
Abstract—An online algorithm for determining 
respiratory mechanics in patients using non-invasive 
ventilation (NIV) in pressure support mode was developed 
and embedded in a ventilator system. Based on multiple 
linear regression (MLR) of respiratory data, the algorithm 
was tested on a patient bench model under conditions with 
and without leak and simulating a variety of mechanics. 
Bland-Altman analysis indicates reliable measures of 
compliance across the clinical range of interest (±11-18% 
limits of agreement). Resistance measures showed large 
quantitative errors (30-50%), however, it was still possible to 
qualitatively distinguish between normal and obstructive 
resistances. This outcome provides clinically significant 
information for ventilator titration and patient management.   

I. INTRODUCTION 
N spontaneously breathing patients suffering from 
respiratory insufficiency, respiratory system (RS) 

mechanics - namely resistance and compliance - provide 
important information about the type, severity, and 
progression of disease. This information assists in clinical 
decision-making, particularly titrating ventilator settings. 
In practice, the clinician makes inferences about RS 
mechanics from the patient’s statistics, pathology, and by 
inspection of the pressure and flow waveforms. Little has 
been done to make quantitative information available on a 
ventilator system for the convenience of the clinician or as 
a control reference for automated therapy.  

Measuring mechanical parameters of the RS in 
spontaneously breathing patients using non-invasive 
ventilation (NIV) on pressure support presents major 
challenges and a sound method is yet to be established for 
such systems.  

Approaches with the most potential to achieve this are 
the forced oscillation technique (FOT) [1], and applying 
multiple linear regression (MLR) of sampled data to a 
model [2, 3]. The latter approach has superior clinical 
advantage in that it does not necessitate system excitation 
or maneuvers which impose additional hardware 
requirements, and possibly interrupt the continuity of 
therapy. Furthermore, it derives a meaningful set of 
parameters pertinent to breathing frequency that facilitates 
better clinical understanding for practitioners.  

Q. Mulqueeny, and K. Schindhelm are with ResMed Pty Ltd, and the 
Graduate School of Biomedical Engineering, University of New South 
Wales, Sydney NSW 2052, Australia. N.H. Lovell (email: 
N.Lovell@unsw.edu.au) is with the Graduate School of Biomedical 
Engineering, University of New South Wales, Sydney NSW 2052, 
Australia. D. Tassaux, L. Vignaux are with the University Hospital, 
Intensive Care, 1211 Geneva 14, Switzerland. P. Jolliet is with the 
CHUV University Hospital, CH 1011 Lausanne, Switzerland. 

This paper is dedicated to the validation of an adaptive
MLR algorithm designed to estimate respiratory 
parameters in non-invasively ventilated patients. The
implementation is embedded in a real-time environment in 
a ventilator system and tested with a spontaneously 
breathing patient bench model. 

II. METHODS

A. Bench model setup and data acquisition 
The algorithm (described in section II.D) was

embedded using C++ in a bi-level ventilator (VPAP 
research prototype, ResMed) where analogue pressure and
flow signals are converted to digital, filtered and
calibrated. The system was tested on a patient bench
model using pressure support ventilation, as described
below. A range of patient mechanics and ventilator
settings was configured and data were collected via a
serial link to a computer.  

Fig. 1: Schematic of patient bench model connected to test ventilator. 

A paired bellows system was used to model the lungs
(Metron QA-VT Dual adult ventilator tester) in series with 
a mannequin head (Bill I, VBM Medizintechnik GmbH,
Sulz, Germany) to simulate a spontaneously breathing
patient under NIV conditions (Fig. 1). The driving
ventilator used was an ICU ventilator (Evita 4,
Drägerwerk AG, Lübeck, Germany) in pressure control 
mode. The compliance of the patient bellows (

sysC ) was 

adjusted manually. The patient bellows was connected in 
series with the head, equipped with upper airways and
trachea, via an adjustable parabolic resistor analogous to 
the lower airways resistance ( pR ). The test ventilator was

connected to the head via a medium size oro-nasal vented
mask (Ultra Mirage Full Face, ResMed). 

