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Letters

Effects of Piezoelectric Coupling on Energy
Trapping of Thickness-Shear Modes

Jiashi Yang, Member, IEEE
and John A. Kosinski, Fellow, IEEE

Abstract—Energy trapping of thickness-shear vibration
modes in a partially electroded piezoelectric crystal plate
of monoclinic symmetry is analyzed. Effects of piezoelectric
coupling on energy trapping are examined. Results show
that the effect of piezoelectric coupling is comparable to
the effect of electrode mass and needs to be included in the
analysis of energy trapping.

I. Introduction

Thickness-shear vibration in a partially electroded
quartz plate is confined to the area under and close

to the electroded region of the plate. This phenomenon is
called energy trapping of thickness-shear modes [1]. En-
ergy trapping has been known and used for a long time
in quartz thickness-shear resonators. Quartz is a material
with very weak piezoelectric coupling. Therefore, in the
calculation of resonance frequencies and in the analyses
of energy trapping in quartz resonators, the small piezo-
electric coupling often was neglected, and a pure elastic
analysis was performed [2]. In this type of analysis, the
energy-trapping effect is due to the electrode mass only.

Recently, new crystals of the langasite family with elec-
tromechanical coupling stronger than quartz have been de-
veloped [3] and used to make thickness-shear resonators
[4]. In addition, other crystals with relatively strong piezo-
electric coupling (e.g., lithium niobate and lithium tanta-
late) also have been used to make thickness-shear devices
[5], [6]. For thickness-shear devices made from materials
with stronger piezoelectric coupling, the understanding of
energy trapping based on an elastic analysis is question-
able and may be inadequate. An analysis with piezoelectric
coupling is necessary to quantify the effect of piezoelectric
coupling on energy trapping in materials with relatively
strong coupling.

In this paper we analyze energy trapping of thickness-
shear modes in a partially electroded crystal plate of mon-
oclinic symmetry. This includes the widely used, rotated
Y-cut quartz and langasite plates. Piezoelectric coupling
is included in the analysis. The governing equations are
summarized in Section II. The eigenvalue problem for free,
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Fig. 1. A partially electroded piezoelectric plate.

thickness-shear vibrations of the plate is formulated in
Section III. The frequency equation that determines res-
onance frequencies is obtained in Section IV, along with
the modes. An approximate solution is obtained for the
first resonance frequency and mode, from which some im-
portant observations are made, and some conclusions are
drawn.

II. Governing Equations

Consider an unbounded, partially electroded piezo-
electric plate of monoclinic symmetry with thickness 2h
(Fig. 1). The mass densities of the plate and the electrodes
are ρ and ρ′, respectively. We consider the case of thin
electrodes in which the mass effect needs to be considered,
but the stiffness of the electrodes can be neglected. When
the structure is in thickness-shear vibrations, there may be
accompanying flexural deformations. The two-dimensional
equations for coupled thickness-shear and flexural vibra-
tions of piezoelectric plates [7] can describe such motions.
When a � h (i.e., very thin plates), the flexural deforma-
tion is small and can be eliminated through a thickness-
shear approximation [8]. For the purpose of the present
analysis, we assume a � h and use the equations based on
the thickness-shear approximation given in [8], which has
the most basic effects of piezoelectric coupling. Consider
plane-strain motions with u3 = 0 and ∂/∂x3 = 0. We look
for free vibration modes at a frequency ω.

To conduct a free vibration frequency analysis, the elec-
trodes are taken as shorted, i.e., the voltage across the elec-
trodes is zero. The equation governing the thickness-shear
displacement u

(1)
1 (x1) is given by [8]:

γu
(1)
1,11 + ρ(ω2 − ω2

0)u
(1)
1 = 0, (1)

0885–3010/$20.00 c© 2004 IEEE



1048 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 51, no. 9, september 2004

where

γ = γ11 +
c66κ

2
6

r
,

γ11 = c11 − c2
12

c22
− (c14 − c12c24/c22)2

c44 − c2
24/c22

,

κ2
6 =

π2

12

(
1 + R − 8k2

26

π2

)
c66

c66
,

ρ = ρ(1 + 3R),

R =
2ρ′h′

ρh
,

k2
26 =

e2
26

ε22c66
,

c66 = c66 +
e2
26

ε22
,

r =
1 + R

1 + 3R
,

ω2
0 =

π2

4h2

(
1 − R − 4k2

26

π2

)2
c66

ρ
.

(2)

Eq. (1) is the result of a series of subtle approximations.
The most basic effects of mass loading and piezoelectric
coupling are represented by the presence of R and k2

26.
Similarly, in an unelectroded region of the plate we

have [8]:

γu
(1)
1,11 + ρ(ω2 − ω2

0)u
(1)
1 = 0, (3)

where

γ = γ11 + c66κ
2
6,

κ2
6 =

π2

12
(1 + k2

26),

ω2
0 =

π2

4h2

c66

ρ
.

