
TSINGHUA SCIENCE AND TECHNOLOGY
IS SN l l 1 0 0 7 - 0 2 1 4 l l 0 4 / 2 1 l l p p 2 9 - 4 0
Volume 14, Number 1, February 2009

Performance Comparison of IP-Networked Storage*

JU Dapeng (鞠大鹏)1,2,**, LIU Chuanyi (刘川意)3, WANG Dongsheng (汪东升)1,2,3,
LIU Hong (刘 宏)2, TANG Zhizhong (汤志忠)3

1. Research Institute of Information Technology, Tsinghua University, Beijing 100084, China;
2. Tsinghua-Nuctech Data Security Institute, Tsinghua University, Beijing 100084, China;

3. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

Abstract: Dramatically increasing amounts of digital data are placing huge requirements on storage systems.

IP-networked storage systems, such as the network file system (NFS)-based network-attached storage (NAS)

systems and the iSCSI-storage area network (SAN) systems, have become increasingly common in today’s

local area network (LAN) environments. The emergence of new storage techniques, such as object-based

storage (OBS) and content aware storage (CAS), significantly improves the functionality of storage devices

to meet further needs for storage sub-systems. However, these may impact system performance. This paper

compares the performance of NFS, iSCSI storage, object-based storage devices (OSDs), and CAS-based

storage systems in an environment with no data sharing across host machines. A gigabit ethernet network is

used as the storage network. Test results demonstrate that the performances of these systems are compa-

rable with CAS being much better than the others for write operations. The performance bottlenecks in these

systems are analyzed to provide insight into how future storage systems may be improved and possible op-

timization methods. The analysis shows how the I/O interfaces in these systems affect the application per-

formance and that network-based storage systems require optimized I/O latency and reduced network and

buffer processing in the servers.

Key words: storage technique; CAS area network; performance comparison; IP-networked storage

Introduction

The era of data and information significantly affects
every aspect of our lives. Large amounts of new data
are generated by humans every year. One study[1] es-
timated that in 2007 about 255 exabytes (255 billion
gigabytes) of information would be created and repli-
cated with the amount of information created surpass-
ing available storage capacity for the first time. The

study predicted that the information added annually
would increase more than six fold from 161 exabytes
to 988 exabytes between 2006 and 2010, growing by
57% a year. The demands on storage devices and storage
systems are growing rapidly and persistently.

With the advent of high-speed local area network
(LAN) technologies such as the gigabit ethernet,
IP-networked storage has become increasingly com-
mon in client-server environments. Ten gigabit
ethernet interconnects will soon become commodity,
accelerating this trend further.

An IP-networked storage permits access to remote
data. The traditional and widely used method for net-
working storage over IP is to simply employ a network
file system (NFS)[2]. In this approach, the server makes
a subset of its local namespace available to the clients

 Received: 2008-03-26; revised: 2008-09-22

* Supported by the National Natural Science Foundation of China
(No. 60273006) and the Basic Research Foundation of Tsinghua
National Laboratory for Information Science and Technology
(TNList)

** To whom correspondence should be addressed.
E-mail: judapeng@tsinghua.edu.cn; Tel: 86-10-62773691

 Tsinghua Science and Technology, February 2009, 14(1): 29-40

30

and the clients access metadata and files on the server
using a remote procedure call (RPC)-based protocol.

An alternate approach for accessing remote data is
to use an IP-based storage area networking (SAN)
protocol such as iSCSI[3]. iSCSI is a block-level pro-
tocol that encapsulates standard SCSI commands into
TCP/IP packets. iSCSI connects a SCSI initiator port
on a host to a SCSI target port on a storage subsystem.
The initiator and the target look like a client and a
server in an NFS system. In an iSCSI storage system, a
remote disk exports a portion of its storage space to a
client as an SCSI device. The client handles the remote
disk no differently than its local disk. It runs a local
file system that reads and writes data blocks to the re-
mote disk. Remote blocks are accessed by encapsulat-
ing SCSI commands into TCP/IP packets. Thus, iSCSI
extends the SAN network to a remote area and enables
new applications like data mirroring, remote backup,
and remote management. It also unifies the storage and
data networks, thus greatly reducing management cost.

The two techniques for accessing remote data em-
ploy fundamentally different abstractions. A network
file system accesses remote data at the granularity of
files, while SAN protocols access remote data at the
granularity of disk blocks. In the network file approach,
the file system resides at the server, whereas in the
SAN approach it resides at the client. Consequently,
the network I/O consists of file operations (file and
metadata reads and writes) for network file systems
and block operations (block reads and writes) for SAN
protocols. NFS and iSCSI provide fundamentally dif-
ferent data sharing semantics. NFS is inherently suit-
able for data sharing since it enables files to be shared
among multiple client machines while iSCSI supports
a single client for each volume on the block server.
Consequently, iSCSI permits applications running on a
single client machine to share remote data, but it is not
directly suitable for sharing data across machines.