A pneumotachograph and pressure transducer (Biopac 
Systems, Goleta, CA, USA) was inserted between the
ventilator tubing and the mask, and a second set was
inserted between the trachea and patient lung compartment 
to determine flow and pressure at the ‘mouth’ and
‘alveoli’. To generate leak, a three-way stopcock with a
constant orifice (2 mm) was inserted in the circuit,
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between the mouth transducer set and the mask. The 
following variables were recorded (MP100, Biopac 
Systems, Goleta, CA), sampled at 200 Hz: pressure at the 
mouth,

awP ; pressure in the lung, alvP ; flow at the mouth, 

awV& ; and, flow at the lung, alvV& . Parameters internal to the 
ventilator were sampled at 100 Hz. These included: flow 
with leak compensation, patV& ; delivered pressure 

measured at the mask, vP ; estimated resistance, estR ; 
estimated compliance, 

estC ; estimated positive end-
expiratory pressure (PEEP), estPEEP ; and, mean expired 
tidal volume, tV . 

B. Experimental protocol 
The driving ventilator was set in pressure control mode 

with a frequency of 12 breaths min-1. Leak compensation 
available in the therapy ventilator was used. Pressure 
support (PS) and 

sysC were changed across three discrete 

levels. Two resistors were used, the numeric label 
denoting the coefficient of the parabolic pressure-flow 
relationship of the resistor. The tests were performed using 
a full face mask with and without leaks. Data were 
obtained with the ventilation settings and test variables 
given in Table I. All thirty-six (36) unique combinations 
of the test variables were assessed. Each condition was 
tested for 90 seconds. 

C. System mechanics calibration 
Leak was determined by subtracting awV&  and alvV& . The 

mean value was 12.3±5.87 Lmin-1, calculated over the 90 s 
duration for each test.  

Respiratory system compliance,
sysC , was taken to be 

the value set on the bellows.  
Total respiratory system resistance included resistive 

components between the bellows and the mouth: the mask, 
head, tubing, and parabolic resistor. This was 
characterized by performing a series of inflation-deflation 
maneuvers, and fitting the pressure drop of the system to 
the turbulent model of flow,   
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where 1K  represents the laminar and 2K  the fluidic 
resistance across the system. Fig. 2 shows an example of 
the fitted data for the setup with pR  = 20. Derived values 

of K  for each resistor were for pR =5: 1K  = 3.50, 2K  = 

4.24; and, for pR =20: 1K  = 6.00, 2K  = 12.49. 

A single linear resistance sysR , was calculated for each
of the 36 test conditions based on the range of flow values
present in each data set, iV& , }36:1{=i . Resistive pressure,

RiP , was calculated accordingly by fitting the data to the 
turbulent flow model using obtained values for K . System 
resistance was calculated by taking the derivative with 
respect to flow,  
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and averaging the resulting values to arrive at an effective 
linear value.  

Fig. 2: Data from ten maneuvers with parabolic resistor Rp = 20 fitted to
the parabolic curve yielding 1K  and 2K .

Using this method, potential for bias was caused by 
highly variable counts of discrete values at low flow
depending on each of the tests. This was removed by 
taking a histogram of the data with bins of width 0.05 Ls-1,
and finding the average resistance in each bin. Finally, 

sysR  for the test was obtained as the mean across the bins.  

D. Algorithm description 
The algorithm relies on the application of multiple 

linear regression (MLR) of which the basic form is, 
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and random errors iε = 1, 2,…,n, are normally distributed
random variables with zero mean and constant variance 
σ2.  

The patient-ventilator system can be modeled as a
single compartment such that the total driving pressure is 
the sum of the elastic and resistive properties of the system 
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where totP  is the driving pressure, V& is the air flow 
through the airways, V is the volume displaced within the
lungs, R is the airway resistance to air flow, C  is the 
compliance of the respiratory system, and 0P  is the 
pressure at end-expiration, which is the sum of the applied
external PEEP and internal PEEP of the patient. Defining
the driving pressure as the single response variable, and
flow ( patV& ) and volume as the explanatory variables,

MLR was applied to the measured data to estimate the 
parameters estR  and 

estC . 
Patient muscle effort is a non-random noise source that 

has significant implications for the accuracy of the model.

