
DEEP BELIEF NETWORKS USING DISCRIMINATIVE
FEATURES FOR PHONE RECOGNITION

Abdel-rahman Mohamed1, Tara N. Sainath2, George Dahl1
Bhuvana Ramabhadran2, Geoffrey E. Hinton1 and Michael A. Picheny2

1Department of Computer Science, University of Toronto
2IBM T. J. Watson Research Center, Yorktown Heights, NY 10598

asamir@cs.toronto.edu1, tsainath@us.ibm.com2, gdahl@cs.toronto.edu1,
bhuvana@us.ibm.com2, hinton@cs.toronto.edu1, picheny@us.ibm.com2

ABSTRACT
Deep Belief Networks (DBNs) are multi-layer generative models.
They can be trained to model windows of coefficients extracted from
speech and they discover multiple layers of features that capture the
higher-order statistical structure of the data. These features can be
used to initialize the hidden units of a feed-forward neural network
that is then trained to predict the HMM state for the central frame
of the window. Initializing with features that are good at generating
speech makes the neural network perform much better than initializ-
ing with randomweights. DBNs have already been used successfully
for phone recognition with input coefficients that are MFCCs or fil-
terbank outputs [1, 2]. In this paper, we demonstrate that they work
even better when their inputs are speaker adaptive, discriminative
features. On the standard TIMIT corpus, they give phone error rates
of 19.6% using monophone HMMs and a bigram language model
and 19.4% using monophone HMMs and a trigram language model.

Index Terms— Discriminative feature transformation, Deep be-
lief networks, Phone recognition.

1. INTRODUCTION

For the past three decades, most automatic speech recognition sys-
tems have used Hidden Markov Models (HMMs) to model the se-
quential structure of speech signals, with each HMM state using a
mixture of Gaussians (GMMs) to model a spectral representation of
the sound wave. Early systems used the maximum likelihood (ML)
criterion to train GMMs to fit the training data. Significant word
error rate reductions were achieved by fine-tuning the ML trained
GMMs using discriminative training criteria [3, 4]. Speaker adap-
tation techniques which map different speakers’ characteristics to a
canonical speaker, applied to the GMMs, provided complementary
improvements [5]. Both speaker adaptation and discriminative train-
ing can also be applied in the feature domain to create a better set of
features that are speaker adaptive and discriminative by nature [5, 4].
Most of these techniques have been extensively used in LVCSR tasks
while in [6] they were applied to the phone recognition task in the
TIMIT database.

Some researchers have proposed feed-forward neural networks
(NN) [7, 8] as an alternative to GMMs because:

• Their estimation of the posterior probabilities of HMM states
does not require detailed assumptions about the data distribu-
tion.

• They allow an easy way of combining diverse features, in-
cluding both discrete and continuous features.

• They use far more of the data to constrain each parameter
because the output on each training case is sensitive to a large
fraction of the weights.

Recently, a significantly better way of training feed-forward neural
networks has been discovered [9]. Instead of initializing the weights
at random values they are initialized by first fitting a multilayer gen-
erative model, called a deep belief net (DBN), to the input data. The
layers of features found by the DBN have not yet used any of the
information in the labels. A subsequent stage of discriminative fine-
tuning that only changes the features slightly produces a neural net
that trains faster and overfits less than the same net with randomly
initialized weights.

DBNs have already been successfully used for phone recogni-
tion [1, 2] using MFCCs or log spectrograms as their inputs. This pa-
per shows that DBNs can achieve even better performance by using
speaker adaptive and discriminative features as inputs to the DBN.

2. FEATURE DESCRIPTION

In this section, we describe various features used in the paper.

2.1. MFCC Features

Following the steup in [1], A speech utterance is analyzed using a 25-
ms Hamming window with a 10-ms frame rate. Each frame is repre-
sented by 12th-order Mel frequency cepstral coefficients (MFCCs)
and energy, along with their first and second temporal derivatives.
The data were normalized so that, averaged over the training cases,
each coefficient or first derivative or second derivative had zero mean
and unit variance.