TCP/IP is inherently slow due to several factors
such as checksum generation, protocol processing,
memory copy, and context switching. In addition,
since the IP network is not a secure network, it is cru-
cial to have the iSCSI commands and data traversing
an IP network encrypted. This adds more overhead and
further exacerbates the iSCSI performance.

The block interface to iSCSI storage systems is very
narrow and cannot convey additional semantics to the

storage for self management. Object-based storage de-
vices (OSDs) store and manage data containers called
objects which can be viewed as a convergence of file
and block technology[4]. Files have associated attrib-
utes which convey some information about the data
that is stored within. Blocks, on the other hand, enable
fast, scalable, and direct access to shared data. An
OSD is capable of managing its capacity and present-
ing file-like storage objects to its hosts. Objects can be
created and destroyed and can grow and shrink in size
during their lifetimes. A single command can be used
to read or write any consecutive stream of bytes con-
stituting a storage object. In addition to mapping data
to storage objects, the OSD storage management com-
ponent maintains other information about the storage
objects as attributes, e.g., size, usage quotas, and asso-
ciated user name. In an OSD-based iSCSI-SAN, the
server components include the iSCSI server and the
object storage server. The object storage server module
manages the physical storage media and processes
SCSI object commands.

Content aware storage[5] (CAS) is a special kind of
OSD, in which object identifiers are not user-defined
names but cryptographic hash values generated based
on their content. Since the hash values for a specified
hash function are inherently globally unique and it is
computationally infeasible to find two distinct inputs
that hash to the same value[6], the hashes for different
objects are unique. CAS uses this method to provide
integrity checking of data, space efficiency, write-once
characters, and overwrite protection. CAS is especially
useful for storing fixed content data.

Several studies have compared the performance of
IP-networked storage systems. Some of these studies
have focused on the iSCSI performance based on the
data path overhead and latency[7,8]. One report[9] com-
pared a commercial iSCSI target implementation and
an NFS system using metadata intensive benchmarks.
The overhead introduced by the iSCSI systems, com-
pared to systems with directly-attached storage, is
evaluated in the context of commodity iSCSI sys-
tems[10]. The tests used commodity personal computers
with several disks as storage nodes and a gigabit
ethernet network as the storage network. The Linux
kernel was instrumented to provide detailed informa-
tion about the I/O activity and the overhead for the
various kernel I/O layers. The NFS and iSCSI

JU Dapeng (鞠大鹏) et al：Performance Comparison of IP-Networked Storage

31

performance for environments with no data sharing
across machines was compared by Radkov et al.[11] in
terms of protocol interactions, network latency, and
sensitivity to different application workloads using a
Linux-based storage system testbed. The results show
that iSCSI and NFS are comparable for data-intensive
workloads, while the iSCSI outperforms the NFS by a
factor of two or more for metadata intensive workloads.
They identified aggressive metadata caching and ag-
gregation of metadata updates in iSCSI to be the pri-
mary reasons for this performance difference.

Du et al.[12] compared a reference implementation of
the OSD T10 with iSCSI and NFS. Their tests showed
that in general the raw read and write performance of
an OSD operation is slower than that of the corre-
sponding iSCSI operation with larger transfer sizes
yielding better throughput for both the iSCSI and OSD
systems. The throughput saturated before reaching the
network bandwidth limit of 1 Gbps. The OSD file sys-
tem throughput was significantly lower than that of the
NFS and iSCSI systems. Liu et al.[13] compared the
performance of OSD systems with iSCSI and NFS
systems and found that the write performance of the
object-based storage systems is much better, with the
CPU usage on the client side greatly reduced.

CAS, which is very useful for archival storage, digi-
tal information preservation, and data de-duplication,
has received much attention recently. There are several
studies focusing on building CAS prototypes for dif-
ferent research goals with performance evaluations.
Most CAS prototypes were designed before iSCSI was
available. Thus, the CAS systems could only be com-
pared with the NFS system as the only available
IP-networked storage at the time. Most CAS perform-
ance studies have been performed on wide-area net-
works rather than local-area network. Pond[14], an
OceanStore[15] prototype, outperformed NFS in wide-
area networks by up to a factor of 4.6 on read-intensive
phases, but underperformed NFS by as much as a fac-
tor of 7.3 on write-intensive phases. The Pond write
performance was limited by the speed of the erasure
coding and threshold signature generation. CFS[16] is a
wide-area cooperative p2p read only storage system
which delivers data to clients as fast as file transfer
protocol (FTP). Ivy[17] is a multi-user read/write p2p
network file system built atop the CFS storage layer
which uses file system semantics much like those of an

NFS v3 file server. On a wide-area network Ivy is two
to three times slower than NFS. The main performance
bottlenecks are the network latency and the cost of
generating digital signatures for the data stored in the
distributed hash. Venti[18] is several times slower than
directly accessing disks over a 100-Mbps ethernet.
CASPER[19], a distributed file system, was evaluated
for benchmarks running at client-server bandwidths of
10 Mbps, 1 Mbps, and 100 Kbps.

The current work differs from previous studies in
that this study compares the CAS performance based
on iSCSI with that of NFS, iSCSI storage, and
iSCSI-based OSD to present CAS performance char-
acteristics for modern storage systems.

