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Abstract— Estimation of the generalization ability of a classi-
fication or regression model is an important issue, as it indicates
the expected performance on previously unseen data and is
also used for model selection. Currently used generalization
error estimation procedures, such as cross-validation (CV) or
bootstrap, are stochastic and, thus, require multiple repetitions
in order to produce reliable results, which can be computationally
expensive, if not prohibitive. The correntropy-inspired density-
preserving sampling (DPS) procedure proposed in this paper
eliminates the need for repeating the error estimation procedure
by dividing the available data into subsets that are guaranteed to
be representative of the input dataset. This allows the production
of low-variance error estimates with an accuracy comparable to
10 times repeated CV at a fraction of the computations required
by CV. This method can also be used for model ranking and
selection. This paper derives the DPS procedure and investigates
its usability and performance using a set of public benchmark
datasets and standard classifiers.

Index Terms— Bootstrap, correntropy, cross-validation, error
estimation, model selection, sampling.

I. INTRODUCTION

ESTIMATION of the generalization ability of a classi-
fication or regression model is an important issue in

machine learning, especially because it is independent of the
actual model used. Generalization accuracy estimates act not
only as the indicators of expected performance on previously
unseen data, but are also routinely used for model ranking and
selection [1].

In contrast to the large number of various regression and
classification methods currently in use, there are only a
handful of model-independent generalization error estimation
techniques. The most popular of them are cross-validation
(CV) [2], dating back to 1968, and bootstrap [3], developed
in 1979. These techniques, especially CV, are being used even
more willingly and blindly after the publication of a seminal
paper by Kohavi in 1995, presenting a comparative study of
bootstrap and CV [4], which is currently estimated to have
almost 2800 citations [5].
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The basic idea, shared by all generalization error estimation
methods, is to reserve a subset of available data to test the
model after it has been trained using the remainder of the
dataset.1 The main difference between the various techniques
is the way the generalization error is calculated, the size of
the subset reserved for testing, or whether the procedure is
repeated multiple times or not. They also have something in
common, however, and that is the way in which the testing
subset is generated–random sampling. Although the stochastic
nature of bootstrap and CV ensures that, in the limit, they
would both converge to a true value, this may also lead to large
variations in the estimate between consecutive runs, making
the results unreliable. This effect can be alleviated to a large
extent by repeating both procedures multiple times, which,
however, significantly increases the computational demands.

A good test set should be independent of the training data
and representative of the population from which it has been
drawn. While random sampling meets the first requirement, it
does not guarantee the representativeness. Stratified sampling
approaches [4] address this issue by trying to increase the
representativeness at the expense of independence, and are able
to achieve better results than their nonstratified counterparts.

Building upon the success of stratified sampling approaches,
we propose a density-preserving sampling (DPS) procedure,
which goes a step further and samples the data at the level
of individual clusters to enforce representativeness of the
test set. This is achieved by optimizing a dataset similarity
index inspired by the correntropy, which is a nonparametric
similarity measure of two random variables [6]. According
to the experiments, DPS produces accurate generalization
estimates, requiring a fraction of computations when compared
to CV.

This paper extends the work in [7], among others, by
providing better theoretical justification of the method, con-
siderably extending its experimental evaluation (additional
datasets, comparison with bootstrap), investigating the prob-
lem of DPS-guided model selection, and building of ensemble
models. The rest of this paper is organized as follows. In
Section II, the problem of estimation of generalization error
is introduced, together with standard techniques and criteria
of their evaluation. Section III describes the concept of infor-
mation theoretic learning (ITL) and correntropy, used in the
novel DPS procedure derived in Section IV. The experimental
results, including evaluation of DPS in terms of bias and

1There also exist methods for in-sample error estimation, which, however,
are not of general purpose (e.g., [8] for support vector machines).
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variance as well as its usability for model selection, are given
in Section V. Finally, discussion and conclusions are given in
Sections VI and VII, respectively.

II. GENERALIZATION ERROR ESTIMATION

Generalization error is the error of a predictive model on
previously unseen data, generated from the same distribution
as the data used to develop it [1]. Low generalization error
is thus a sign of a good match between the model and the
problem, and lack of overfitting.

It is impossible to obtain a closed-form solution for cal-
culation of the generalization error, or even for calculation of
tight bounds for the error, in all but the simplest cases [9]. The
only practical solution is to estimate the generalization error
from all available independently and identically distributed
data samples by splitting them into training and validation
sets [10]. For the error estimate to be meaningful, both these
datasets should be representative of the true distribution, and
so the way in which the data is split plays a crucial role.

A. Hold-Out and Random Subsampling

The simplest and the least computationally expensive way to
estimate the generalization error is the hold-out method [11],
in which the data is split randomly into two parts: the training
set and the hold-out set, in proportions chosen a priori. The
model is then trained using the training dataset and its error
on the hold-out data becomes an estimate of the generalization
error. The drawback of the hold-out method is that, unless both
datasets are large enough (which is a vague term in itself),
different estimates will be obtained from one run to another.
Hence in random subsampling [10], the hold-out procedure
is repeated multiple times and the results are averaged. This,
however, still does not guarantee that all instances will at some
point be used for training, nor that none of the classes will be
over/underrepresented in the hold-out set [4]. To circumvent
these issues, more advanced resampling techniques have been
developed. Yet, the hold-out method is still used when dealing
with large datasets if other techniques become intractable.
It is also sometimes assumed that more advanced resampling
techniques are simply not needed for large amounts of data.

