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Letters

Frequency Shifts in a Piezoelectric Body Due to
Small Amounts of Additional Mass on Its Surface

Jiashi Yang, Member, IEEE

Abstract—Shifts of resonance frequencies of a three-
dimensional piezoelectric body of an arbitrary shape due
to the addition of a thin layer of mass to its surface are
studied. A first-order perturbation integral is obtained for
the frequency shifts.

I. Introduction

Frequency shifts in a crystal resonator due to a thin
layer of mass (e.g., an electrode) added to part of its

surface have been an important issue in frequency anal-
ysis of resonators. Many chemical and biological acoustic
wave sensors detect certain substances through the mass-
frequency effect of a substance accumulated on the crys-
tal surface by some chemically or biologically active films.
For plate resonators, Mindlin [1] developed a procedure to
analyze the mass effect on the surface of a crystal plate.
Mindlin’s approach was adopted by many researchers [2],
[3] and is a subject of continued study [4]. However, only
plate resonators were considered in [1]–[4]. The widely used
perturbation integral by Tiersten [5] for frequency shifts
in a piezoelectric body was for a general three-dimensional
body. The perturbation integral was obtained from a first-
order perturbation analysis of eigenvalue problems [6]. In
[5], the source of frequency shifts was limited to be in-
side the body, not on the surface. In this letter, we ana-
lyze frequency shifts in a three-dimensional body due to a
thin layer of surface-added mass. In Section II the eigen-
value problem is formulated, with an interesting feature
that the eigenvalue (resonance frequency) appears in both
the differential equations and boundary conditions. In Sec-
tion III a perturbation analysis is performed and a general
formula is obtained. Then some observations are made in
Section IV. A simple example is given in Section V. Some
conclusions are drawn in Section VI.

II. Formulation of the Problem

Consider a piezoelectric body with a thin film of thick-
ness h′ and mass density ρ′ on part of its surface (see
Fig. 1). Let the region occupied by the piezoelectric body
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Fig. 1. A piezoelectric body with a thin layer of additional mass on
part of its surface.

be V and its boundary surface be S. The unit outward
normal of S is n. The mass layer is assumed to be very
thin. For the lowest order effect of the mass layer, only
the inertial effect of the layer needs to be considered; its
stiffness can be neglected [7]. For free vibrations with a fre-
quency ω, the traction boundary condition on the surface
area with the added mass is [4], [7]:

−Tjinj = ρ′h′üi = −ρ′h′ω2ui. (1)

Let Su be the part of S on which the mechanical displace-
ment is prescribed and ST the part of S with the mass
layer. The Sφ represents the part of S which is electroded,
and SD is the unelectroded part. Then the eigenvalue prob-
lem for the resonance frequencies and modes of a crystal
with surface added mass is [4], [8]:

− cjikluk,lj − ekjiφ,kj = ρλui, in V,

− eikluk,li + εikφ,ki = 0, in V,

ui = 0, on Su,

Tjinj = (cjikluk,l + ekjiφ,k)nj = ελρ′h′ui, on ST ,

φ = 0, on Sφ,

Dini = (eikluk,l − εikφ,k)ni = 0, on SD,

(2)

where we have denoted

λ = ω2. (3)

In (2)4 we have artificially introduced a dimensionless
number ε to be used in our perturbation analysis. The
real physical problem is represented by ε = 1; (2) can be
written in a more compact form as [8]:

AU = λBU, in V,

ui = 0, on Su,

Tji(U)nj = ελρ′h′ui, on ST ,

φ = 0, on Sφ,

Di(U)ni = 0, on SD,

(4)
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where U = {uk, φ} is a 4-vector. The differential operators
A and B are defined by [8]:

AU = {−cjikluk,lj − ekjiφ,kj ,−eikluk,li + εikφ,ki} ,

BU = {ρui, 0} , (5)

where Tji(U) and Di(U) are the stress tensor and electric
displacement vector in terms of the 4-vector.