These storage architectures are compared in Fig. 1.
In a modern IP-SAN system, both OSD and CAS can
be networked using the iSCSI protocol.

Although OSD and CAS appear appealing, their
impact on the system is not well defined. The adoption
of an object interface in OSD and CAS introduces fur-
ther overhead. Moreover, additional layers in the I/O
path, which include many computations such as the
computation cost of chunking algorithms or crypto-
graphic hash algorithms, are performance bottlenecks.
Thus, the performance characteristics of iSCSI-based
OSD and CAS storage area networks (OSDN and
CASN) must be understood to evaluate their impact on
various applications. There should be an extra effort
directed toward measuring and analyzing the perform-
ance parameters, and comparing the performance of
OSD and CAS with traditional storage models. While
there is some work on performance comparisons of
iSCSI storage and NFS, there are few performance
analyses comparing OSD with NFS and iSCSI systems.
To our knowledge, there are no papers comparing the
performance of CAS with iSCSI storage systems. This
paper compares the performance of NFS, iSCSI stor-
age, OSDN, and CASN systems as specific examples
of IP-networked storage systems. The objective is to
study the real performance of these storage systems,
the factors affecting their performance, and where
performance bottlenecks occur. These systems were
studied on a testbed to obtain real performance meas-
urements for these four typical IP-networked storage
systems in terms of the raw I/O performance. The
testbed uses a single client machine accessing one
remote data storage (i.e., no data sharing across

 Tsinghua Science and Technology, February 2009, 14(1): 29-40

32

Applications

System call interface

File system
user component

Location logic

File system
storage component

Block interface

Applications

Location logic

File interface

System call interface

File system
user component

File system
storage component

Storage deviceStorage device

Block I/O manager

Applications

System call interface

File system
user component

Object interface

Storage device

Block I/O manager

Location logic

File system
storage component

(a) Block interfaced model (SAN or DAS) (b) File interfaced model (NAS) (c) Object interfaced model (OSD)
Fig. 1 SAN, DAS, NAS, and OSD storage model architectures

machines). Linux is currently the only open-source plat-
form able to implement NFS, iSCSI, and OSD, so a
Linux-based storage system platform was used to com-
pare their performance. Since there is no open-source
CAS system yet, a prototype of the CAS area networked
storage (CASN) on Linux was used with the open-source
Intel iSCSI[20] as the storage transport protocol. The re-
sults show that the performance of IP-networked storage
systems such as NFS, iSCSI storage, OSDN, and CASN
systems are comparable, with CASN much better than the
others in terms of write operation performance, though
some are more suitable for specific applications and
scenarios.

1 Implementation of CASN

There are open source codes available for implement-
ing all the IP-networked storage systems except CASN.
The NFS was implemented based on NFS v3[21,22] with
Intel iSCSI[20,23] to implement both iSCSI and OSD
area networks (OSDN). The CASN was based on the
Intel iSCSI and OSD T10[24] .

As shown in Fig. 2, the CASN system consists of (1)
clients; (2) application servers, such as an e-mail server,
a multimedia server running specific applications; (3)
CAS servers; (4) metadata server in charge of metadata
interactions with clients and security mechanisms such

as authentication of clients and data access control; (5)
a network connecting client hosts and application
servers, which is usually the Internet; and (6) a storage
area network (SAN) used to connect application serv-
ers and the CAS devices through a 1-Mbps IP-SAN
based on Intel iSCSI v2.0[20,23].

1.1 Client, application server, and CAS appliances

Clients deliver application requests to a specified ap-
plication server and handle responses returned from the
application server.

Application servers are located in the middle layer
of the storage network architecture, communicating
with both the clients and CAS servers. A specific ap-
plication server, such as a web server, an e-mail server,
a file server, or a multimedia server, handles requests
from various clients through packages usually de-
ployed on the Internet. To avoid frequent metadata
communication with the metadata server (MDS), ap-
plication servers also locally cache triples (file path,
offset, and object ID).

Every application server is bound with a CAS ap-
pliance which divides files to be archived into objects,
uses the OSD T10 standard interface to transfer objects
to the CAS servers and stores file-object mappings as
well as metadata describing the files and objects on the

JU Dapeng (鞠大鹏) et al：Performance Comparison of IP-Networked Storage

33

Fig. 2 CASN architecture

MDS for future restore and data retrieval operations.
The CAS appliances transfer data from or to the CAS
servers across the OSD T10 standard object interface.

The structure of the CAS appliance is shown in the
upper right part of Fig. 2. Files are archived and re-
trieved from the exposed file archive/restore interface
of the CAS appliance. If a file operation is archiving,
the file divider module is employed to divide the file
into objects and the hash value of each object’s content
is calculated as the object ID. The metadata informa-
tion is stored into the MDS for future access and
retrieval.

The key function of the CAS appliance is the file
division, i.e., how to divide files into objects so as to
most reduce the inter-file duplication. To reduce the
complexity of this typical component, the CASN first
used a fixed size object division method.

