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Antiplane Piezoelectric Surface Waves over a
Ceramic Half-Space with an Imperfectly

Bonded Layer

Hui Fan, Jiashi Yang, Member, IEEE, and Limei Xu

Abstract—We study surface wave propagation over a
piezoelectric half-space with an imperfectly bonded mass
layer. The imperfect interface between the half-space and
the layer is described by the so-called shear-lag model with
an elastic constant characterizing the interface physical
property. An analytical solution is obtained. Discussion and
numerical solutions are presented.

I. Introduction

Ahalf-space carrying on its surface a layer of another
material is a typical structure for surface acoustic

wave (SAW) devices [1], [2]. In the analyses of these de-
vices, perfect bonding between the half-space and the layer
is routinely assumed, i.e., the displacement and traction
are continuous across the interface between the half-space
and the layer. It recently was pointed out that mass lay-
ers on crystal devices may not follow the crystal surface
perfectly, and little is known about this phenomenon [3].
In addition, sometimes a very thin layer of a glue is used
that has its own physical properties. Although there are
mechanics models for describing an imperfect interface [4]–
[6], the models mainly have been used in static analy-
ses, and their implications in acoustic wave devices are
not clear. Recently, a theoretical analysis was given on a
thickness-shear bulk acoustic wave (BAW) resonator with
imperfectly bonded mass layers [7]. The results in [7] show
that the resonant frequencies are sensitive to the nature of
the bonding, as suggested by earlier analyses from simpler
models of crystal resonators with an elastically attached
single particle [8], [9]. In this paper, we analyze surface
waves in a ceramic half-space carrying a layer of another
material. The interface is modeled by the shear-lag model
[4], [5] for imperfect bonding. An analytical solution is ob-
tained that provides new physical insights into the prob-
lem. The mathematical formulation is given in Section II.
A surface wave solution is obtained in Section III, followed
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Fig. 1. An elastic layer on a ceramic half-space.

by discussions and numerical results in Section IV. Some
conclusions are drawn in Section V.

II. Formulation

Consider a ceramic half-space with a layer (see Fig. 1).
The ceramic is poled along the x3 direction. There is an
ideal electrode at the interface that is grounded. On the
electrode, the electric potential has to vanish. The layer is
of either a metal or an isotropic (nonpiezoelectric) dielec-
tric.

In the ceramic half-space, for antiplane motions, the
displacement vector and the electric potential are given
by u1 = u2 = 0, u3 = u (x1, x2, t), and φ = φ (x1, x2, t).
A function ψ can be introduced through φ = ψ + (e/ε)u,
where e = e15 and ε = ε11 are the relevant piezoelectric
and dielectric constants. The governing equations for u
and ψ in the half-space and u in the layer are [10], [11]:

c∇2u = ρü, x2 > 0,

∇2ψ = 0, x2 > 0,

ĉ∇2u = ρ̂ü, −h < x2 < 0,

(1)

where ∇2 is the two-dimensional Laplacian, c = c + e2/ε,
and c = c44 is the relevant elastic constant. ρ̂ and ĉ are
the mass density and shear modulus of the layer. We look
for surface solutions satisfying:

u, ψ → 0, x2 → +∞. (2)

At the free surface of x2 = −h, we have traction-free
boundary condition with T23 = 0. At the interface x2 = 0,
the electrical boundary condition is φ = 0. The mechanical
interaction at the interface is described by the shear-lag
model and will be given in the next section.

III. Surface Wave Solution

For x2 > 0, the solutions to (1)1 satisfying (2) can be
written as:

u = A exp (−ξ2x2) cos (ξ1x1 − ωt) ,

ψ = B exp (−ξ1x2) cos (ξ1x1 − ωt) ,
(3)
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where A and B are constants; (3)2 already satisfies (1)2.
For (3)1 to satisfy (1)1, the following must be true:

ξ2
2 = ξ2

1 − ρω2

c
= ξ2

1

(
1 − v2

v2
T

)
> 0, (4)

where:

v2 =
ω2

ξ2
1

, v2
T =

c

ρ
. (5)

The electric potential and the stress component needed
for the boundary and continuity conditions are:

T23 = cu,2 + eψ,2

= −
[
cAξ2 exp (−ξ2x2)

+ eBξ1 exp (−ξ1x2)
]
cos (ξ1x1 − ωt) ,

φ = ψ +
e

ε
u

=
[e

ε
A exp (−ξ2x2)+B exp (−ξ1x2)

]
cos (ξ1x1 −ωt) .