III. Perturbation Analysis

We make the following perturbation expansion:

λ ∼= λ(0) + ελ(1),

U =
{

ui

φ

}
∼=

{
u

(0)
i

φ(0)

}
+ ε

{
u

(1)
i

φ(1)

}

= U(0) + εU(1).

(6)

Substituting (6) into (4), collecting terms of equal pow-
ers of ε, we can obtain a series of perturbation problems
of successive orders. We are interested in the lowest order
effect of the mass layer. Therefore, we collect coefficients
of terms with powers of ε0 and ε1 only and will not study
higher order problems. The zero-order problem is:

− cjiklu
(0)
k,lj − ekjiφ

(0)
,kj = ρλ(0)u

(0)
i , in V,

− eiklu
(0)
k,li + εikφ

(0)
,ki = 0, in V,

u
(0)
i = 0, on Su,(
cjiklu

(0)
k,l + ekjiφ

(0)
,k

)
nj = 0, on ST ,

φ(0) = 0, on Sφ,(
eiklu

(0)
k,l − εikφ

(0)
,k

)
ni = 0, on SD.

(7)

This represents free vibrations of the body without the
surface mass. The solution to the zero-order problem, λ(0)

and U(0), is assumed known as usual in a perturbation
analysis. The first-order problem below is to be solved:

− cjiklu
(1)
k,lj − ekjiφ

(1)
,kj = ρλ(1)u

(0)
i + ρλ(0)u

(1)
i , in V,

− eiklu
(1)
k,li + εikφ

(1)
,ki = 0, in V,

u
(1)
i = 0, on Su,(
cjiklu

(1)
k,l + ekjiφ

(1)
,k

)
nj = ρ′h′λ(0)u

(0)
i , on ST ,

φ(1) = 0, on Sφ,(
eiklu

(1)
k,l − εikφ

(1)
,k

)
ni = 0, on SD.

(8)

Terms such as λ(1)U(1) belong to higher order problems.
The equations for the first-order problem, (8)1,2, can be
written as:

AU(1) = λ(0)BU(1) + λ(1)BU(0). (9)

Multiply both sides of (9) by U(0) and integrate the
resulting equation over V , we have (10) (see next page),

where, for simplicity, we have used 〈 • 〉 to represent the
product of two 4-vectors and the integration over V [8].
With integration by parts we get (11) (see next page).

With the boundary conditions in (7)3–6 and (8)3–6, (11)
becomes:

〈
AU(0); U(1)

〉

=
∫

ST

ρ′h′λ(0)u
(0)
k u

(0)
k dS +

〈
U(0); AU(1)

〉
. (12)

Substitute (12) into (10):

〈
AU(0); U(1)

〉
−

∫
ST

ρ′h′λ(0)u
(0)
k u

(0)
k dS

= λ(0)
〈
BU(1); U(0)

〉
+ λ(1)

〈
BU(0); U(0)

〉
, (13)

which further can be written as:

〈
AU(0) − λ(0)BU(0); U(1)

〉
−

∫
ST

ρ′h′λ(0)u
(0)
k u

(0)
k dS

= λ(1)
〈
BU(0); U(0)

〉
. (14)

With (7)1,2, we obtain, from (14):

λ(1) = −
∫

ST
ρ′h′λ(0)u

(0)
k u

(0)
k dS〈

BU(0); U(0)
〉

= −λ(0)

∫
ST

ρ′h′u
(0)
k u

(0)
k dS∫

V
ρu

(0)
i u

(0)
i dV

.

(15)

The above expression is for the eigenvalue λ = ω2. For
ω we make the following expansion:

ω ∼= ω(0) + εω(1). (16)

Then:

λ = ω2 ∼=
(
ω(0) + εω(1)

)2

∼=
(
ω(0)

)2
+ 2εω(0)ω(1) ∼= λ(0) + ελ(1). (17)

Hence:

εω(1)

ω(0)
∼=

1

2
(
ω(0)

)2 ελ(1)

= − 1

2
(
ω(0)

)2 ελ(0)

∫
ST

ρ′h′u
(0)
k u

(0)
k dS∫

V
ρu

(0)
i u

(0)
i dV

.

