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Abstract—Tracking the spread of an epidemic disease like
seasonal or pandemic influenza is an important task that can
reduce its impact and help authorities plan their response. In
particular, early detection and geolocation of an outbreak are
important aspects of this monitoring activity. Various methods
are routinely employed for this monitoring, such as counting
the consultation rates of general practitioners. We report on
a monitoring tool to measure the prevalence of disease in a
population by analysing the contents of social networking tools,
such as Twitter. Our method is based on the analysis of hundreds
of thousands of tweets per day, searching for symptom-related
statements, and turning statistical information into a flu-score.
We have tested it in the United Kingdom for 24 weeks during the
H1N1 flu pandemic. We compare our flu-score with data from
the Health Protection Agency, obtaining on average a statistically
significant linear correlation which is greater than 95%. This
method uses completely independent data to that commonly used
for these purposes, and can be used at close time intervals, hence
providing inexpensive and timely information about the state of
an epidemic.

I. INTRODUCTION

Monitoring the diffusion of an epidemic in a population

is an important and challenging task. Information gathered

from the general population can provide valuable insight to

health authorities about the location, timing and intensity of

an epidemic, or even alert the authorities of the existence of a

health threat. Gathering this information, however, is a difficult

as well as resource-demanding procedure.

Various methods can be used to estimate the actual number

of patients affected by a given illness, from school and

workforce absenteeism figures [1], to phone calls and visits to

doctors and hospitals [2]. Other methods include randomised

telephone polls, or even sensor networks to detect pathogens

in the atmosphere or sewage ([3], [4]). All of these methodolo-

gies require an investment in infrastructure and have various

drawbacks, such as the delay due to information aggregation

and processing times (for some of them).

A recent article reported on the use of search engine data

to detect geographic clusters with a heightened proportion of

health-related queries, particularly in the case of “Influenza-

like Illness” (ILI) [5]. It demonstrated that timely and reliable

information about the diffusion of an illness can be obtained

by examining the content of search engine queries.
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Fig. 1: Flu rates from the Health Protection Agency (HPA) for

regions A-E (weeks 26-49, 2009). The original weekly HPA’s

flu rates have been expanded and smoothed in order to match

with the daily data stream of Twitter (see section III-B).

This paper extends that concept, by monitoring the content

of social-web tools such as Twitter1, a micro-blogging website,

where users have the option of updating their status with

their mobile phone device. These updates (referred to as

tweets) are limited to 140 characters only, similarly to the

various schemes for mobile text messaging. Currently there

are approximately 5.5 million Twitter users in the United

Kingdom (UK). We analyse the stream of data generated by

Twitter in the UK and extract from it a score that quantifies

the diffusion of ILI in various regions of the country. The

score, generated by applying machine learning technology, is

compared with official data from the Health Protection Agency

(HPA)2, with which it has a statistically significant linear

correlation coefficient that is greater than 95% on average.

The advantage of using Twitter to monitor the diffusion

of ILI is that it can reveal the situation on the ground by

utilising a stream of data (tweets) created within a few hours,

whereas the HPA releases its data with a delay of 1 to 2

weeks. Furthermore, since the source of the data is entirely

1Twitter, http://twitter.com/.
2Health Protection Agency, http://www.hpa.org.uk/.
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independent of search engine query-logs or any of the standard

approaches, our method can also be used in combination with

them, to improve accuracy.

II. DATA COLLECTION AND PREPROCESSING

A. Retrieving data from Twitter

We were collecting a daily average of 160,000 tweets over

a period of 24 weeks from 22/06/2009 (start of week 26, day

173) to 06/12/2009 (end of week 49, day 340). We focused

our collection process on the 54 most populated urban centres

in the UK. Twitter’s geolocation feature enables us to track the

location of a user posting a message, and consequently to label

each tweet with a set of geographical coordinates, i.e longitude

and latitude. We assign a tweet to an urban centre, when it falls

inside a 10 Km radius from its geographical centre. To create

vector space representations of specific subsets of the Twitter

corpus, we remove stop words, and then stem by applying

Porter’s algorithm [6].

B. Official health reports

As our ground truth basis, we use weekly reports from the

HPA related to the H1N1 epidemic. HPA provides regional

statistics for the UK, based on rates gathered by the Royal

College of General Practitioners (RCGP) [7], and the more

general QSurveillance scheme (QSur)3. RCGP and QSur met-

rics express the number of GP consultations per 105 citizens,

where the result of the diagnosis was ILI. RCGP data are

gathered for four UK regions: Central England & Wales

(region A), South England (region B), North England (region

C), and England & Wales (region D), whereas QSur covers

England, Wales & Northern Ireland (region E). Figure 1 shows

the time series of HPA’s influenza rates for regions A-E during

weeks 26-49 in 2009.