2.2. LDA Features

Following the setup in [6], to create a set of Linear Discriminant
Analysis (LDA) features, a speech utterance is first chunked into
20ms frames, with a frame-shift of 5 ms, a different frame rate than
that used in the previous section and [1]. Each frame is represented
by a 13 dimensional MFCC feature vector. Features are then mean
and variance normalized on a per utterance basis. Then, at each
frame, a context of 8 frames to the left and right of the current frame
are joined together and an LDA transform is applied to project the
feature vector down to 40 dimensions.

5060978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011

2.3. Speaker Adapted Features

Two steps are performed to create a set of speaker adapted (SA) fea-
tures. First vocal tract length normalization (VTLN) is applied to the
LDA features, followed by a feature/model space adaptation. Both
steps are discussed below in more detail.

2.3.1. Vocal Tract Length Normalization

The length of a speaker’s vocal tract is often a large factor in speaker
variability. VTLN is a popular technique used to reduce this vari-
ability. In this procedure, a scaling factor is learned for each speaker
that warps the speech from this speaker into a canonical speaker with
an average vocal tract length. The warp is applied to the given set of
acoustic features before they are LDA transformed. After the warp,
features are again spliced together at each frame and an LDA trans-
form is applied to produce a set of 40 dimensional “warped” features.

2.3.2. Feature/Model Space Adaptation

After VTLN, the “warped” features are adapted for each speaker us-
ing feature space Maximum Likelihood Linear Regression (fMLLR)
[5]. In this method, a linear regression based transformation is ap-
plied to the VTLN features for each speaker to create a set of features
in a canonical features space.

2.4. Discriminative Feature

Discriminatively trained features and models have been shown to
significantly improve error rates, as these discriminative models have
more power to better differentiate between confusable sounds, such
as “ma” and “na”. In this work, we use a large margin discriminative
training approach using the Boosted Maximum Mutual Information
(BMMI) criterion [4]. In this approach, a set of ML-trained models
are used to bootstrap the training of a set of feature space Boosted
Maximum Mutual Information (fBMMI) features. In this paper, we
explore creating fBMMI features after the SA features.

3. DEEP BELIEF NETWORKS

Feed-forward neural networks can be trained to output a probabil-
ity distribution over HMM states for the central frame in a window
of feature values. The “correct” state is obtained by using a forced
alignment with some pre-existing model and the weights of the neu-
ral network are adjusted to increase the log probability assigned to
the correct HMM state. Typically, the weights are initialized to small
random values. If there are many hidden layers in the neural network
and many hidden units in each layer, it is easy for the neural network
to overfit. Overfitting can be substantially reduced if a generative
model is used to find sensible features without making any use of
the labels. The hidden units of the neural net can then be initialized
to implement these features. The very limited information in the la-
bels is then only used to slightly adjust the pre-existing features to
give better discrimination, not to discover features.

To discover multiple layers of non-linear features without using
the labels, we need to fit a multi-layer generative model to the input
data. For directed graphical models (called belief nets) with dense
connectivity between layers, this is usually very difficult because it
is generally very hard to infer the posterior distribution over each
hidden layer given the input data. This distribution is required for
maximum likelihood learning. [9] showed that the difficult inference
problem can be finessed by learning the features one layer at a time
using an undirected graphical model called a Restricted Boltzmann

Machine (RBM). The RBM has a bipartite connectivity structure that
makes it very easy to infer the states of its hidden variables. Once
the weights of the RBM have been learned the vectors of hidden fea-
ture activations can be used as data for training another RBM that
learns a higher layer of features. Building a deep generative model
one layer at a time is much more efficient than trying to learn all of
the layers at once. After a stack of RBMs has been trained, they can
be composed to form a deep generative model which has undirected
connections between its top two layers and top-down, directed con-
nections between adjacent lower layers. This model is called a deep
belief net (DBN).

One important property of DBNs is that their hidden states can
be inferred very efficiently and fairly correctly by a single bottom-
up pass in which the top-down generative weights are used in the
reverse direction. Another important property is that each time an
extra layer of learned features is added to a DBN, the new DBN
has a variational lower bound on the log probability of the training
data that is better than the variational bound for the previous DBN,
provided the extra layer is learned in the right way [9].