B. CV

CV is a widely used standard statistical technique for the
estimation of model generalization ability, applied with a great
success to both classification and regression problems [1]. In
k-fold CV, the whole available dataset is randomly divided
into k approximately equal subsets. Each of these subsets, or
folds, is then in turn put aside as validation data, and a model
is built using the remaining k − 1 folds which is tested on the
validation fold. The error estimate is then calculated as a mean
of all validation errors, while their standard deviation can be
used to approximate the confidence intervals of the obtained
estimate. The whole procedure thus requires development of
exactly k models. Since the results obtained in this setting
are also likely to vary from one run to another, the procedure
is repeated multiple times for various random splits, and the
results are averaged.

The most often used variants of CV are the following.
1) Leave-one-out CV in which a single instance is used as a

validation set. This produces unbiased but high-variance
error estimates and can be computationally prohibitive
for large datasets.

2) Repeated 10-fold CV, which often is a good compromise
between speed and accuracy.

3) Repeated twofold CV, which is an approximation of the
bootstrap method [11].

In order to improve the accuracy of the estimates obtained,
a stratified CV approach is used in practice, which samples
the data in a way that approximates the percentage of each
class in every fold [4]. For regression problems, stratified CV
produces folds with equal means of the target variable [10].

C. Bootstrap

Bootstrap is a second commonly used generalization error
estimation procedure [1], and is especially useful when dealing
with small datasets [11]. Given an input dataset of size m,
the method performs uniform sampling with replacement to
produce a training set of the same size. The instances not
selected during the sampling procedure become the test set.
The probability of each instance ending up in the test set is (1−
(1/m))m ≈ e−1 ≈ 0.368, while the probability of ending up in
the training set is 1−0.368 = 0.632. Hence the method is also
often called the 0.632 bootstrap [11]. Since the error estimate
obtained using test data only would be overly pessimistic (only
63.2% of instances are used for training), to compensate for
this effect it is calculated as error = 0.632 × e0 + 0.368 × ebs,
where e0 is the error rate obtained from bootstrap sets not
containing the point being predicted (test set error) and ebs

is the error obtained on the bootstrap sets themselves, both
averaged over all instances and bootstrap samples. The more
times the whole process is repeated, the more accurate the
estimate will be. A detailed treatment of the bootstrap methods
can be found in [12].

Techniques such as bootstrap and CV have been developed
primarily to address the situations when data is scarce and one
cannot afford a separate hold-out set. In the case when data is
abundant and its distribution does not undergo changes over
time, a single stratified random split is usually able to provide
the required level of representativeness.

A comparative study of CV and bootstrap for a set of
standard benchmark datasets can be found in [4]. A number
of follow-up studies for microarray data [13], synthetic data
[14], and regression problems [15] also exist.

D. Bias and Variance of Error Estimation Methods

The bias of an error estimation method is the difference
between the expected value of the error and the estimated
value [4]. For an unbiased estimator, this difference is equal
to zero. Bias can also be either positive or negative. In the
former case, the estimate is said to be overly optimistic, as the
estimated error is lower than the expected error. Negative bias,
on the other hand, leads to overly pessimistic error estimates.

Low bias on its own does not guarantee good performance
of the model. There is another important parameter, namely,
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the variance, which measures the variability of the error
estimate from one run to another. In the case of subsampling
methods discussed in this paper, the variability is usually
approximated by the expected standard deviation of a single
accuracy estimation run [4]. A good generalization error
estimator should thus have low bias and low variance. Unfor-
tunately, in practice, it is usually difficult to achieve both at
the same time, leading to so called bias–variance tradeoff [1].

III. REPRESENTATIVE SAMPLING

Both CV and bootstrap, described in Sections II-B and
II-C, are stochastic methods. The immediate consequence is
that the results can vary a lot from one repetition to another,
and there is no guarantee that the datasets obtained by splitting
the original data are representative, which is a necessary
condition for obtaining accurate error estimates. Thus, in order
to obtain reliable results, averaging over multiple iterations is
required. In general, the more number of times the procedure
is repeated the better, as in the limit both methods would
converge to the true error values. For k−fold CV using
m−element dataset, this could mean averaging over all

( m
m/k

)

ways of choosing m/k instances out of m (complete CV [4]),
which quickly becomes intractable. There is, however, another,
often overlooked possibility—intelligent sampling aiming at
producing only representative splits.

From statistics, a random sample is considered representa-
tive if its characteristics reflect those of the population from
which it is drawn [16]. Since these characteristics are naturally
reflected by the probability density function (PDF), the more
similar the distribution of the sample to the distribution of the
population, the more representative this sample is. Hence a
sampling procedure aiming at maximization of some similarity
measure between PDFs of the two samples should intuitively
ensure their mutual representativeness.

There are many PDF divergence measures in the literature
[17]. Perhaps the best known of them is the Kullback–Leibler
divergence [18] and its two modifications, i.e., Jeffrey’s and
Jensen–Shannon divergences [19]. Although most of these
measures have strong theoretical foundations, there are usually
no closed-form solutions to calculate them, they are difficult
to estimate from samples smaller than thousands of instances,
and their direct optimization is even more challenging [20],
[21]. However, a recently developed ITL framework [22] can
provide another solution.

A. ITL

ITL is a procedure of parameter adaptation using an infor-
mation theoretic criterion [22]. Application of information
theory to learning problems is, however, not straightforward.
The main issue is the omnipresent “learning from exemplars”
paradigm, while information theory in its traditional form is
only able to deal with PDFs given in analytic forms [23].
The cornerstone of ITL is thus an alternative easily calculable
definition of entropy—the Renyi’s quadratic entropy: HR2 =
− log

∫
p(y)2 dy. An important property of Renyi’s entropy is

that its extrema overlap with the extrema of Shannon’s entropy

[22], so both definitions are equivalent for the purpose of
optimization.