(6)

For −h < x2 < 0, we write:

u =
(
Â cos ξ̂2x2 + B̂ sin ξ̂2x2

)
cos (ξ1x1 − ωt) , (7)

where:

ξ̂2
2 =

ρ̂ω2

ĉ
− ξ2

1 = ξ2
1

(
v2

v̂2
T

− 1
)

, (8)

and:

v̂2
T =

ĉ

ρ̂
. (9)

For boundary conditions, we need:

T23 = ĉu,2 =

ĉ
(
−Âξ̂2 sin ξ̂2x2 + B̂ξ̂2 cos ξ̂2x2

)
cos (ξ1x1 − ωt) . (10)

The continuity and boundary conditions are [except for
a factor of cos (ξ1x1 − ωt)]:

φ(0+) =
e

ε
A + B = 0,

T23(0+) = −cAξ2 − eBξ1 = ĉB̂ξ̂2 = T23(0−),

T23 = K
(
u(0+) − u(0−)

)
,

T23(−h) = ĉ
(
Âξ̂2 sin ξ̂2h + B̂ξ̂2 cos ξ̂2h

)
= 0,

(11)

where (11)3 represents the shear-lag model [4], [5]. The
model describes an elastic interface with K as the elastic
or spring constant. With this model, the interface is al-
lowed to deform, and the displacement at the interface is
no longer continuous. In the special case when K → ∞, a
perfect interface is recovered. Using (11)1,3 to eliminate A
and B, we obtain:

c

(
e2

cε
ξ1 − ξ2

)
Â − ĉ

[(
e2

cε
ξ1 − ξ2

)
cξ̂2

K
− ξ̂2

]
B̂ = 0,

Â sin ξ̂2h + B̂ cos ξ̂2h = 0.
(12)

For nontrivial solutions, the determinant of the coeffi-
cient matrix has to vanish, i.e.:

ξ2

ξ1
− ĉ

c

ξ̂2

ξ1

[
1 − cξ̂2

K

(
k

2 − ξ2

ξ1

)]
tan ξ̂2h = k

2
=

e2

εc
.
(13)

Substituting from (4) and (8), we obtain (14) (see next
page), which determines the surface wave speed v as a
function of the wave number ξ1. Therefore, the waves are
dispersive.

IV. Discussion and Numerical Results

We make the following observations from (14):

A. Bleustein-Gulyaev Wave

When h = 0, (14) reduces to:√
1 − v2

v2
T

= k
2
, (15)

or:

v2 = v2
T

(
1 − k

4
)

, (16)

which is the well-known Bleustein-Gulyaev wave over a
ceramic half-space with an electroded surface [10], [12].

B. Perfect Bonding

When K → ∞, the layer is perfectly bonded to the
half-space, and (14) reduces to:√

1 − v2

v2
T

− ĉ

c

√
v2

v̂2
T

− 1 tan

[
ξ1h

√
v2

v̂2
T

− 1

]
= k

2
,
(17)

which is the result of [13]. If we further set k
2

= 0, (17)
becomes the frequency equation for Love waves in an elas-
tic half-space carrying an elastic layer [14]. The dispersion
relations for Love waves are real and multivalued when
v̂2

T < v2 < v2
T , for which the elastic shear wave speed of

the layer has to be smaller than that of the half-space. In
other words, the half-space is more shear-rigid than the
layer.

C. Unbonded Layer

When K = 0, the mechanical interaction at the inter-
face disappears, and (14) reduces to (18) (see next page).

Eq. (18) has four factors. The first and the second are
the same, and they simply imply:

v = v̂T , (19)

which is the face-shear wave [an antiplane or shear hori-
zontal (SH) plate wave] in the layer [14]. The third factor



fan et al.: antiplane piezoelectric surface waves and ceramic half-spaces 1697

√
1 − v2

v2
T

− ĉ

c

√
v2

v̂2
T

− 1

[
1 − c

K
ξ1

√
v2

v̂2
T

− 1

(
k

2 −

√
1 − v2

v2
T

)]
tan

[
ξ1h

√
v2

v̂2
T

− 1

]
= k

2
, (14)

− ĉ

c

√
v2

v̂2
T

− 1

[
−cξ1

√
v2

v̂2
T

− 1

(
k

2 −

√
1 − v2

v2
T

)]
tan

[
ξ1h

√
v2

v̂2
T

− 1

]
= 0. (18)

yields (15) or (16) for Bleustein-Gulyaev waves. The fourth
factor of (18) gives:

tan

[
ξ1h

√
v2

v̂2
T

− 1

]
= 0, (20)

which determines thickness-twist waves (antiplane or SH
plate waves) of the layer [14].