1.2 MDS and security protocol

The MDS functions can be classified into two types:
(1) Managing the metadata for the files and objects.

When a new file is created, the file attributes (such as

the file path, inode information, and application attrib-
utes) are extracted and stored into an entry in the
File_Attibutes_Table. Then the file is divided into ob-
jects by the file divider in the CAS appliance. The
file-object mapping is then stored into the File_Object_
Table. The object metadata is stored in the Object_
Metadata_Table. When an application server wants to
restore or retrieve a file, it first passes the file path and
the byte offset within the file to the MDS. The MDS
translates the request into the object index and searches
the File_Object_Table to find which CAS server has
the objects. When the location information is received,
the application server directly communicates with the
CAS server to transfer the data. Further requests for
the same object will not involve the MDS. With this
out-of-band mechanism, the MDS is only in the control
path but not the data path, so it cannot become a sys-
tem bottleneck. Moreover, since the CASN, MDS, and
application servers are all in the same high speed local
area network, the latency of the interactions between
servers can be ignored.

 Tsinghua Science and Technology, February 2009, 14(1): 29-40

34

(2) Security authentication and access control. The
MDS handles the client authentication, device opera-
tion authentication, and object operation access
control.

The T10 SCSI OSD Standard[24] includes an inte-
grated security protocol that protects the storage and
specifies a credential-based access control policy for
the core components. The resulting protocol is based
on a secure capability-based model, enabling
fine-grained access control that protects both the entire
storage device and individual objects from unauthor-
ized access. A security protocol conforming to this
standard was implemented to check not only a host’s
identity but also authenticate qualified storage opera-
tions granted to a host. Moreover, it also provides data
integrity checking by using a cryptographic hash func-
tion to prevent a malicious server from fulfilling a read
request with fraudulent data.

In the CASN, a client wishing to perform an I/O re-
quest should follow the steps described in Fig. 3. An
application server can request an I/O operation to a
CAS server only if its ID has been successfully au-
thenticated. When an application server requests an
operation, it contacts the MDS to obtain the capability
including the operation permission and a capability key
to generate an integrity check value. The MDS creates
a capability key with a key shared between the MDS
and the CAS server, and a credential which contains
the capability and capability key. After receiving the

Fig. 3 CASN security protocol

credential returned from the MDS, the application
server copies the capability included in the credential
to the capability portion of the command description
block (CDB) and generates an integrity check value of
the CDB with the received capability key. The CDB
with the digested hash value called the request integ-
rity check value is sent to the CAS server. When the
CAS server receives the CDB, it checks the validity of
the CDB with the request integrity check value.

Therefore, both the entire storage server and indi-
vidual objects can be protected from unauthorized ac-
cess by this security mechanism. To access objects, a
user must acquire cryptographically secure credentials
from the MDS. Each credential contains a capability
that identifies a specific object, a list of operations that
may be performed on that object, and a capability key
that is used to securely communicate with the CAS
server. Before granting access to any object, each CAS
server checks whether the requestor has the appropriate
credentials. Here, the credential is a data structure
containing a capability prepared by the MDS and pro-
tected by an integrity check value.

1.3 CAS server and interface

The inner architecture of a CAS server is shown in the
lower part of Fig. 2. This autonomic system consists of
commodity components such as processors, I/O chan-
nels, disk controllers, disks or disk arrays, and usually
a large amount of memory, as well as network adapters
to connect with other CAS servers, MDS, and applica-
tion servers to construct the SAN. The CAS API is
wrapped with the OSD standard command library to
work seamlessly with CAS servers from other venders
while making use of the existing IP-SAN transport
protocol. The location logic layer below the interface
locates the object metadata inside the CAS devices.
The next layer is the content object manager which is
located above the block I/O manager and behaves as an
abstract CAS device driver, supporting object man-
agement and immutability. Its functions include defin-
ing and managing metadata, mapping between the
metadata and the data, managing free space, and allo-
cating (de-allocating) object space. The bottom layer is
the block I/O manager, which separates a logical de-
vice from the underlying physical devices, regardless
of the actual type (SCSI device, SATA device, or disk
array). In the CASN, this layer is supported by the

JU Dapeng (鞠大鹏) et al：Performance Comparison of IP-Networked Storage

35

logical volume management (LVM) mechanism of the
Linux kernel.

A CAS server uses a globally unique object ID (OID)
to represent each object which includes the global
name space design and management. The CASN uses
cryptographic hash functions, such as MD5 or SHA1,
to generate the object content hash value represented
as the object’s ID. Fortunately, the hash values for a
specified hash function are inherently globally unique
and it is computationally infeasible to find two distinct
inputs that hash to the same value[6].

The units of storage accessed in a CAS server are
classified as objects. Each object is associated with a
metadata structure, similar to the relationship between
a file and an inode in file systems. However, unlike file
systems, the metadata is part of the object so it con-
tains the necessary and sufficient information to re-
trieve the real data. In the CASN design, the object
metadata is organized as an XML file and the object
attributes can be extracted for use as an index for
building a search engine to dramatically speed up con-
tent search efficiency at the storage level. A metadata
memory cache can speed up I/O operations.