The weights of a DBN can be used to initialize the hidden lay-
ers of a feedforward neural network which is given an additional,
“softmax” output layer. For a wide variety of tasks, discriminative
“fine-tuning” of a DBN-initialized neural network gives much bet-
ter performance than the same neural network initialized with small
random weights [10]. Many of the generatively learned features may
be irrelevant for the discrimination task, but those that are relevant
are usually much more useful than the input features because they
capture the complex higher-order statistical structure that is present
in the input data.

3.1. Learning a Restricted Boltzmann Machine

An RBM is a bipartite graph in which visible units that represent ob-
servations are connected to hidden units that learn to represent fea-
tures using undirected weighted connections. They are restricted in
the sense that there are no visible-visible or hidden-hidden connec-
tions. In the simplest type of RBM, both the hidden and visible units
are binary and stochastic. To deal with real-valued input data, we
use a Gaussian-Bernoulli RBM in which the hidden units are binary
but the input units are linear with Gaussian noise. RBMs have an
efficient training procedure which makes them suitable as building
blocks for learning DBNs.

The weights on the connections and the biases of the individual
units define a probability distribution over the joint states of the vis-
ible and hidden units via an energy function. For binary RBMs, the
energy of a joint configuration is:

E(v,h; θ) = −
VX

i=1

HX

j=1

wijvihj −
VX

i=1

bivi −
HX

j=1

ajhj (1)

where θ = (w,b,a) and wij represents the symmetric interaction
term between visible unit i and hidden unit j while bi and aj are
their bias terms. V and H are the numbers of visible and hidden
units. The probability that the model assigns to a visible vector v is:

p(v; θ) =

P
h

e−E(v,h)

P
u

P
h

e−E(u,h)
(2)

Since there are no hidden-hidden or visible-visible connections, the
conditional distributions p(v|h) and p(h|v) are factorial and are

5061

given by:

p(hj = 1|v; θ) = σ(

VX

i=1

wijvi + aj)

p(vi = 1|h; θ) = σ(

HX

j=1

wijhj + bi), (3)

where σ(x) = (1 + e−x)
−1.

To perform steepest ascent in the log likelihood, the update rule
for the weights is

Δwij ∝ 〈vihj〉data − 〈vihj〉model (4)

The expectation 〈vihj〉data is the frequency with which visible unit i
and hidden unit j are on together in the training set and 〈vihj〉model

is that same expectation under the distribution defined by the model.
The term 〈.〉model takes exponential time to compute exactly, but the
efficient Contrastive Divergence (CD) approximation to the gradient
can be used instead [11]. The new update rule becomes:

Δwij ∝ 〈vihj〉data − 〈vihj〉recon (5)

where 〈.〉recon represents the expectation with respect to the dis-
tribution of reconstructions produced by initializing at a data vector
then updating the hidden units followed by the visible units followed
by the hidden units again.

For Gaussian-Bernoulli RBM’s the learning procedure is very
similar except that the visible activities are measured in units equal
to the standard deviation of the noise. More details of Gaussian-
Bernoulli RBM’s can be found in [12].

4. EVALUATION SETUP

4.1. Corpus

Phone recognition experiments were performed on the TIMIT cor-
pus.1 We used the 462 speaker training set and removed all SA
records (i.e., identical sentences for all speakers in the database)
since they could bias the results. A separate development set of 50
speakers was used for tuning all of the meta parameters, such as the
number of layers and the size of each layer. Results are reported
using the 24-speaker core test set, which excludes the dev set.

4.2. DBN Training

All DBNs were pre-trained with a fixed recipe using stochastic
gradient descent with a mini-batch size of 128 training cases. For
Gaussian-binary RBMs, we ran 150 epochs with a fixed learning
rate of 0.005 while for binary-binary RBMs we used 50 epochs with
a learning rate of 0.08.

For fine-tuning, we used stochastic gradient descent with the
same mini-batch size as in pre-training. The learning rate started
at 0.1. At the end of each epoch, if the phone error rate (PER) on the
development set increased, the weights were returned to their val-
ues at the beginning of the epoch and the learning rate was halved.
This continued until the learning rate fell below 0.001. During both
pre-training and fine-tuning, a small weight-cost of 0.0002 was used
and the learning was accelerated by using a momentum of 0.9 (ex-
cept for the first epoch of fine-tuning which did not use momentum).

1http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1.