Denoting by G(y, σ 2 I ) a spherical Gaussian kernel cen-
tered at y with a diagonal covariance matrix σ 2 I , the PDF
can be estimated using the Parzen window method [1] as
p(y) = (1/N)

∑N
i=1 G(y − yi , σ 2 I ). Using the convolution

property of the Gaussian kernels, the Renyi’s entropy becomes

HR2(y) = − log
∫

p(y)2 dy = − log V (y) (1)

V (y) = 1

N2

N∑

i=1

N∑

j=1

G(yi − y j , 2σ 2 I ) (2)

where V (y) is an averaged sum of all pairs of interac-
tions between all pairs of instances called the information
potential.

B. Auto- and Cross-Correntropy

A generalized correlation function (GCF) for a stochastic
process xt has been defined in [24] as

VX (t1, t2) = E[<φ(xt1), φ(xt2)>] = E[k(xt1, xt2)] (3)

where E stands for the expected value, φ denotes some kernel-
induced transformation, and k is a kernel function, assumed
to be Gaussian from now on. The GCF estimator conveys
information not only about autocorrelation but also about the
structure of the dataset, as its mean value for nonzero lags
converges asymptotically to the estimate of the information
potential calculated using Renyi’s quadratic entropy [25]. For
this reason, the function has been named auto-correntropy.

The idea of auto-correntropy has been further developed
in [6] for a general case of two arbitrary random variables.
The new measure, named cross-correntropy (or correntropy)
is defined for variables X and Y as

VXY (X, Y ) = E[<φ(X), φ(Y )>] = E[k(X, Y )]. (4)

The correntropy can be used as a measure of similarity
between X and Y but only in the neighborhood of the joint
space. This results from the restriction of Gaussian kernels,
which have high values only along the x ≈ y line with
exponential falloff otherwise. The size of this neighborhood is
therefore controlled by the kernel width parameter σ . Corren-
tropy can thus also be defined as the integral of the joint PDF
along the x = y line, i.e., VXY (X, Y ) ≈ ∫

p(x, y) |x=y=u du.
By plugging the Parzen window estimate of the joint PDF
p(x, y) ≈ (1/N)

∑N
i=1 G(x−xi , σ

2 I )G(y−yi , σ
2 I ), integrat-

ing along the x = y line, and using the convolution property of
Gaussians again, the estimate of correntropy finally becomes

VXY (X, Y ) ≈ 1

N

N∑

i=1

G(xi − yi , 2σ 2 I ). (5)

Correntropy can be regarded as the PDF of equality of two
variables in the neighborhood of the joint space, of the size
determined by the kernel width parameter σ [6], [26]. The
measure has many interesting properties, and one of them is
that, for independent X and Y , it can be approximated by
the information potential formula similar to (1) and named
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“cross-information potential” [26]. Correntropy has been suc-
cessfully used as a localized outlier-resistant similarity mea-
sure for many supervised learning applications [26], [27].

IV. DPS

Since the correntropy can be used to measure similarity
between two random variables, it can also be used to measure
the representativeness of a sample. It should thus be possible
to use correntropy as an optimization criterion, guiding the
sampling process in order to split a given dataset into two or
more maximally representative subsets. Moreover, due to the
properties of (5) discussed in more detail in Section IV-B, it
is possible to devise an optimization procedure independent
of the Gaussian kernel width σ . This fact, together with
the conclusions drawn from a comprehensive evaluation of
various divergence measures in the context of representative
sampling presented in [20], is the main reason for considering
correntropy-based objective function.

A. Correntropy-Inspired Similarity Index

Equation (5) defines the estimator of correntropy between
two random variables or datasets X and Y as the value
of a Gaussian kernel centered at (xi − yi ) averaged over
all N instance pairs. There are thus three requirements for
calculation of the correntropy to be possible the datasets must:
1) be ordered; 2) have the same dimensionality; and 3) have the
same cardinality. Put another way, for (5) to be a meaningful
estimator of correntropy, a random process generating samples
according to the joint PDF of X and Y needs to be defined,
which in our case is not straightforward.

While the second requirement is irrelevant for sampling,
as each subset of objects necessarily needs to have the same
dimensionality as the set from which it has been selected, the
remaining two requirements remain valid. For some applica-
tions like, e.g., supervised learning, all the above requirements
are met automatically: if A denotes the output of a mapper and
B denotes the target value, |A| = |B| and ai is the prediction
of bi . In sampling, however, in general, one cannot expect the
instances to be ordered, which means that it is not obvious on
the difference of which instances to center the Gaussians (the
joint PDF is not defined). The datasets may also have different
cardinalities, e.g., when one wants to calculate the objective
between the original dataset and its subset.

To address the ordering issue, we make sure that every
Gaussian in (5) is centred at (xi − y j ), which maximizes its
value. This is achieved by selecting both xi and y j so that
they are as close to each other as possible. The generalized
instance ordering insensitive version of (5), now called the
correntropy-inspired similarity index (CiSI) is thus given by

CiSI(X, Y ) ≈ 1

N

∑

i∈(1..N)

G(xi − y j , 2σ 2 I )

i, j = argmin
i, j

‖xi − y j ‖, j ∈ Javail (6)

where ‖·‖ denotes the Euclidean norm, and the set Javail
contains indices of y which have not yet been used, to ensure
that each yk is used only once.

When the datasets have different cardinalities, i.e., without
loss of generality if NX > NY , the above approach will
terminate after NY instances are processed. To avoid this, a
new dataset YN is created by duplicating the original Y dataset
�NX /NY � times. CiSI is then calculated between X and YN ,
and the calculation will terminate after exactly NX steps.