(4)

At the junctions between the electroded and unelectroded
regions, the continuity of u

(1)
1 and u

(1)
1,1 need to be im-

posed [8].

III. Free Vibration Analysis

We look for trapped thickness-shear modes in the fol-
lowing form:

u
(1)
1 =

⎧⎪⎨
⎪⎩

A exp ξ(a + x1), x1 ≤ −a,

A cos ξx1, |x1| ≤ a,

A exp ξ(a − x1), x1 ≥ a,

(5)

where A, A, ξ, and ξ are undetermined constants. Modes
represented by (5) are symmetric about x1. The antisym-
metric modes are not electrically excitable by the electrode

configuration in Fig. 1 and will not be considered. Substi-
tuting (5) into (1) and (3), we obtain:

ξ
2

=
ρ

γ
(ω2 − ω2

0) > 0,

ξ2 =
ρ

γ
(ω2

0 − ω2) > 0.
(6)

The inequalities hold because ω2
0 < ω2

0. The frequencies
we are looking for are in the interval ω2

0 < ω2 < ω2
0. The

continuity of u
(1)
1 and u

(1)
1,1 at x1 = ±a implies:

A cos ξa = A.

A ξ sin ξa = Aξ.
(7)

For nontrivial solutions of A and A, the determinant of
coefficient matrix of (7) has to vanish, which yields:

tan ξa =
ξ

ξ
. (8)

With (6), (8) can be written as an equation for ω. From
(7)1, the modes can be written as:

u
(1)
1 =

⎧⎪⎨
⎪⎩

A cos ξa exp ξ(a + x1), x1 ≤ −a,

A cos ξx1, |x1| ≤ a,

A cos ξa exp ξ(a − x1), x1 ≥ a.

(9)

Consider the first resonance frequency above ω0, which
is the one most important in applications. When a � h,
the first mode has an essentially uniform thickness-shear
deformation (small ξ) in the long, electroded region, with
an exponential decay right outside the electroded region.
A limit solution to (8) for this case of small ξ and large
a is:

ξ ∼= 0, ξa ∼= π

2
. (10)

From (6)1 and (10)1 we have the resonance frequency for
this mode approximately as:

ω ∼= ω0. (11)

Then from (6)2:

ξ2 ∼= ρ

γ
(ω2

0 − ω2
0). (12)

The decay coefficient of the mode, ξa, characterizes how
the mode is trapped. From (12), (2), and (4), the decay
coefficient for this mode is approximately:

ξ2a2 ∼=
ρ

γ
(ω2

0 − ω2
0)a

2

=
ρ

γ

[
π2

4h2

c66

ρ
− π2

4h2

(
1 − R − 4k2

26

π2

)2
c66

ρ

]
a2

=
ρ

γ

π2

4h2

c66

ρ
a2

[
1 −

(
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26

π2
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∼= π2a2

2h2
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γ

(
R +

4k2
26

π2

)
.

(13)
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TABLE I
Effects of Piezoelectric Coupling.

Material Y-cut quartz AT-cut quartz Y-cut langasite [9]

k26 13.7% 8.8% 17.2%
4k2

26

π2
0.76% 0.32% 1.20%

We make the following observations from (13):

• Both mass ratio and piezoelectric coupling contribute
to energy trapping.

• The contribution from mass ratio is linear. The con-
tribution from piezoelectric coupling is quadratic in
the electromechanical coupling coefficient k26 or the
piezoelectric constant e26.

• Energy trapping is stronger with increasing a/h ratio.
• To get some quantitative estimates, we calculate as

shown in Table I.

We observe that, even for a relatively large mass load-
ing on the order of R = 1%, the piezoelectric coupling
contribution to energy trapping is comparable to the mass
effect and has to be considered.

The above analysis and the result in (13) are within the
approximations made in [8] for small mass ratio and small
piezoelectric coupling. More refined analyses are needed
and can be performed. For example, in an unelectroded
region of the plate, an equation governing the small voltage
across the plate thickness can be included in the manner of
[10]. These are left as future work. The goal of the present
paper is to point out this situation and the need for further
study.

IV. Conclusions

The effect of piezoelectric coupling on energy trapping
is more pronounced in langasite than in quartz. It may be

comparable to the mass effect of the electrodes. Therefore,
for materials with relatively strong piezoelectric coupling,
a pure elastic analysis is insufficient for energy trapping.
Some of the previous understanding on energy trapping
needs to be reexamined and more analyses, including full
piezoelectric coupling, are needed.
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