[12] gives a detailed explanation of weight-cost and momentum and
sensible ways to set them.

During training and decoding, 183 target class labels (i.e., 3
states for each one of the 61 phones) were used, which we will refer
to as monophone class labels. After decoding, the 61 phone classes
were mapped to a set of 39 classes as in [13] for scoring. We also
explored using 2400 target class labels (i.e., triphone class labels),
corresponding to the 2400 context-dependent (CD) states used in the
IBM system [6]. Initial experiments with triphone targets result in
comparable PERs with the monophone target based training and this
needs to be investigated further.

4.3. Decoder

We experimented with two different decoders in this work. The de-
coder used at Toronto is HVite, which is part of the HTK package
[14]. This decoder only supports up to bigram language models.
For all experiments, we fixed the parameters for the Viterbi decoder.
Specifically, we used a zero word insertion probability and a unit lan-
guage model scale factor. The decoder used at IBM is a static FSM
[15] with no limit on the number of ngrams, though in this work we
explore using the IBM decoder with just trigrams. We will denote
which decoder is used for various experiments.

5. EVALUATIONS

In this section, we report results using DBNs with various features.

5.1. DBN Performance with Different Feature Sets

5.1.1. Results

Figure 1 shows the effect using different input features and model
depth when the number of input frames was fixed at 11. Note that in
this experiment, 1024 hidden units per layer are used and results are
reported using the HTK decoder. The main trend visible in the figure
is that adding more hidden layers gives better performance, though
the gain diminishes as the number of layers increases. There is no
significant difference in performance between the MFCC features
and LDA as the network is capable of capturing local discrimina-
tive information present in the context window. A jump of about
2% in accuracy is observed when speaker information is utilized to
transform all speakers to a canonical speaker. Performing fBMMI
complements the DBN local discrimination within the input con-
text window by maximizing the margin between competing phone
classes using an objective function that spans the whole utterance.
Table 1 shows the best achieved PER for each type of input features
on the core test set. Notice that as the feature type improves, the
PER decreases, a trend which was also observed in [6] when poste-
riors were created from a GMM.

Feature Type PER
MFCC 22.1
LDA 22.2

LDA+SA 20.3
LDA+SA+fBMMI 19.6

Table 1. PER of TIMIT Core Test Set

5.1.2. Error Analysis

Figure 2 shows the breakdown of error rates for the four different
feature types within 6 broad phonetic classes (BPCs), namely vow-

5062

1 2 3 4 5 6 7 8
18

20

22

24
Dev

1 2 3 4 5 6 7 8
18

20

22

24

26
Core Test

Number of Layers

P
ho

ne
tic

 E
rr

or
 R

at
e

MFCC
LDA
LDA+SA
LDA+SA+fBMMI

Fig. 1. Effect of Increasing DBN Hidden Layers with Diff. Features

els/semivowels, nasals, strong fricatives, weak fricatives, stops and
closures/silence. Here the error rate was calculated by counting the
number of insertions, deletions and substitutions that occur for all
phonemes within a particular BPC. As the feature set is improved,
gains are observed across all BPCs. The biggest decrease in PER
can be seen in the vowel/semi-vowel class.

0.1

0.12

vow/sv

mfcc lda fsa
fbm

mi

P
E

R

0.01
0.02
0.03

nas

mfcc lda fsa
fbm

mi

P
E

R

0.005
0.01

0.015
0.02

sf

mfcc lda fsa
fbm

mi

P
E

R

0.005
0.01

0.015
0.02

0.025
wf

mfcc lda fsa
fbm

mi

P
E

R

0.015
0.02

0.025
0.03

st

mfcc lda fsa
fbm

mi

P
E

R

0.015
0.02

0.025
0.03

clt

mfcc lda fsa
fbm

mi

P
E

R

Fig. 2. Errors within BPCs Across Different Feature Types

5.2. Comparison with GMMs

Finally, we compared the performance when posteriors are gener-
ated using DBNs and GMMs with fBMMI features as input2. Note
once posteriors are generated, a Viterbi search is performed with an
HMM to find the best phone sequence. In this experiment, the IBM
decoder is used. Figure 3 shows the relative change in PER from
the GMMs to DBNs system across 6 different BPCs. Notice that the
two systems appear to be complementary within each of the different
BPCs. This suggests that a system which combines both GMM and
DBN posteriors might offer further improvements. Table 2 shows
the results for the DBN, GMM and posterior combination systems.
Combining individual systems offers a slight improvement in PER.