The values of CiSI reported in this paper have been nor-
malized to the [0, 1] range. However, these values are not
comparable between different datasets, as their absolute dif-
ference can be made almost arbitrarily large by manipulating
the Parzen window width σ . For this reason, the CiSI values
given should rather be perceived as ranks on an ordinal scale.

B. CiSI-Based Sampling Procedure

In this section, we propose a CiSI-based hierarchical
density-preserving splitting procedure. Since the generalized
function of (6) is not differentiable with respect to i and j
(the only variables that can be manipulated within the splitting
process), gradient-driven optimization is not straightforward.
We have thus reverted to a greedy locally optimal approach,
which in many cases prove to work surprisingly well [28].

As CiSI is being estimated by a normalized sum of
Gaussians, it reaches a maximum when all its components
reach their maximal values. Since a Gaussian function peaks
at 0 regardless of the value of σ , and it is piecewise monotonic
and symmetric,2 the closer xi and y j are in (6), the higher
CiSI(X, Y ) will be. This suggests a σ -independent iterative
binary splitting procedure of dataset Z into subsets X and Y ,
which at each step selects instances zi and z j so that

i, j = argmin
i, j

‖zi − z j ‖ (7)

and then adds them to the sets X and Y , so that X = X ∪ zi

and Y = Y ∪ z j , or, the other way round, removing them
from dataset Z at the same time. The above procedure aims
at directly maximizing CiSI(X, Y ), which is the similarity
index between the two new datasets. Because of the way CiSI
is calculated for sets with various cardinalities, however, it
also indirectly maximizes CiSI(X, Z) and CiSI(Y, Z). As a
result, newly obtained datasets are splits with PDFs maximally
similar to each other and to the PDF of the original dataset. To
obtain more splits, the procedure can be repeated by splitting
datasets X and Y again, which will produce four splits, and
so on. The total number of splits is thus always a power of 2.

The instances zi and z j can be added to the sets X and
Y arbitrarily or not. In our approach, we have devised a
procedure in which the two objects are distributed in a way
that maximizes the average coverage of the input space by
both splits. Denoting by dkV the average Euclidean distance
between instance zk and all instances in set V , the rules are

di X +d jY ≥ d j X +diY ⇒ X = X ∪ zi , Y = Y ∪ z j (8)

di X +d jY <d j X +diY ⇒ X = X ∪ z j , Y = Y ∪ zi . (9)

For classification problems, the splitting procedure can be
executed in a supervised or unsupervised mode. In the former

2In fact, any kernel function which has these properties could be used
instead, leading to exactly the same results (e.g., triangular, Epanechnikov).
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TABLE I

DATASET DETAILS

Abbr. Name Source No. of
Obj/Attr

No. of
Class

azi Azizah dataset PRTools 291/8 20

bio Biomedical diagnosis PRTools 194/5 2

can Breast cancer Wisconsin UCI 569/30 2

cba Chromosome bands PRTools 1000*/30 24

chr Chromosome PRTools 1143/8 24

clo Clouds ELENA 1000*/2 2

cnc Concentric ELENA 1000*/2 2

cnt Cone–torus [33] 800/3 2

dia Pima Indians diabetes UCI 768/8 2

ga2 Gaussians 2-D ELENA 1000*/2 2

ga4 Gaussians 4-D ELENA 1000*/4 2

ga8 Gaussians 8-D ELENA 1000*/8 2

gla Glass identification data UCI 214/10 6

ion Ionosphere radar data UCI 351/34 2

iri Iris dataset UCI 150/4 3

let Letter images UCI 1000*/16 26

liv Liver disorder UCI 345/6 2

pho Phoneme speech ELENA 1000*/5 2

sat Satellite images UCI 1000*/36 6

seg Image segmentation UCI 1000*/19 7

shu Shuttle UCI 1000*/9 7

son Sonar signal database UCI 208/60 2

syn Synth–mat [34] 1250/2 2

tex Texture ELENA 1000*/40 11

thy Thyroid gland data UCI 215/5 3

veh Vehicle silhouettes UCI 846/18 4

win Wine recognition data UCI 178/13 3

case, the algorithm takes advantage of the class labels supplied
with the data by considering each class in separation from the
rest. We refer to this approach as DPS-S. In the unsupervised
mode, the class labels are ignored, so the procedure is purely
density-driven and has been called DPS-U.

In current implementation, if the classes are too small to
be divided into a given number of subsets, DPS-S falls back
to DPS-U. Since the splitting procedure is hierarchical, most
datasets can be divided using the supervised approach up to
some point, before the unsupervised procedure takes over.

When using a k-d tree [29] to perform the nearest neighbor
search, the computational complexity of DPS-U is of the order
O(N log N) on average and O(N2) in the worst case scenario.
The memory complexity is of the order O(N). For DPS-S,
these become O(

∑
i Ni log Ni ), O(

∑
i N2

i ), and O(
∑

i Ni ),
respectively, where Ni is the cardinality of the i th class. Note
that, even in the worst case scenario, these are still negligible
when compared to the complexity of most learning algorithms.