When a request comes to a specific CAS server, the
CAS server first queries the hash-metadata map table
to find the location of the metadata associated with the
object, then gets the related metadata by which to re-
trieve the object content, and finally reads or writes the
data from or to the CAS server. This flat namespace in
the CAS servers gives significant performance im-
provements over traditional file systems which need
several metadata access steps to traverse the file path
tree.

A CAS server needs to keep a hash-metadata map
record for each object since each hash digest corre-
sponds to an object. With increasing number of stored

objects, traversing the whole map table to find the
specified hash-metadata record will cost more and
more time. In the CASN, the hash-metadata map table
is stored in a red-black tree[25] data structure, with the
metadata in the hash-metadata map table stored in a
fixed position on the disks, to function like a su-
per-block in a file system glossary. When a CAS server
boots up, the system copies the metadata in the
hash-metadata map table from the disks into the main
memory to reduce the object location time. To increase
reliability, the hash-metadata map table cache is peri-
odically written back to the disks when changes occur
(new objects are inserted or old objects are deleted).

Sectors associated with an object should be kept
contiguous whenever possible. All blocks needed for a
particular object are allocated in advance since object
sizes do not change dynamically.

A CAS server maintains a list of contiguous free
blocks on the disks. Each entry in the list contains the
address of the first sector and the number of free con-
tiguous sectors. The space track method is similar to
the conventional track method.

The interface of a CAS server is compliant with the
OSD T10 standard so as to work seamlessly with CAS
servers from various venders. It also directly makes
use of the IP-SAN data transfer protocols (such as
iSCSI and iFCP) without modification. The interface
definition and operation descriptions are listed in
Table 1.

The operation API is embedded into the SCSI OSD
standard command library at the CAS server interface.
The OSD commands are described in detail in the OSD
specification[4]. The commands and data are then en-
capsulated and transferred to the IP storage area net-
work. The CASN transport protocol uses iSCSI[20,23].

Table 1 CAS device interface

CAS API Function prototype Description

CREATE Hash Retval = CREATE(out Hash h, in Data data)
Cause the CAS device to allocate and initialize one

or more user objects
REMOVE Status Retval = REMOVE(in Hash h) Delete a user object

READ Status Retval = READ(in Hash h, out Data data)
Request that the CAS device returns data to the

application client from the specified user object
QUERY Status Retval = QUERY(in Hash h) Indicate whether the specified object exists

GET_ATTR Status Retval = GET_ATTR(in Hash h, out Attributes attr)
Return the specified attributes for the specified

object
FORMAT Status Retval = FORMAT(in CAS_ID cas) Format CAS device

 Tsinghua Science and Technology, February 2009, 14(1): 29-40

36

2 Experimental Setup and Method

The performances of four IP-network storage systems,
NFS, iSCSI, OSDN, and CASN, were measured on a
storage testbed. The storage testbed consisted of a cli-
ent, an application server, and a storage server con-
nected over an isolated gigabit ethernet LAN.

A Sun Fire V40z server used as the storage server
was equipped with 4 AMD dual-core processors at
2.4 GHz (1 MB L2 cache per processor), 16 GB RAM,
and 6 Ultra-320 SCSI disks (146 GB per disk). A SUN
workstation used as the application server was
equipped with 2 AMD dual-core processors at 1 GHz
(1 MB L2 cache per processor), 8 GB RAM, and a
250-GB Ultra-320 SCSI disk. The network connection
was a 1-Gbps D-Link DGE550T switch. The open
source Intel iSCSI was used to implement the iSCSI
storage with a 4-KB blocksize. The client shared
10 GB storage with the server. This client server ma-
chine combination was used for all four storage con-
figurations with the same disk partition at the server to
ensure the disk performance remained constant for all
configurations.

The Linux operating system was kernel version
2.6.9. The NFS version was v.3. Both synchronous and
asynchronous modes were measured with default NFS
parameter settings and with UDP as the transport pro-
tocol. The iSCSI system used the Intel iSCSI v2.0 with
the default parameter settings. The CASN treated the
whole file as an object, with the ObjectIDs generated
using the MD5[6] hash algorithm.

The NFS, iSCSI, OSDN, and CASN systems are
typical low-level architecture implementations of
IP-networked storage systems corresponding to storage
domains in the SNIA shared storage model[26]. Every
application executes on top of the storage domain layer.
All the storage methods are transparent to the applica-
tions, regardless of which system is used in the sub-
strate. The performance characteristics of the NFS,
iSCSI, OSDN, and CASN systems were evaluated us-
ing applications unrelated to the differences in their
implementations.

The main goal of the evaluation was to compare the
primary performance parameters and to identify sys-
tem bottlenecks. The throughput and CPU utilization
were measured during the transmission of network files
to evaluate the system performance characteristics.