System PER
fBMMI-GMM 19.5
fBMMI-DBN 19.4

Posterior Combination 19.3

Table 2. PER of TIMIT Core Test Set at fBMMI Level

6. CONCLUSIONS

In this paper, we explored using speaker adaptive, discriminative fea-
tures as inputs to a DBN. On TIMIT, we found that these features

2The GMM system is the best number on TIMIT with speaker adapted,
discriminative features [16].

−0.05

0

0.05

0.1

vo
w/sv

na
s

sf

wf
st

clt

R
el

at
iv

e
C

ha
ng

e
in

 P
E

R

BPCs

Fig. 3. Relative Change in PER of GMM and DBN systems
provided a PER of 19.6% using monophone HMMs and a bigram
LM and 19.4% using a trigram LM, comparable to the best reported
GMM number on TIMIT with speaker adapted, discriminative fea-
tures. In the future, we would like to further optimize DBN parame-
ters for different input feature streams to improve performance.

7. REFERENCES

[1] A. Mohamed, G. Dahl, and G. Hinton, “Acoustic Modeling using Deep
Belief Networks,” IEEE Trans. on Audio, Speech and Language Pro-
cessing., 2011.

[2] G.E. Dahl, M. Ranzato, A. Mohamed, and G.E. Hinton., “Phone
Recognition with the Mean-Covariance Restricted Boltzmann Ma-
chine.,” in NIPS, 2010.

[3] B.H. Juang, W. Hou, and C.H. Lee, “Minimum classification error rate
methods for speech recognition,” IEEE Trans. on Speech and Audio
Processing, vol. 5, no. 3, pp. 257 –265, 1997.

[4] D. Povey, D. Kanevsky, B. Kingsbury, B. Ramabhadran, G. Saon, and
K. Visweswariah, “Boosted MMI for model and feature-space discrim-
inative training,” 2008, pp. 4057 –4060.

[5] M.J.F. Gales, “Maximum Likelihood Linear Transformations for
HMM-Based Speech Recognition,” Computer Speech and Language,
vol. 12, pp. 75–98, 1998.

[6] T. N. Sainath, B. Ramabhadran, and M. Picheny, “An Explortation of
Large Vocabulary Tools for Small Vocabulary Phonetic Recognition,”
in Proc. ASRU, 2009.

[7] H. Bourlard and N. Morgan, Connectionist Speech Recognition: A
Hybrid Approach, Kluwer Academic Publishers, 1993.

[8] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio, “An
empirical evaluation of deep architectures on problems with many fac-
tors of variation,” in ICML, 2007, pp. 473–480.

[9] G. E. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for
deep belief nets,” Neural Computation, vol. 18, pp. 1527–1554, 2006.

[10] D. Erhan, Y. Bengio, A. Courville, P. Manzagol, and P. Vincent, “Why
does unsupervised pre-training help deep learning?,” Journal of Ma-
chine Learning Research, vol. 11, pp. 625–660, 2010.

[11] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural Computation, vol. 14, pp. 1771–1800, 2002.

[12] G. E. Hinton, “A Practical Guide to Training Restricted Boltzmann
Machines,” in Technical report 2010-003, Machine Learning Group,
University of Toronto, 2010.

[13] K. F. Lee and H. W. Hon, “Speaker-independent phone recognition
using hidden Markov models,” IEEE Transactions on Audio, Speech &
Language Processing, vol. 37, no. 11, pp. 16411648, 1989.

[14] S. Young et. al., The HTK Book, Cambridge University, 2002.
[15] H. Soltau, G. Saon, and B. Kingsbury, “The IBMAttila speech recogni-

tion toolkit,” in Proc. IEEEWorkshop on Spoken Language Technology,
2010, to appear.

[16] T. N. Sainath, B. Ramabhadran, M. Picheny, D. Nahamoo, and
D. Kanevsky, “Exemplar-Based Sparse Representation Features: From
TIMIT to LVCSR,” Submitted to TSAP, 2010.

5063