V. EXPERIMENTS

The experiments have been conducted on 27 publicly
available datasets using a total of 16 different classifiers.
The datasets used come from [30]–[32] and their details are
given in Table I. The star symbol in the “no. of obj/attr”

TABLE II

CLASSIFIER LIST

Name Description

fisherc Fisher’s linear classifier

ldc Linear Bayes normal classifier

loglc Logistic linear classifier

nmc Nearest mean classifier

nmsc Nearest mean scaled classifier

quadrc Quadratic discriminant classifier

qdc Quadratic Bayes normal classifier

udc Uncorrelated quadratic Bayes normal classifier

klldc Linear classifier using KL expansion

pcldc Linear classifier using PC expansion

knnc K-nearest neighbor classifier

parzenc Parzen density-based classifier

treec Decision tree classifier

naivebc Naive Bayes classifier

nusvc Support vector classifier with linear kernels

rbnc Radial basis function neural network classifier

column denotes the number of instances actually used in the
experiment, sampled randomly from the whole much bigger
dataset in order to keep the experiments computationally
tractable. The classifiers used are implemented within the
PRTools toolbox, and their list is given in Table II. It is
worth mentioning that starting from version 4.1.10, the DPS
procedure proposed in this paper has been included into the
PRTools toolbox as an alternative to the stratified CV.

The experiments were designed to: 1) compare the error
estimation accuracy of stratified CV, bootstrap, and DPS;
2) test the stability of both error estimators; 3) test applicability
of DPS to the classifier selection process; 4) investigate the
possibility to reliably estimate the generalization error using
a single DPS fold only, thus reducing the computational
requirements by another order of magnitude; and 5) examine
the behavior of DPS in the context of ensemble models.

We have followed an approach similar to that outlined in [4].
For each dataset, a stratified random subsampling procedure
has been repeated 100 times, resulting in 100 random divisions
of the dataset into a training part (2/3) and independent test
data (1/3). The training part was then used to estimate the
generalization error using CV and DPS for each classifier,
while the independent test part has been used to calculate the
“true” generalization error, once again for each classifier in
turn. The true generalization error then served to calculate the
bias of each estimate, while the generalization error estimates
of a single estimation run have been used to calculate the
variance. Finally, the results have been averaged over all 100
runs of the random subsampling procedure.

The CV estimate was calculated within a 10-times repeated
eightfold scheme. We provide the average results for all 10
iterations as well as the result of the best and worst single
run in terms of bias/variance to emphasize how unstable the
CV error estimates can be. Three eightfold DPS estimates are
also given—DPS-S (using class labels), DPS-U (ignoring class
labels), and DPS-SU (averaged over the errors of classifiers
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(a) (b)

Fig. 1. Scatter plots of the synthetic datasets used in the experiments.
(a) Cone–torus. (b) Synth–mat.

Fig. 2. Cone–torus: scatter plots of eight DPS-S folds.

Fig. 3. Cone–torus: scatter plots of eight CV folds.

trained on DPS-S and DPS-U folds). For the comparison
with DPS to be fair from the computational point of view,
the bootstrap estimate was also calculated on eight bootstrap
samples.

A. Toy Problems

The analysis starts with two synthetic datasets first used
in [33] and [34]. The datasets were chosen because they are
2-D, allowing for easy visualization, and were used in our
previous studies because of their well-known properties.

1) Cone-Corus Dataset: Cone–torus is a synthetic 2-D
dataset consisting of three classes, with data points generated
from three differently shaped distributions: a cone, half a torus,
and a Gaussian. A scatter plot of the dataset is given in Fig. 1.
Fig. 2 depicts scatter plots of eight DPS-S folds, while in

Fig. 4. Cone–torus: decision boundaries for qdc trained on DPS-S (solid
line) and CV (dotted line) folds.

Fig. 5. Synth–mat: decision boundaries for qdc trained on DPS-S (solid line)
and CV (dotted line) folds.

Fig. 3, eight CV folds generated during a single random run are
given. Note that, in case of DPS, the classes tend to preserve
their shapes—the half torus, for example, is clearly visible in
seven out of eight folds, while for CV only in four or five.
This is also well reflected by the mean value of CiSI between
all eight folds and the original dataset, which is 0.81 for DPS
and 0.71 for CV averaged over 10 runs (σ = 0.12).

The decision boundaries for the qdc classifier trained on
each of eight folds in turn, superimposed on the original
dataset are given in Fig. 4. The black solid line represents the
boundaries of a classifier trained using the DPS-S folds, while
the blue dotted line shows the boundaries for a single CV run.
Notice, that for DPS, the decision boundaries generally do
not change their shape from one fold to another, as opposed
to CV, where the boundaries are very unstable and change
radically.

2) Synth–Mat Dataset: The Synth–mat dataset is a 2-D
mixture of four normal distributions, and is presented in
Fig. 1(b). Both classes have bimodal distribution—there are
two Gaussians in each of them. The mean value of CiSI
between all eight folds and the original dataset is 0.75 for DPS
and 0.66 for CV averaged over 10 runs (σ = 0.12). Since the
scatter plots of all DPS and CV folds were already presented
for the Cone–torus dataset and there is not much change
here, only the decision boundaries of a classifier trained as
previously have been given in Fig. 5. The boundaries appear
stable for DPS and differ a lot from one CV fold to another.
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Fig. 8. Mean absolute bias averaged over all classifiers.

B. Benchmark Datasets

1) CiSI: Fig. 6 presents the values of averaged CiSI between
the original dataset and eight folds generated using DPS and
CV for all 27 datasets used. Note that, although the index
has been normalized to the [0, 1] range, according to our
earlier argument the values represent an ordinal scale. Also, for
illustrative purposes, the Gaussian kernel width used for each
dataset has been chosen to optimize the correlation between
bias and CiSI, as described in Section Section V-B5.

The CiSI between the DPS folds and the original dataset is
always higher than in the case of the CV folds, regardless of
the number of folds (8 or 16). This is not surprising since the
DPS splits have been obtained by the maximization of CiSI.
The picture is very similar for the between-fold CiSI given in
Fig. 7, where DPS is again an unquestionable leader.