IOmeter[27] was used as the testing benchmark since
it is a configurable workload generator that has been
used extensively for basic evaluations of I/O subsys-
tems. However, IOmeter can only test storage systems
with block interfaces; therefore, parts of the IOmeter
code were modified. The implemented IOmeter can
extract both the test parameters and the test results. The
test program acquires the state information from the
Linux kernel files to calculate the system performance
parameters. The application server initiated read/write
operations with files having sizes from 1 KB to 1 GB
to the storage server, recording both the operation start
and stop times. The read/write throughput was ob-
tained from the data set size divided by the interval
between the start and the stop times.

3 Experimental Results and Analysis
3.1 Performance comparison of NFS, iSCSI

storage, and CASN

Figure 4 shows the throughput of read/write operations
for the NFS, iSCSI, and CASN systems.

The write throughput in the first part of Fig. 4 dem-
onstrates that in the NFS system the throughput in the
asynchronous write operation mode approaches
60 MB/s for data sizes larger than 1 MB, but in the
synchronous write mode the average throughput is
only 1-2 MB/s because in the synchronous model the
server doesn’t complete an NFS request (reply to the
client) until the file system on the server has flushed all
the data/metadata onto the disk, while the asynchro-
nous mode permits the server to reply to client requests
as soon as it has processed the request and handed it
off to the local file system, without waiting for the data
to be written to disk.

The iSCSI write throughput increases continuously
and approaches about 50 MB/s for data sizes greater
than 512 KB. For smaller data unit sizes (less than
64 KB), the iSCSI write throughput doubles the NFS
write throughput.

In the CASN the write throughput increases more
quickly, reaching the upper limit for data sizes larger
than 64 KB. The CASN has nearly twice the write
throughput of the other two systems for any data size
because write operations are performed for immutable
objects which are appended sequentially to the storage
devices, so the CASN can fully make use of the device

JU Dapeng (鞠大鹏) et al：Performance Comparison of IP-Networked Storage

37

(a) Write operation

(b) Read operation

Fig. 4 Throughput for the NFS, iSCSI, and CASN
systems on a 1-Gbps network

sequential access bandwidth, which is almost one order
of magnitude faster than the random access bandwidth.
In addition, both the storage server and the application
server use large amounts of memories, larger than the
transmitted data sizes. The asynchronous I/O mecha-
nism makes full use of the system memories, so appli-
cations and I/O operations may run in parallel, im-
proving the overall system performance.

The read throughput in Fig. 4b increases continu-
ously with increasing data size. Both the NFS syn-
chronous and asynchronous read operation throughputs
are faster than the write operations, about 80 MB/s.
The system bottleneck is the limited network band-
width in the NFS asynchronous read operation.

The throughput for the read operations on the iSCSI
storage can achieve 100 MB/s, doubles the throughput
for write operations and almost equals the limit of the
network bandwidth. The iSCSI read operations have
similar trends to the NFS results. The big difference
between these two schemes lies in the networking file

access protocol. For each file access, NFS as a stateless
protocol running on the file level requires the exchange
of several commands before data communication can
occur. In the iSCSI the client side retains the file states
and its directories, which saves several round trips.
Also, iSCSI uses the TCP protocol, while NFS uses
remote procedure call (RPC) over the TCP protocol, so
for large data transfers, the iSCSI transfer is a little
more efficient.

The CASN read performance is better than that of
the other systems for smaller data sizes, tending to a
maximum for data sizes larger than 64 KB with about
the same rate as the NFS synchronous/asynchronous
read performance, but about 20% less than that of
iSCSI. The CASN read throughput is less than the
write throughput as described earlier.

Figure 5 shows the CPU utilization for the NFS,
iSCSI, and CASN systems.

(a) Write operation

(b) Read operation

Fig. 5 CPU utilization with the NFS, iSCSI, and
CASN systems on a 1-Gbps network

The CPU utilization results show that the NFS sys-
tem does not fully utilize the CPU, while the CASN
and iSCSI systems fully use the CPU. In the NFS asyn-
chronous mode, the CPU utilization does not reach

 Tsinghua Science and Technology, February 2009, 14(1): 29-40

38

100%, so the performance bottleneck is not the com-
putation capacity. Thus, the high throughput is based
on its mature cache mechanism.

The iSCSI-based systems were implemented based
on a block-layer, so the CPU spends much time en-
capsulating and de-encapsulating iSCSI packets for the
network transmissions. The CPU utilization is more
than that for the NFS system. In this 1-Gbps network,
the system performance is limited by the bandwidth for
processing iSCSI packets rather than the network
bandwidth, so the CPU utilization is 100%.

The CPU utilization with CASN is also 100% since
the system is also typically CPU-intensive. The hash
values for the objects constructing files are needed to
be calculated before the data is transmitted. Thus, extra
effort is needed to improve the speed of the hash
computation.

Overall, the test results show that the performance of
the three IP-networked storage systems (NFS, iSCSI,
and CASN) are comparable with the CASN read per-
formance better than that of the other two systems
when the data size is small, nearly double that of the
other two systems for write operations.