III. DATA ANALYSIS

A. Computing a flu-score from Twitter corpus

We compile a set of textual markers M = {mi}, where

i ∈ [1, k], and look for them in the Twitter corpus of a day. The

daily set of tweets is denoted as T = {tj}, where j ∈ [1, n].
If a marker mi appears in a tweet tj , we set mi(tj) = 1;

otherwise mi(tj) = 0. The flu-score of a tweet s(tj) is equal to

the number of markers it contains divided by the total number

of markers used:

s(tj) =

∑
i mi(tj)

k
, (1)

where k denotes the total number of markers. We compute, the

flu-score of the daily Twitter corpus f(T ,M), as the sum of

all the tweet flu-scores divided by the total number of tweets:

f(T ,M) =

∑
j s(tj)

n
=

∑
j

∑
i mi(tj)

k × n
, (2)

where n denotes the total number of tweets for one day.

3QSurveillance, University of Nottingham and Egton Medical Information
Systems Ltd, http://www.qresearch.org/Public/QSurveillance.aspx.
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Fig. 2: Twitter’s flu-scores based on our choice of markers for

regions A-E (weeks 26-49, 2009). Smoothing with a 7-point

moving average (the length of a week) has been applied.

TABLE I: Correlation Coefficients between Twitter’s flu-

scores and HPA’s rates based on our choice of markers (for

weeks 26-49, 2009).

Region HPA Scheme Corr. Coef. P-value
A RCGP 0.8471 1.95e-47

B RCGP 0.8293 8.37e-44

C RCGP 0.8438 9.84e-47

D RCGP 0.8556 2.39e-49

E QSur 0.8178 1.10e-41

B. Correlations between Twitter flu-scores and HPA flu rates

Using a small set of 41 textual markers (or n-grams) ex-

pressing illness symptoms or relevant terminology, e.g. ‘fever’,

‘temperature’, ‘sore throat’, ‘infection’, ‘headache’, and so on,

we compute the Twitter flu-score time series for regions A-E.

We smooth each time series with a 7-point moving average

in order to express a weekly tendency in our data. Figure 2

shows the time series of Twitter’s flu-scores for days 173 to

340 in 2009.

In order to retrieve an equal representation between the

weekly HPA flu rates and the daily Twitter flu-scores, we

expand each point of the former over a 7-day period; in fact,

each weekly point of an original HPA flu rate is assigned

on every day of the respective week. After expanding the

HPA flu rates, we perform smoothing on them with a 7-point

moving average (as in Twitter’s flu-scores). Figure 1 shows

the expanded and smoothed HPA’s flu rates.

For each one of the five regions, we compute the linear

correlation coefficients between Twitter’s and HPA’s flu-score

time series. The correlations and their respective p-values are

presented in Table I. The largest correlation of 85.56% (with

a p-value of 2.39e-49) is found for region D (see Figure 3),

whereas the smallest reported correlation is 81.78% for region

E.
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Fig. 3: Comparison of the unweighted Twitter’s flu score

(based on our choice of markers) and the respective HPA rates

for region D (England & Wales) using their z-scores. Their

linear correlation is equal to 85.56%.

C. Learning HPA’s flu rates from Twitter flu-scores

We extend our previous scheme in order to form a model

for predicting the HPA flu rate by observing the flu-score on

Twitter. In the new scheme, we attach a weight wi to each

textual marker mi. The weighted flu-score of a tweet is equal

to:

sw(tj) =

∑
i wi ×mi(tj)

k
, (3)

where k denotes the number of markers. Similarly, the

weighted flu-score based on Twitter’s daily corpus T is

computed by:

fw(T ,M) =

∑
j sw(tj)

n
=

∑
j

∑
i wi ×mi(tj)

k × n
, (4)

where n denotes the total number of tweets for this day. The

contribution of each marker mi in fw can be considered as a

flu-subscore and is equal to:

fwi(T ,mi) = wi ×
∑

j mi(tj)

k × n
. (5)

Therefore, a daily Twitter’s flu-score can be

represented as a vector Fw of k elements Fw =
[fw1

(T ,m1), ..., fwk
(T ,mk)]

T each one corresponding

to Twitter’s flu-subscore for marker mi.

Initially, we retrieve from the Twitter corpus of a day an

unweighted flu-score vector F = [f(T ,m1), ..., f(T ,mk)]
T .