2) Bias: The mean absolute bias for both DPS and CV
can be seen in Figs. 8 and 9. Because of the off-the-chart

bias values, the bootstrap estimator has not been shown
here. The DPS approach has a bias comparable to the
mean CV result, with a slight advantage of the latter for
roughly half of the datasets. Note, however, that the DPS
estimates are never as biased as the worst case CV sce-
nario, yet the result has been achieved with 10 times fewer
computations.

A summary of the results, including the bootstrap estimator,
is shown in Table III, where a mean value and standard devia-
tion of bias (and variance) across all datasets and classifiers for
each error estimation method has been given. Both DPS-U and
DPS-S have, on average, the same bias with a tiny difference
in its standard deviation. DPS-SU, on the other hand, comes
very close to the repeated CV, which is a result of combining
both supervised and unsupervised methods. Note that this
combination does not require additional computations in order
to obtain the splits, as all pairwise within-class distances form
a subset of all pairwise distances for the whole dataset, which
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are calculated anyway by the unsupervised DPS. All DPS
approaches also have mean bias and standard deviation lower
than the worst case CV scenario. The relatively high bias and
variance values of the bootstrap estimator are the result of
using just eight bootstrap samples rather than recommended
hundreds [11].

The performance advantage of DPS-SU over the remaining
methods stems from stabilizing and compensating effects
similar to those of repeating CV. Fig. 10 presents signed
bias values for two classifiers chosen on the basis of their
complexity (linear classifier and nonparametric classifier). As
can be seen, in case of many datasets the signs of the DPS-U
and DPS-S biases are opposite. It is also worth noting that
the behavior of both estimators is very consistent across all
tested classifiers, in a sense that the bias of one of them is
almost always higher than the bias of the other for a given
dataset.

3) Variance: The variance of error estimates can be seen in
Figs. 11 and 12. Out of all three DPS approaches, once again
DPS-SU demonstrates the best performance with average
variance lower by 0.0130 than the best case CV scenario
(Table III), while DPS-S performs at the level of the best
case CV and DPS- U still outperforms 10 times repeated
stratified CV. Note that, in terms of variance, DPS-S outper-
forms DPS-U, and it is additionally computationally cheaper
(see Section IV-B). As a result, good error estimation can be
achieved with roughly 10% of computations required by 10
times repeated CV. For the best results, however, one should
resort to DPS-SU, which seems to stabilize the error estimates
but requires more computational time.

TABLE III

BIAS AND VARIANCE SUMMARY FOR ALL DATASETS AND CLASSIFIERS

DPS-U DPS-S DPS-SU CV
besta

CV
mean

CV
worst

Boot-
strap

BIAS-mean 0.028 0.028 0.028 0.024 0.027 0.033 0.150
BIAS-stdev 0.020 0.020 0.020 0.016 0.019 0.024 0.236
VAR-mean 0.060 0.050 0.039 0.052 0.063 0.074 0.026
VAR-stdev 0.033 0.033 0.023 0.030 0.035 0.040 0.015

a“CV best” denotes the best CV run out of 10 for each dataset/classifier pair
in terms of lowest bias/variance. For CV, the division of data that produced the
lowest bias did not in general produce the lowest variance. Similar remarks
apply to “CV worst.”

4) Classifier Selection: Selection of a single best model
from a set is an important problem in machine learning. A
typical selection criterion is the generalization error estimated
using CV. The ranking of top three classifiers according to
both DPS and 10× repeated CV for all datasets was given
in Table IV. Note that the overall ranking for all datasets is
exactly the same for both error estimators, and reflects the
ranks based on the true generalization error. Some differences
are apparent when the results for each dataset are examined
separately.

The last three rows in Table IV denote the number of
datasets out of 27 for which the true top classifier was
included in top 1, top 2, and top 3 classifiers according to
each error estimation method. For CV, the best classifier has
been correctly identified 19 times and has been included in
the top 2 and top 3 classifiers 25 times. For the best DPS
approach (DPS-SU), the numbers are similar, i.e., 20, 23,
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Fig. 11. Standard deviation of error estimate averaged over all classifiers.
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Fig. 12. Standard deviation of error estimate averaged over all datasets.

TABLE IV

RANKING OF TOP 3 CLASSIFIERS

Dataset True DPS-U DPS-S DPS-SU CV mean
azi 11 14 12 11 12 2 11 12 14 11 12 2 11 12 14
bio 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8
can 12 2 9 12 2 9 15 12 2 15 12 2 12 15 2
cba 12 2 9 12 2 9 12 2 9 12 2 9 12 2 9
chr 14 8 11 14 8 11 14 8 2 14 8 11 14 8 11
clo 15 1 2 1 2 3 15 1 2 15 1 2 15 1 2
cnc 1 15 3 1 15 2 1 15 5 1 15 5 1 15 5
cnt 16 12 13 16 12 7 12 16 13 16 12 13 16 12 13
dia 1 3 2 2 9 10 1 11 2 1 2 9 1 3 2
ga2 1 2 3 15 4 2 2 3 9 2 3 9 3 1 2
ga4 1 2 3 1 4 2 15 5 2 15 1 2 15 4 3
ga8 16 3 1 16 1 5 16 5 4 16 5 1 16 15 5
gla 3 15 2 2 9 10 2 9 10 2 9 10 2 9 10
ion 14 11 7 14 7 11 14 13 7 14 13 7 14 7 11
iri 2 9 10 2 9 10 2 7 9 2 9 10 2 9 10
let 11 12 7 12 11 2 12 11 2 12 11 2 12 11 2
liv 1 3 2 1 3 2 11 1 3 1 3 11 1 3 11
pho 11 16 12 16 12 11 11 12 16 11 16 12 11 12 16
sat 11 12 2 11 12 14 11 12 2 11 12 2 11 12 7
seg 11 3 2 3 11 2 11 2 9 11 3 2 3 11 2
shu 13 1 16 13 16 1 13 1 16 13 16 1 13 1 16
son 12 11 15 12 11 14 12 11 14 12 11 14 12 11 2
syn 14 12 16 14 12 16 12 14 16 14 12 16 12 14 16
tex 2 9 10 2 9 10 2 9 10 2 9 10 2 9 10
thy 8 15 7 15 6 7 7 8 11 15 7 8 15 8 11
veh 7 6 3 6 7 2 7 6 2 7 6 2 7 6 2
win 7 6 2 6 1 4 4 6 7 6 4 7 6 7 4