3.2 CASN and Intel OSDN performance
comparison

Figures 6 and 7 show the OSDN (based on the Intel
OSD implementation) and CASN throughput for se-
quential read and write operations. The CASN
throughput is better than that of OSDN when the object
sizes are smaller than 512 KB with the CASN
throughput being about 50% higher than the Intel
OSDN throughput for an object size of 64 KB, because
the CAS device uses its own API which is a virtual
device on the disks, without directly interacting with
the users. The objects are mapped onto metadata by the
hash values, with the data then read from the disks. In
addition, the entire I/O path in CASN is shorter than
that of traditional devices. While the OSDN is com-
patible with the virtual file system (VFS) interface,
read and write operations must go through the file sys-
tem, increasing the overhead. This overhead becomes
relatively larger as the object size decreases. The
OSDN performance is about 15% better than that of
the CASN on average for objects larger than 4 MB
because of the file system cache.

Fig. 6 Read throughput of OSDN and CASN systems

Fig. 7 Write throughput of OSDN and CASN systems

Since every chunk is a non-overwritten object in
CASN which is accessed as a unit, the CASN write
performance is much better than for the other systems.

4 Conclusions

Various forms of networked storage systems such as
NFS, iSCSI storage, OSDN, and CASN have been
proposed as candidates for future storage systems.
However, there are numerous questions associated
with their impact on system performance. This study
used public domain implementations of NFS, iSCSI,
and OSD and our implementation of CASN based on
iSCSI to compare the performance of NFS, iSCSI
storage, OSDN, and CASN IP-networked storage sys-
tems in an environment where the storage is not shared
across client machines.

This paper describes the CASN implementation
based on the Intel iSCSI and the OSD T10 standard
with comparisons to several other typical IP-networked
storage systems including regular storage networks
such as NFS, iSCSI, and iSCSI-SAN based on new

JU Dapeng (鞠大鹏) et al：Performance Comparison of IP-Networked Storage

39

storage devices such as OSD and CAS. The analysis
identifies bottlenecks in these systems and suggests
optimization directions.

The results show that the performance characteris-
tics of the NFS and three iSCSI-based storage systems
are comparable, with CASN having twice the write
throughput of the NFS and iSCSI systems because
write operations of immutable objects in CASN make
full use of the device sequential access bandwidth,
which is faster than the random access bandwidth.
CASN is better than OSDN for sequential read and
write operations when the data size is smaller (less
than 1 GB) because of the shorter I/O path in CASN.

Building IP-networked storage systems requires op-
timizing the I/O latency, reducing the network and
buffer cache related processing in the servers, and in-
creasing the network bandwidth to accommodate dif-
ferent types of traffic. Thus, there will still be signifi-
cant improvements in future IP-networked storage

systems.
This performance comparison of IP-networked stor-

age systems is a preliminary study, limited to the basic
throughput and CPU utilization, measured with IOme-
ter. Future work will use more types of applications to
compare the application performance of IP-networked
storage systems in various configurations.

References

[1] Gantz J F, Reinsel D, Chute C, et al. The expanding digital
universe: A forecast of worldwide information growth
through 2010. An Internet Data Center (IDC) White Paper,
sponsored by EMC, 2007.

[2] Sandberg R, Goldberg D, Kleiman S, et al. Design and
implementation of the Sun network file system. In:

Proceedings of the Summer 1985 USENIX Conference.
Portland, USA, 1985: 119-130.

[3] IETF (Internet Engineering Task Force). iSCSI, version 08.
IP storage (IPS), Internet draft, Document: draft-ietf-ips-
iscsi-08.txt, 2001.

[4] Mesnier M, Ganger G R, Riedel E. Object-based storage.
IEEE Communications Magazine, 41(8): 84-90.

[5] Cakeljic Z. Content aware storage. Storage Networking
Industry Association (SNIA), 2005.

[6] Rompay B V, Preneel B, Vandewalle J. On the security of
dedicated hash functions. In: Proceedings of the 19th
Symposium on Information Theory. Veldhoven, Nether-
lands, 1998: 103-110.

[7] Aiken S, Grunwald D, Pleszkun A R, et al. A performance
analysis of the iSCSI protocol. In: Proceedings of the 20th
IEEE Symposium on Mass Storage Systems. San Diego,
USA, 2003: 123-134.

[8] Lu Y P, Du D H C. Performance study of iSCSI-based
storage subsystems. IEEE Communications Magazine,
2003, 41(8): 76-82.

[9] Performance comparison of iSCSI and NFS IP storage
protocols. Technical report, TechnoMages, Inc. http://
www.technomagesinc.com/papers/ip-paper.html, 2003.

[10] Xinidis D, Bilas A, Flouris M D. Performance evaluation
of commodity iSCSI-based storage systems. In: Proceed-
ings of the 22nd IEEE/13th NASA Goddard Conference on
Mass Storage Systems and Technologies (MSST’05).
Monterey, CA, USA, 2005: 261-269.

[11] Radkov P, Yin L, Goyal P, et al. A performance comparison
of NFS and iSCSI for IP-networked storage. In: Proceed-
ings of the USENIX Conference on File and Storage
Technologies (FAST). San Francisco, USA, 2004:
101-114.