(18)

Setting ε = 1 in (18), we obtain:

ω − ω(0)

ω(0)
∼= −1

2

∫
ST

ρ′h′u
(0)
k u

(0)
k dS∫

V
ρu

(0)
i u

(0)
i dV

. (19)
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〈
AU(1); U(0)

〉
=

∫
V

[(
−cjiklu

(1)
k,lj − ekjiφ

(1)
,kj

)
u

(0)
i +

(
−eiklu

(1)
k,li + εikφ

(1)
,ki

)
φ(0)

]
dV

= λ(0)
〈
BU(1); U(0)

〉
+ λ(1)

〈
BU(0); U(0)

〉
,

(10)

〈
AU(0); U(1)

〉
= −

∫
S

[
Tji

(
U(0)

)
nju

(1)
i + Di

(
U(0)

)
niφ

(1)
]
dS

+
∫

S

[
Tkl

(
U(1)

)
nlu

(0)
k + Dk

(
U(1)

)
nkφ(0)

]
dS +

〈
U(0); AU(1)

〉
.

(11)

IV. Discussion

We make the following observations from (19):

• Clearly, we have ω − ω(0) ≤ 0. This shows that small
amounts of mass added to the surface tends to lower
the resonance frequencies, as expected. However, if a
thin layer of material is removed from the surface, res-
onance frequencies increase.

• Larger ρ′h′ causes more frequency shifts.
• In an area in which the surface displacement is large,

the added mass has a larger effect on resonance fre-
quencies.

• If the additional mass is essentially a concentrated
mass m at a point with Cartesian coordinates yk on
the surface (e.g., a local contamination), then (19) re-
duces to:

ω − ω(0)

ω(0)
∼= −1

2
mu

(0)
k (y)u(0)

k (y)∫
V ρu

(0)
i u

(0)
i dV

. (20)

Both (19) and (20) seem to suggest that the frequency
shift is related to the ratio between the kinetic energy
of the surface mass to the kinetic energy of the crystal.

• Obviously, ST can be several disadjoint areas.

V. An Example

As an example, consider an unbounded plate of rotated
Y-cut quartz (Fig. 2). The plate carries a thin layer on both
of its surfaces. Quartz is a material with very weak piezo-
electric coupling. For a frequency analysis, usually the
weak piezoelectric coupling can be neglected and an elas-
tic analysis is performed. This is sufficient for our present
purpose. We are interested in the fundamental thickness-
shear mode important for resonator application. When the
surface mass is not present, the frequency and mode of in-
terest are given by [3]:

ω(0) =
π

2h

√
c66

ρ
, u1 = sin

π

2h
x2, u2 = u3 = 0.

(21)

Fig. 2. A rotated Y-cut quartz plate with identical mass layers.

When the mass layers are present, from (19) we obtain:

ω − ω(0)

ω(0) =
ρ′h′

ρh
. (22)

For the plate and mass layers shown in Fig. 2, the exact
resonance frequency for the fundamental thickness-shear
mode as directly determined from (2) is given by [3]:

tan
(

ωh

√
ρ

c66

)
=

1
ρ′h′

ρh
ωh

√
ρ

c66

. (23)

It also was shown in [3] that from small h′, to the first
order effect of h′, the ω determined by (23) is approxi-
mately given by (22). Thus the perturbation integral pre-
dicts the lowest order effect of the mass layer.

VI. Conclusions

A general formula for frequency shifts in a piezoelectric
body due to additional mass on its surface is obtained. The
formula is useful for the analysis and design of piezoelectric
resonators and acoustic wave sensors.
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