1-Gbps network  

sequential access bandwidth, which is almost one order 
of magnitude faster than the random access bandwidth. 
In addition, both the storage server and the application 
server use large amounts of memories, larger than the 
transmitted data sizes. The asynchronous I/O mecha-
nism makes full use of the system memories, so appli-
cations and I/O operations may run in parallel, im-
proving the overall system performance.  

The read throughput in Fig. 4b increases continu-
ously with increasing data size. Both the NFS syn-
chronous and asynchronous read operation throughputs 
are faster than the write operations, about 80 MB/s. 
The system bottleneck is the limited network band-
width in the NFS asynchronous read operation.  

The throughput for the read operations on the iSCSI 
storage can achieve 100 MB/s, doubles the throughput 
for write operations and almost equals the limit of the 
network bandwidth. The iSCSI read operations have 
similar trends to the NFS results. The big difference 
between these two schemes lies in the networking file 

access protocol. For each file access, NFS as a stateless 
protocol running on the file level requires the exchange 
of several commands before data communication can 
occur. In the iSCSI the client side retains the file states 
and its directories, which saves several round trips. 
Also, iSCSI uses the TCP protocol, while NFS uses 
remote procedure call (RPC) over the TCP protocol, so 
for large data transfers, the iSCSI transfer is a little 
more efficient.  

The CASN read performance is better than that of 
the other systems for smaller data sizes, tending to a 
maximum for data sizes larger than 64 KB with about 
the same rate as the NFS synchronous/asynchronous 
read performance, but about 20% less than that of 
iSCSI. The CASN read throughput is less than the 
write throughput as described earlier. 

Figure 5 shows the CPU utilization for the NFS, 
iSCSI, and CASN systems.  

 
(a) Write operation 

 
(b) Read operation 

Fig. 5  CPU utilization with the NFS, iSCSI, and 
CASN systems on a 1-Gbps network  

The CPU utilization results show that the NFS sys-
tem does not fully utilize the CPU, while the CASN 
and iSCSI systems fully use the CPU. In the NFS asyn-
chronous mode, the CPU utilization does not reach 
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100%, so the performance bottleneck is not the com-
putation capacity. Thus, the high throughput is based 
on its mature cache mechanism. 

The iSCSI-based systems were implemented based 
on a block-layer, so the CPU spends much time en-
capsulating and de-encapsulating iSCSI packets for the 
network transmissions. The CPU utilization is more 
than that for the NFS system. In this 1-Gbps network, 
the system performance is limited by the bandwidth for 
processing iSCSI packets rather than the network 
bandwidth, so the CPU utilization is 100%. 

The CPU utilization with CASN is also 100% since 
the system is also typically CPU-intensive. The hash 
values for the objects constructing files are needed to 
be calculated before the data is transmitted. Thus, extra 
effort is needed to improve the speed of the hash  
computation. 

Overall, the test results show that the performance of 
the three IP-networked storage systems (NFS, iSCSI, 
and CASN) are comparable with the CASN read per-
formance better than that of the other two systems 
when the data size is small, nearly double that of the 
other two systems for write operations.  

3.2  CASN and Intel OSDN performance  
comparison 

Figures 6 and 7 show the OSDN (based on the Intel 
OSD implementation) and CASN throughput for se-
quential read and write operations. The CASN 
throughput is better than that of OSDN when the object 
sizes are smaller than 512 KB with the CASN 
throughput being about 50% higher than the Intel 
OSDN throughput for an object size of 64 KB, because 
the CAS device uses its own API which is a virtual 
device on the disks, without directly interacting with 
the users. The objects are mapped onto metadata by the 
hash values, with the data then read from the disks. In 
addition, the entire I/O path in CASN is shorter than 
that of traditional devices. While the OSDN is com-
patible with the virtual file system (VFS) interface, 
read and write operations must go through the file sys-
tem, increasing the overhead. This overhead becomes 
relatively larger as the object size decreases. The 
OSDN performance is about 15% better than that of 
the CASN on average for objects larger than 4 MB 
because of the file system cache.  