Overall 2 9 10 2 9 10 2 9 10 2 9 10 2 9 10
In top 1 27/27 17/27 17/27 20/27 19/27
In top 2 27/27 20/27 23/27 23/27 25/27
In top 3 27/27 21/27 24/27 25/27 25/27

and 25, yet have been obtained at 20% of the computations
required by CV.

The correlation coefficients for different error estimates and
the true generalization error are given in Table V. As shown,

TABLE V

CORRELATION BETWEEN “TRUE” ERROR AND ITS ESTIMATES

Correlation DPS-U DPS-S DPS-SU CV
Per dataset (8 folds) 0.9594 0.9657 0.9676 0.9710

Per classifier (8 folds) 0.9967 0.9975 0.9976 0.9973

Per dataset (16 folds) 0.9640 0.9646 0.9671 0.9695
Per classifier (16 folds) 0.9964 0.9969 0.9969 0.9969

all tested error estimators are strongly correlated with the
true error, and although there are some small differences, the
correlation coefficient is never lower than 0.959.

5) Correlation Between CiSI and Bias: The ability to esti-
mate the generalization error using a single DPS fold only
would allow the reduction of the computational cost of the
estimation procedure by another order of magnitude, when
compared to 10 times repeated CV. Fig. 13 depicts the bias
of the estimate calculated using a single DPS fold, which has
been chosen on the basis of the lowest bias itself (“DPS-best”).
Although in practice this kind of selection procedure is infea-
sible, it shows that the method has some potential, as for most
datasets the bias is comparable with the one obtained using
10 times repeated CV or even the best case CV scenario. The
problem, however, is how to choose the appropriate DPS fold.
The value of CiSI seems to be an obvious choice. Note, how-
ever, that there is no principled way of selecting the width σ of
the Gaussian kernel for estimation of CiSI, and the estimated
value can vary greatly depending on the choice of σ . We have
therefore decided to evaluate the correlation between bias and
CiSI. The experiment was performed for 8 and 16 DPS-S folds
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Fig. 13. Bias of DPS error estimate calculated using a single fold averaged over all classifiers.
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Fig. 15. Single model versus combination errors for Cone–torus dataset.

and the results can be seen in Fig. 14. Note that, for the sake
of calculating CiSI, σ was chosen using an exhaustive search
in order to optimize the correlation. Thus the results given
in Fig. 14 represent the best case scenario, for the optimal
kernel width, which in practice is not known a priori. The
correlation varies from about −0.1 to −0.6 depending on the
dataset. The bias of an estimate obtained using a single DPS
fold chosen on the basis of highest CiSI value is always higher
even than the worst case CV scenario bias (“DPS-optim”
in Fig. 13). The CiSI is only slightly to moderately correlated
with the bias, even for an optimal choice Gaussian kernel
width and hence cannot be used to select a single best fold
which minimize the bias.

6) Combining Classifiers: In this experiment, a simple
ensemble model based on the majority voting rule was built.
It is believed that the classifiers used in a combination should
be diverse, which enforces complementarity of the ensemble
members [35]. One way to enforce diversity is cross-training,

which is a technique based on CV and combines all models
obtained during a single or repeated CV run. For this
experiment, the two synthetic datasets from Section V-A have
been used. Both datasets were split into eight folds using
DPS-S and CV, and then for each classifier listed in Table II
an ensemble model was built by combining eight models
trained on all but one fold in turn, using the majority voting
rule. For CV, this procedure has been repeated 10 times. Each
combination was then tested on an independent test set. In
order to monitor performance of the combinations, a single
control model trained using all eight folds was also used.

The results are depicted in Figs. 15 and 16. In most cases,
combinations based on DPS folds do not improve on the
performance of a single control model. This was expected,
as for each classifier all ensemble members should be very
similar, since they were all trained using representative data
subsets. For the combinations based on CV, some improvement
can be observed even in the worst case scenario.
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Fig. 16. Single model versus combination errors for Synth–mat dataset.
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Fig. 17. Discrete error distributions for Cone–torus dataset and qdc (number
of classifiers on x-axis, probability on y-axis, error rates given in brackets).
(a) CV–best (0.1616). (b) DPS (0.1715).
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Fig. 18. Discrete error distributions for Synth–mat dataset and treec (number
of classifiers on x-axis, probability on y-axis, error rates given in brackets).
(a) CV–best (0.1790). (b) DPS (0.1790).

To illustrate this issue, discrete error distribution plots show-
ing the probability of various numbers of ensemble members
being in error for the same input instance are given in Figs. 17
and 18. The classifiers used to produce these plots (qdc and
treec) have been chosen for illustrative purposes. The area of
the shaded region in each figure represents the error of the
combined model (the ties, i.e., when there were exactly four
votes for each of the two classes in the case of the Synth-mat
dataset, were resolved randomly). Note that, for DPS, most of
the mass is concentrated in the corners of the plots, meaning
unanimous classification decisions in most cases and proving
that the classifiers are indeed very similar.