TABLE  I. VENTILATOR AND TEST VARIABLE SETTINGS 
Ventilator Setting Value 

Mode pressure support 
PEEP 5 cmH2O 
Trigger 0.1 L/s 
Rise time 100 ms 
Cycle 25% of peak inspiratory flow 
Max inspiratory time 4 s 

Test Variable 
R  ‘Rp5’, ‘Rp20’ 
C  20, 50, 100 mL/cmH2O 
PS 10, 15, 20 cmH2O 
Leaks 0, ~12  L/s 
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In a spontaneously breathing patient using a ventilator the 
driving pressure, totP , at any time is generated by both the 

ventilator, vP  , and the patient’s respiratory muscles, musP ,  

musvtot PPP += . (5) 
Because musP  cannot be measured directly without 

using an esophageal balloon catheter, determination of 
mechanical parameters non-invasively is impossible 
during inspiration when the diaphragm and accessory 
muscles contract. Fitting respiratory data during 
inspiration without consideration of muscle activity 
underestimates resistance and overestimate compliance. 
Thus, data used for the regression in each breath 
comprised the beginning of expiration up to 90% of the 
expired volume, tV .  In this way, the driving pressure 
was solely provided by the ventilator, vP . The median 
values of the fitted mechanics parameters from the last 15 
breaths were taken as representative of a typical expiratory 
breath. The coefficient of determination, 2R , was used as 
a criterion to eliminate poorly fitted breaths. A threshold 
of 0.95 was used. Differentiation between inspiration and 
expiration was derived from [4]. 

III. RESULTS 
The t-test for paired observations showed no statistical 

difference between the two measurements for both 
resistance ( sysR : 11.8±4.1, estR : 11.7±5.8, p=0.94) and 

compliance ( sysC : 56.7±33.5, estC : 59.0±36.4, p=0.06). 
The correlation for system and estimated resistances was 
significant (ρ= 0.84) as was that for compliance (ρ=0.94).  

Bland-Altman is commonly used to assess the degree of 
agreement between two clinical measures [5]. Bland-
Altman difference plots for resistance (Fig. 3) and 
compliance (Fig. 4) show a discernable funneling pattern 
where larger variability in error occurs with increasing 
resistance values. The compliance plot also shows a 
descending linear trend across the range investigated. 
Within each of the three compliance groups, the range of 
averages do not deviate from sysC by more than -

1.5±5.2%. 
Limits of agreement (LOA) are the expected limits of 

error of the method applied to a future measurement. They 
were calculated using the regression approach for non-
uniform differences [5] in combination with the 
refinements proposed by [6].  

A meta-analysis of existing studies on a cross-section 
of hospitalized patients (both intubated and NIV) was 
conducted to establish expected ranges of compliance and 
resistance values [2, 7, 8, 9, 10]. Respiratory mechanics 
measurements were obtained either by standard occlusion, 
pure MLR or FOT.  

For normal respiratory system mechanics, resistance 
values do not exceed 5.7 cmH2O/Ls-1 and on average 
range between 2.12-3.92 cmH2O/Ls-1. There exists a wider 
range and variability for pathologically affected lungs as 
to be expected, with mean values ranging between 8.8-
20.34 cmH2O/Ls-1. Average resistance for chronic 
obstructive pulmonary disease (COPD) patients was 

substantially higher than that of normals at 20.562 
cmH2O/Ls-1.  

The range for compliance spans between 10 and 110 
mL/cmH2O for all classifications, and differentiation 
between normal and pathological patients is less 
straightforward. Restrictive lungs are attributed to having 
low values of compliance (<30 mL/cmH2O). Obstructive 
patients occupy the higher values of the scale, and may 
present with either ‘normal’ static compliance of the 
respiratory system (Cst,rs ~60 mL/cmH2O) or elevated 
(Cst,rs > 88.5 mL/cmH2O) [8]. 

 
Fig. 3: Bland-Altman plot for resistance. Mean error (middle dashed line) 
and LOA (upper and lower dashed lines) are shown. 

 
Fig. 4: Bland-Altman plot for compliance. Mean error (middle dashed 
line) and LOA (upper and lower dashed lines) are shown. 

Table II shows the overall performance of the 
algorithm, giving the mean error and LOA for each 
mechanics variable. Resistances from the model 
parameters are calculated as the average of each data 
cluster pertaining to a physical parabolic resistor in the 
Bland-Altman plot. Approximate clinical values as 
gleaned from the meta-analysis are extrapolated for 
normal (chosen at the upper bound ~5 cmH2O/Ls-1) and 
obstructive resistances (~ 20 cmH2O/Ls-1).  