 
Fig. 6  Read throughput of OSDN and CASN systems 

 
Fig. 7  Write throughput of OSDN and CASN systems 

Since every chunk is a non-overwritten object in 
CASN which is accessed as a unit, the CASN write 
performance is much better than for the other systems. 

4  Conclusions  

Various forms of networked storage systems such as 
NFS, iSCSI storage, OSDN, and CASN have been 
proposed as candidates for future storage systems. 
However, there are numerous questions associated 
with their impact on system performance. This study 
used public domain implementations of NFS, iSCSI, 
and OSD and our implementation of CASN based on 
iSCSI to compare the performance of NFS, iSCSI 
storage, OSDN, and CASN IP-networked storage sys-
tems in an environment where the storage is not shared 
across client machines. 

This paper describes the CASN implementation 
based on the Intel iSCSI and the OSD T10 standard 
with comparisons to several other typical IP-networked 
storage systems including regular storage networks 
such as NFS, iSCSI, and iSCSI-SAN based on new 
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storage devices such as OSD and CAS. The analysis 
identifies bottlenecks in these systems and suggests 
optimization directions. 

The results show that the performance characteris-
tics of the NFS and three iSCSI-based storage systems 
are comparable, with CASN having twice the write 
throughput of the NFS and iSCSI systems because 
write operations of immutable objects in CASN make 
full use of the device sequential access bandwidth, 
which is faster than the random access bandwidth. 
CASN is better than OSDN for sequential read and 
write operations when the data size is smaller (less 
than 1 GB) because of the shorter I/O path in CASN. 

Building IP-networked storage systems requires op-
timizing the I/O latency, reducing the network and 
buffer cache related processing in the servers, and in-
creasing the network bandwidth to accommodate dif-
ferent types of traffic. Thus, there will still be signifi-
cant improvements in future IP-networked storage   

systems. 
This performance comparison of IP-networked stor-

age systems is a preliminary study, limited to the basic 
throughput and CPU utilization, measured with IOme-
ter. Future work will use more types of applications to 
compare the application performance of IP-networked 
storage systems in various configurations.  
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Seven Research Projects Sponsored by the 973 Program and  
the Major Research Plan 

China’s Ministry of Science and Technology recently announced approval of China’s National Basic Research 
Program (the 973 Program) and the Major Research Plan projects in 2008. Five Tsinghua research projects will be 
sponsored by the 973 Program and two by the Major Research Plan. Seven professors were appointed as chief sci-
entists for the projects. Tsinghua has undertaken 28 projects since the 973 Program’s inception involving 28 chief 
scientists and eight Major Research Plan projects involving eight chief scientists. Tsinghua is one of the country’s 
leading institutions for supervision and conduct of the 973 Program projects.  

The five research projects approved by the 973 Program are: “Basic Research on Manufacturing Equipment in Su-
per-Large-Scale Integration” led by Professor Luo Jianbin from the Department of Precision Instruments and 
Mechanology; “Basic Research on the Architecture and Protocols of New Generation Internet” led by Professor 
Wu Jianping from the Department of Computer Science and Technology; “Research on  Theory and Technological 
Foundations of Integrated Control Systems for Complex Production Manufacturing Processes” led by Academician 
Chai Tianyou; “Some Fundamental Issues of Functional Ceramics and their Devices for Information Technologies” 
led by Professor Nan Cewen from the Department of Materials Science and Engineering; and “Astrophysical Re-
search on Black Holes and other Compact Objects” led by Professor Zhang Shuangnan from the Department of 
Physics. The two projects sponsored by the Major Research Plan are: “Structure and Function of Important Dis-
ease-Causing Membrane Proteins” led by Professor Shi Yigong, Vice Director of Tsinghua’s Institute of Biomedi-
cine, and “Exploring and Exploiting Exotic Quantum Effects at the Single Atom/Molecule Level” led by Academi-
cian Xue Qikun from the Department of Physics.   

(From http://news.tsinghua.edu.cn) 
 