D. Nonpiezoelectric Material

When the electromechanical coupling factor k = 0, (14)
reduces to (21) (see next page), which determines elastic
surfaces waves in a half-space with an imperfectly bonded
layer. This special result appears to be new.

E. Long Waves

In applications we often encounter long waves with a
wavelength much larger than the layer thickness (ξ1h �
1). We examine the effects of K on long waves below. For
small ξ1h, (14) can be approximated by (22) (see next
page), where the dimensionless parameters, α, β, and γ
are defined as:

α =
ĉ

c
, β =

v2
T

v̂2
T

=
cρ̂

ρĉ
, γ =

c

Kh
. (23)

We perform some numerical calculations from (22). For
the piezoelectric half-space, we use PZT-5H with c = c44 =
2.3 × 1010 N/m2, ρ = 7500 kg/m3, e = e15 = 17 C/m2,
and ε = 1.505 C/Vm [11]. Then:

k2 =
e2

cε
= 0.8377, k

2
=

e2

cε
= 0.4558. (24)

For the layer, we examine the two cases of gold and
aluminum layers. They are common electrode materials,
and the layer can represent an electrode with a thickness
that cannot be neglected. The material constants of gold
and aluminum are listed in Table I. The nondimensional
constant α and β are also listed in Table I.

Fig. 2 shows the case for a gold layer with β > 1. Two
roots are expected from (22), representing the Bleustein-
Gulyaev wave and Love wave, respectively. In the long
wave range shown, only one root is present. Its speed sug-
gests it is a Bleustein-Gulyaev wave modified by a layer
with a thickness, and hence it has become dispersive. The

TABLE I
Material Constants of Metal Layers on PZT-5H.

Metal layer Shear modulus Density α β

Gold 30 Gpa 19.3 Mg/m3 0.71 3.6
Aluminum 27 Gpa 2.7 Mg/m3 0.64 0.56

Fig. 2. Dispersion relations for a gold layer on PZT-5H (small γ, near
perfect bonding).

three curves are for a perfect interface (γ = 0) and γ = 1
and 10. The curves are close; therefore, γ = 1 and 10 may
be considered as cases of almost perfect bonding. Fig. 2
shows that imperfection reduces the wave speed. This is
because, when compared to the case of perfect interface
with γ = 0 which is shear-rigid, the cases for γ = 1 and 10
represent a shear-deformable interface with less stiffness,
and therefore, lower frequency or wave speed.

Fig. 3 is still for a gold layer, but it is for larger values of
γ = 100 and 1000. They represent the cases of relatively
loosely bonded interfaces. In this case, two real roots of
(22) can be found in the range shown. The two branches
of the dispersion relations for Love waves are bounded from
above by v/vT < 1 [14]. The wave speeds are reduced by
the increases of the interface imperfection.

For an aluminum layer on PZT-5H, we have β < 1.
In this case, Love wave does not exist [14]. No solution is
found from (22) when the interface is imperfect. However,
when γ = 0 (perfect interface), a solution can be found
and is compared with the case of a gold layer in Fig. 4.
It was shown recently that a layer affects the frequency or
wave speed through both of the layer inertia, which low-
ers the speed and the layer stiffness that raises the speed
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√
1 − v2

v2
T

− ĉ

c

√
v2

v̂2
T

− 1

[
1 − c

K
ξ1

√
v2

v̂2
T

− 1

(
−

√
1 − v2

v2
T

)]
tan

[
ξ1h

√
v2

v̂2
T

− 1

]
= 0, (21)

√
1 − v2

v2
T

− α

(
β

v2

v2
T

− 1
)[

1 − γξ1h

√
β

v2

v2
T

− 1

(
k

2 −

√
1 − v2

v2
T

)]
ξ1h = k

2
, (22)

Fig. 3. Dispersion relations for a gold layer on PZT-5H (large γ, loose
bonding).

Fig. 4. Dispersion relations for different metal layers with perfect
bonding.

[15]. This explains the interesting result in Fig. 4. For gold,
which is heavy, the inertial effect dominates, and the fre-
quency is lowered. For aluminum, which is relatively light,
the stiffness effect dominates, and the frequency becomes
higher. This is a more comprehensive picture of the effect
of a layer on wave speed. It shows that the usual under-
standing of the reduction of wave speed due to layer inertia
is not complete. The layer stiffness also may be important.

V. Conclusions

An exact solution for antiplane waves in a ceramic half-
space with an imperfectly bonded layer is obtained. The

solution generalizes a few known results and includes them
as special cases. Numerical results show that the disper-
sion relations of the waves are sensitive to the interface
property. In the examples analyzed, the interface imper-
fection lowers the wave speed. The results are useful for
understanding the behavior of waves in a half-space with
a mass layer.
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