 
IV. DISCUSSION AND CONCLUSIONS 

It was the aim of this study to validate an algorithm 
using MLR as its basis for fitting respiratory data to a 
model of the ventilated patient to derive clinically 
meaningful estimates for resistance and compliance. The 

TABLE  II. MEAN ERROR AND LOA FOR C AND R MEASURES. INCLUDES 
LOA OF NORMALS VS COPD 

 
Mean 
Error

LOA  
upper 

LOA 
lower 

Max. 
Prediction 

Min. 
Prediction 

C (mL/cmH2O)       
20 0.84 2.14 -0.46 22.14 19.54 
50 -1.71 5.71 -9.13 55.71 40.87 
100 -5.96 11.66 -23.58 111.66 76.42 
R (cmH2O/Ls-1)      
Rp5 - 7.837  0.05 3.57 -3.47 11.4 4.37 
Rp20 - 15.736  0.05 8.31 -8.22 24.05 7.51 
Normal - 5  0.05 1.86 -1.76 6.86 3.24 
COPD - 20  0.04 10.87 -10.79 30.87 9.21 
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original contribution of this work is in the application of 
MLR during real-time intended for spontaneously 
breathing patients using NIV on pressure support. 
Furthermore, the algorithm is embedded in a ventilator 
and is applied to a portion of data that excludes effects of 
inspiratory effort, and exploits system dynamics to best 
effect.  

The results from the study show that the modified 
MLR algorithm for estimating RS mechanics works 
reasonably well in a bench patient model under conditions 
of varying pressure support, leaks and patient mechanics. 
For both measures good correlation was observed between 
the system and estimated values. 

For normal and mildly obstructive resistance values 
(<8cmH2O/Ls-1) as well as moderate to highly restrictive 
values (>15cmH2O/Ls-1) the algorithm is able to offer 
only qualitative estimates of resistance with between 30-
50% error. Importantly, however, limits of agreement for 
normal and average obstructive resistances are mutually 
exclusive and hence the algorithm is able to differentiate 
between these categories. Clinically this has important 
implications. The capability to monitor trends and global 
changes in respiratory mechanics in real-time on a 
ventilator, particularly in COPD, would facilitate tracking 
of disease progression and recovery, effects of drugs, and 
effectiveness of ventilation.  

Restrictive patients with low compliance as well as 
normal and obstructive patients with a moderately 
compliant RS (20-60 mL/cmH2O) could be identified 
accurately by the algorithm within ±11-18%. The greatest 
predicted error would be for obstructive patients with an 
extremely compliant RS (>90mL/cmH2O), where the 
algorithm might underestimate compliance by up to 23.6% 
in the worst case, however, this would still be identifiable 
by clinicians as above normal compliance.  

The few attempts at applying conventional MLR to 
spontaneously breathing ventilated patients [2, 3], have 
shown that patients’ inspiratory effort significantly 
compromises the accuracy of the parameter estimation. 
Other novel MLR-based algorithms have been proposed 
[11, 12, 13], and while excellent agreement with reference 
values were observed, they were applied exclusively to 
sedated ventilated patients. Recent validation of these 
and/or similar algorithms was undertaken in 
spontaneously breathing patients without ventilation 
therapy [14], however trans-pulmonary pressure was 
invasively measured and used in the calculations in place 
of pressure at the airway, awP . 

There are several limitations to the current study. To 
validate the algorithm using real patients would have been 
preferable but was prohibitive, due to the unreliable nature 
of measuring RS mechanics in spontaneously breathing 
patients and limited accessibility to methods which 
facilitate measurements during spontaneous breathing (e.g. 
FOT, invasive trans-pulmonary pressure measurement). 
Future studies would involve a comparison study with 
these techniques in humans. The model simplicity does 
not account for many non-linearities, inhomogeneities in 
multiple lung compartments, viscoelastic properties of 
tissues, and expiratory flow limitation. These influences 
result in poor data fitting and parameter inaccuracies, 
particularly with increasing degree of severity in disease. 

Work by Bates [9], however, argues for the case of using a 
linear single-compartment model in MLR in preference to 
higher order and multi-compartment models because the 
latter currently have little clinical significance. In a real-
time therapy application intended for seamless and 
integrated use by clinicians and patients alike, such as the 
algorithm described herein, compromise between a 
perfected model and clinical usability is imperative to 
technology development and its adoption into practice.  

In conclusion, the method described for measuring 
respiratory system resistance and compliance gives 
reliable measures of compliance across the clinical range 
of interest, and is able to accurately distinguish between 
normal versus obstructive resistances. It may provide a 
useful tool for ventilator titration and patient management. 
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