The unweighted time series of each term’s flu-subscores

(f(T ,mi) for all the days) are smoothed with a 7-point

moving average. We perform least squares linear regression

between the time series of F’s smoothed version and the

expanded and smoothed HPA’s flu rates in order to learn

the weights wi for the terms mi. We use as a training set

the data that correspond to one region, and then we test

the predictability of the inferred weights on the remaining

four regions. We perform this training/testing method for all

possible (five) training choices.

TABLE II: Linear regression using the markers of our choice

- An element (i, j) denotes the correlation coefficient between

the weighted flu-scores time series and HPA’s flu rates on

region j, after training the weights on region i. The p-value

for all the correlations is < 10e-32.

Train/Test A B C D E Avg.

A - 0.8389 0.9605 0.9539 0.9723 0.9314
B 0.7669 - 0.8913 0.9487 0.8896 0.8741

C 0.8532 0.702 - 0.8887 0.9445 0.8471

D 0.8929 0.9183 0.9388 - 0.9749 0.9312

E 0.9274 0.8307 0.9204 0.9749 - 0.9134

Total Avg. 0.8915

The linear correlation coefficient between the inferred and

the official time series for the HPA flu rates is used as the

performance indicator. The results are presented in Table II;

the correlation coefficients that were retrieved after training

on a region A-E are presented in the row A-E respectively.

The average performance over all possible training and testing

choices is equal to 89.15%. The p-values of all the presented

correlations indicate strong statistical significance (all of them

are < 10e-32). The maximum average performance is achieved

when using tweets from region A (Central England & Wales)

for training, and is equal to 93.14%; the linear correlation of

the flu-scores’ time series and the HPA flu rates for region

E by applying the weights learnt from region A is equal to

97.23%.

To assess the predictive power of the former result differ-

ently, we perform linear regression on the aggregated time

series of the flu-scores and HPA’s flu rates using the data

from all the regions. The data which belong in weeks 28

and 41 (during the peak and the stabilised period of the

epidemic respectively) form the test set; the remaining data

are used for training the weights. This results to a linear

correlation of 92.34% with a p-value of 5.61e-30 on the test

set. Additionally, we perform a 10-fold cross validation (1000

repeats, where the folds are randomly decided each time) using

again linear regression for learning. On average, we obtain a

linear correlation of 94.12% with a standard deviation equal

to 1.54%.

While in all cases the score was tested on unseen data, in

the first set of experiments we trained on data gathered on

one region, and then tested on the remaining regions, but on

the same period of time; in the last two experiments, using an

aggregation of our data sets, we carried out training and testing

on different times. Together these two sets of experiments,

provide strong support to the predictive power of the flu-score

we developed.

D. Automatic extraction of ILI textual markers

In the previous sections, we made use of hand crafted ILI

related textual markers. In this section, we present a method

for extracting weighted markers (or features) automatically.

The method selects a subset of keywords and their weights to

maximise the correlation with the HPA flu rates, while also
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minimising the size of the keyword set. It is formed of 2 parts:

creating a set of candidate features, and then selecting the most

informative ones.

At first, we create a pool of candidate markers from web

articles related to influenza. We use an encyclopedic reference4

as well as a more informal reference where potential flu

patients discuss their personal experiences5. After preprocess-

ing (tokenisation, stop-word removal), we extract a set of

K = 1560 stemmed candidate markers (1-grams). The latter

is denoted by MC = {mci}, i ∈ [1,K]. MC contains words

which form a very good description of the topic as well as

many irrelevant ones.

After forming the candidate features, we compute their

daily, regional, and unweighted flu-subscores f(Tr,mci) given

Tr which denotes the Twitter corpus for region r, r ∈ {A-E}.

For a day d, the flu score on Twitter is represented as a vector

Fd,r = [f(Tr,mc1) ... f(Tr,mcK)]T . Consequently, for a

region r and a period of � days, we can form an array with the

time series of the flu-subscores for all the candidate features:

Xr = [F1,r ... F�,r]
T , where � denotes the total number of

days considered. The columns of Xr, i.e. the time series of the

flu-subscores of each candidate feature, are smoothed using a

7-point moving average (as in the previous cases); the resulting

array is denoted as X
(s)
r .

The expanded and smoothed time series of the HPA’s flu

rates for region r and for the same period of � days are denoted

by the vector h
(s)
r . At this point, one could use the correlation

coefficient between each column of X
(s)
r and h

(s)
r or other

linear regression methods (least squares, rigde regression, etc.)

in order to rank or learn weights for the candidate features.

For this purpose, the LASSO method has been chosen as it has

the advantage of producing sparse solutions, i.e. it will discard

candidate features which are proven to be redundant in terms

of predictability [8]. LASSO is an established method for

estimating least squares parameters subject to an L1 penalty.