[12] Du D, He D S, Hong C J, et al. Experiences building an
object-based storage system based on the OSD T-10 stan-
dard. DTC Research Report, 2006.

[13] Liu P C, Hong S K, Hsu Y. Security enhancement and
performance evaluation of an object-based storage system.
Lecture Notes in Computer Science, 2007, 4782: 408-419.

[14] Rhea S, Eaton P, Geels D, et al. Pond: The OceanStore
prototype. In: Proceedings of the Second USENIX Con-
ference on File and Storage Technologies (FAST 2003).
San Francisco, USA, 2003: 257-270.

[15] Kubiatowicz J, Bindel D, Chen Y, et al. OceanStore: An
architecture for global-scale persistent storage. In: Pro-
ceedings of ACM ASPLOS (Architectural support for pro-
gramming languages and operating systems). Cambridge,
Massachusetts, USA, 2000, 35(11): 190-201.

[16] Dabek F, Kaashoek M F, Karger D, et al. Wide-area coop-
erative storage with CFS. In: Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP).
Banff, Canada, 2001: 202-215.

[17] Muthitacharoen A, Morris R, Gil T M, et al. Ivy: A
read-write peer-to-peer file system. In: Proceedings of the
5th Symposium on Operating Systems Design and Imple-
mentation (OSDI). Boston, USA, 2002: 31-44.

[18] Quinlan S, Dorward S. Venti: A new approach to archival
storage. In: Proceedings of the 2002 Conference on File
and Storage Technologies (FAST). Monterey, California,
USA, 2002: 89-101.

 Tsinghua Science and Technology, February 2009, 14(1): 29-40

40

[19] Tolia N, Kozuch M, Satyanarayanan M, et al. Opportunis-
tic use of content addressable storage for distributed file
systems. In: Proceedings of Usenix 2003 Annual Technical
Conference. San Antonio, USA, 2003: 127-140.

[20] Intel’s open storage toolkit. Reference implementations of
Internet SCSI (iSCSI) and object-based storage devices
(OSD). http://sourceforge.net/projects/intel-iscsi, March,
2001.

[21] Pawlowski B, Juszczak C, Staubach P, et al. NFS version 3
design and implementation. In: Proceedings of the Summer
1994 USENIX Conference. Boston, USA, 1994: 137-152.

[22] Callaghan B, Pawlowski B, Staubach P. NFS version 3
protocol specification. Sun Microsystems, Inc. 1995.

[23] Linux-iSCSI project. http://linux-iscsi.sourceforge.net,
April, 2004.

[24] International Committee for Information Technology
Standards (INCITS). SCSI object-based storage device
commands-2 (OSD-2). Project T10/1731-D.
http://www.t10.org/ftp/t10/drafts/osd2/osd2r00.pdf, 2004.

[25] National Institute of Standards and Technology (NIST).
Red-black tree. http://www.nist.gov/dads/HTML/redblack.
html. Accessed on Aug 25, 2008.

[26] Storage Networking Industry Association (SNIA) Techni-
cal Council. Shared storage model. 2003.

[27] Intel Server Architecture Lab. IOmeter: The I/O perform-
ance analysis tool for servers, February, 1998.

Seven Research Projects Sponsored by the 973 Program and
the Major Research Plan

China’s Ministry of Science and Technology recently announced approval of China’s National Basic Research
Program (the 973 Program) and the Major Research Plan projects in 2008. Five Tsinghua research projects will be
sponsored by the 973 Program and two by the Major Research Plan. Seven professors were appointed as chief sci-
entists for the projects. Tsinghua has undertaken 28 projects since the 973 Program’s inception involving 28 chief
scientists and eight Major Research Plan projects involving eight chief scientists. Tsinghua is one of the country’s
leading institutions for supervision and conduct of the 973 Program projects.

The five research projects approved by the 973 Program are: “Basic Research on Manufacturing Equipment in Su-
per-Large-Scale Integration” led by Professor Luo Jianbin from the Department of Precision Instruments and
Mechanology; “Basic Research on the Architecture and Protocols of New Generation Internet” led by Professor
Wu Jianping from the Department of Computer Science and Technology; “Research on Theory and Technological
Foundations of Integrated Control Systems for Complex Production Manufacturing Processes” led by Academician
Chai Tianyou; “Some Fundamental Issues of Functional Ceramics and their Devices for Information Technologies”
led by Professor Nan Cewen from the Department of Materials Science and Engineering; and “Astrophysical Re-
search on Black Holes and other Compact Objects” led by Professor Zhang Shuangnan from the Department of
Physics. The two projects sponsored by the Major Research Plan are: “Structure and Function of Important Dis-
ease-Causing Membrane Proteins” led by Professor Shi Yigong, Vice Director of Tsinghua’s Institute of Biomedi-
cine, and “Exploring and Exploiting Exotic Quantum Effects at the Single Atom/Molecule Level” led by Academi-
cian Xue Qikun from the Department of Physics.

(From http://news.tsinghua.edu.cn)