In case of CV the situation is different. In Fig. 17, some
mass is scattered all over the plot, meaning that sometimes the
classifiers tend to disagree, demonstrating complementarity.
As can be seen, in this case the stochastic nature of CV
positively affects the performance by introducing diversity to
the ensemble. This result also confirms that, if the goal is

to select a single best model, it is much safer to use DPS,
minimizing the risk of choosing a bad model due to the
discussed stability of decision boundaries. In the context of
ensemble models, however, this feature of DPS becomes a
disadvantage and it is usually better to use a stochastic method.

VI. DISCUSSION

The presented DPS procedure is an attractive alternative for
CV. For the purpose of the generalization error estimation,
k–fold CV is without a doubt the most widely and commonly
used technique because of its universal character, simplicity,
and effectiveness. Its stochastic nature, however, requires the
estimation to be repeated multiple times for different random
divisions of the data, in order to circumvent the risk of
obtaining the best/worst case scenario estimate, which, as
demonstrated in this paper, can be highly biased and can
have a large variance. The need for running the procedure
multiple times makes it computationally expensive, forcing
the researchers to seek compromise elsewhere, e.g., by not
calculating the full gradient during optimization or taking other
shortcuts, leading to suboptimal solutions. The proposed DPS
procedure is, however, deterministic; it does not need to be
repeated to improve the quality of the error estimate, and at
the same time produces results comparable to repeated CV
when it comes to bias, and superior to CV in terms of the
variance of obtained estimates, at 5–10× lower computational
cost.

Another related application area of CV is parameter esti-
mation. Since for some models the objective function is not
differentiable wrt all its parameters, the optimization procedure
must resort to a search in the parameter space. One example of
such a situation is the k–NN classifier, for which the number of
nearest neighbors k is usually being set by testing a number
of possible values using CV. In such a case, as the search
itself might be very costly depending on the dimensionality of
the search space, CV is usually not repeated in order to save
computations. As before, due to the nondeterministic nature
of CV, this can lead to suboptimal decisions based on highly
biased performance estimates (worst case scenario). Note that
it also applies to other algorithms requiring calculation of
performance estimates repeated many times, such as, e.g.,
feature selection. The benefit of using DPS rather than CV
in these scenarios can be tremendous.
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In case of some machine learning methods, it is a common
practice to cross-train multiple models and select the best
performing one. The cross-training procedure is analogous
to CV, with the difference that the obtained models, instead
of being discarded, are considered as candidates for a final
solution. This applies especially to models like decision trees,
which cannot be retrained using the full dataset due to their
instability. The danger here is the combination of a relatively
unstable error estimator with an unstable learning method,
which may lead to selection of one of the worst models rather
than the best. On the other hand, models trained using various
DPS splits will likely be much more similar to each other,
minimizing the risk and cost of incorrect choice.

The final example of possible application of random sam-
pling procedures is early stopping, a technique widely used
in training of universal approximators to prevent overfitting.
In this approach, a randomly selected subset of the data is
used for continuous monitoring of model performance during
training, in order to stop it when the validation error starts to
increase, signaling overfitting. The risk of using unrepresenta-
tive validation set is obvious. Although the behavior of DPS in
conjunction with early stopping has not been addressed in this
paper, it forms an interesting and promising research direction.

It is worth noting that a similar attempt to promote usage
of techniques alternative to standard CV had already been
made in the past. In [36], the authors propose the distribution-
balanced stratified CV method, which is similar in principle to
DPS-S. The weakness of this method is, however, an arbitrary
choice of the reference point for ordering of instances for
subsequent sampling. If the reference point is chosen poorly,
this can result in areas of the input space not being represented
in the sampled subsets, although at the same time it allows
performing the sampling in time linear in the size of the
dataset. The experimental part of [36] includes only nine
datasets and one classifier, which is one of the reasons for
the lack of wider recognition of the method, although it has
recently been investigated more extensively in [37].

VII. CONCLUSION

The correntropy-inspired density-preserving data sampling
procedure developed and investigated in this paper is an
alternative for CV in many applications. Unlike CV, DPS is
deterministic, which eliminates the need for multiple repe-
titions of the sampling procedure to obtain reliable results,
considerably reducing the computational burden.

The main property of the proposed method is that it aims to
produce only representative splits, which has many implica-
tions outlined in previous sections. The experiments performed
on a comprehensive set of public benchmark datasets and a
number of standard classifiers revealed the following.

1) For generalization error estimation, DPS is slightly more
biased than 10× repeated CV but has much lower
variance, often lower than the best case CV scenario.
The DPS bias in all cases is also much lower than in
the worst case CV scenario.

2) The decision boundaries of a classifier trained on DPS
folds are much more stable than in the case of CV folds,

which is the result of representativeness of the subsets
generated by DPS. The stability of models trained on
various DPS divisions of the dataset has been confirmed
in experiments involving ensemble models.

3) For model ranking and selection, DPS is at least as good
as 10× repeated CV, at much lower computational cost.

We believe that the one of the strengths of correntropy
stems from its connection to the ITL framework. In ITL
data vectors are modeled as particles, whose local interactions
determine the global behavior of the whole system. Hence
future research will focus on discovery of other ITL-based
objective functions for selection of a single representative
fold to be used for error estimation, effectively reducing the
computational requirements by another order of magnitude.
This approach appears even more valid and viable in the light
of the empirical results given in [20], which shows that one
of the most intuitive choices for representative sampling—
the PDF divergence measures—is not feasible due to difficul-
ties with their estimation. Another interesting future research
direction is a version of DPS applicable to streaming data in
the presence of concept drift as well as an alternative more
computationally efficient CiSI optimization scheme to enable
application of DPS to large datasets.
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