It can be considered as a constrained optimisation task, which

in our case is formulated as

min
w

‖X(s)
r w − h

(s)
r ‖22

s.t. ‖w‖1 ≤ t,
(6)

where vector w is the sparse solution, and t is the shrinkage

parameter. The shrinkage parameter can be expressed as

t = α× ‖w(ls)‖1, (7)

where w(ls) denotes the least squares estimates for our regres-

sion problem, and α ∈ (0, 1) is the shrinkage percentage.

We use time series of a region ri ∈ {A-E} as the training

set, the time series of a region rj ∈ {{A-E} − ri} as the

validation set for deciding the optimal shrinkage percentage

α, and we test on the data of the remaining three regions. We

repeat this procedure for all possible five training set choices.

LARS algorithm is applied to compute LASSO’s estimates

4Influenza on Wikipedia, http://en.wikipedia.org/wiki/Influenza.
5Swine Flu on NHS (with potential patients comments), http://www.nhs.

uk/Conditions/pandemic-flu/Pages/Symptoms.aspx.

TABLE III: Linear correlations on the test sets after per-

forming the LASSO - An element (i, j) denotes the average

correlation coefficient on the three remaining regions, after

performing LASSO on region i in order to learn the weights,

and validating the shrinkage parameter t on region j.

Train/Validate A B C D E
A - 0.9594 0.9375 0.9348 0.9297

B 0.9455 - 0.9476 0.9267 0.9003

C 0.9154 0.9513 - 0.8188 0.908

D 0.9463 0.9459 0.9424 - 0.9337

E 0.8798 0.9506 0.9455 0.8935 -

Total Avg. 0.9256

TABLE IV: 97 stemmed markers extracted by applying

LASSO regionally. The markers are sorted in a descending

order based on their weights (read horizontally, starting from

the top-left corner).

lung unwel temperatur like headach season

unusu chronic child dai appetit stai

symptom spread diarrhoea start muscl weaken

immun feel liver plenti antivir follow

sore peopl nation small pandem pregnant

thermomet bed loss heart mention condit

high group tired import risk carefulli

work short stage page diseas recognis

servic wors case similar term home

increas exist ill sens counter better

cough vomit earli neurolog catch onlin

fever concern check drink long far

consid ach breath flu member kidnei

mild number sick throat famili water

read includ swine confirm need nose

medic phone cancer disord unsur suddenli

runni

[9]. The results of our method are captured in Table III. Most

of the possible training/validating choices lead to high linear

correlations. The average linear correlation over all possible

settings is 92.56% indicating the robustness of our method.

The experiments showed that the optimal choice was to train

on region A and use region B for validating α, leading to an

average correlation of 95.94% on the remaining three regions

(C-E) (for a shrinkage percentage α equal to 87%). Figures

4(a), 4(b), and 4(c) show a comparison between the inferred

and HPA’s flu rates time series on regions C-E respectively

(for the optimal choice). The learnt weights vector w had

97 non-zero values, i.e. we were able to extract 97 markers

(or features), which, in turn, are presented in Table IV. The

majority of the markers is pointing directly or indirectly to

illness related vocabulary.

We also assess the performance of our method differently,

following the same principle as in the previous section. We

aggregate our regional data sets X
(s)
r and h

(s)
r , and as before,

we form a test set by using the data for weeks 28 and 41, a
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(d) Inference on the aggregated data set for weeks 28 and 41 - Correlation:
97.13% (p-value: 3.96e-44)

Fig. 4: Comparison of the inferred versus the HPA’s flu rates, after using LASSO method for learning. Figures 4(a), 4(b), and

4(c) present the results for the regional experiment (training on one region, validating on another, and testing on the remaining

three), whereas 4(d) shows the results for the aggregated sets (5 partitions of a 14-day period each from left to right correspond

to the results for regions A-E respectively). Note that for subfigure 4(d) the ‘Days’ axis does not denote yearly day numbers.

validation set (for deciding the optimal value of the shrinkage

percentage α) by using weeks 36 and 49, and a training set

with the remaining data sets. The outcome of the experiment

indicates that the optimal value for α is 0.0049; for this value

we retrieve a linear correlation of 97.13% (p-value is equal to

3.96e-44) on the test set. The corresponding vector of weights

w has 73 non-zero features which are shown in Table V. Only

one of them (the stemmed word ‘pleas’) was not included in

the previously extracted set of features. Figure 4(d) presents

a comparison of the inferred versus the HPA’s flu rates for

all the test points. Again, we have demonstrated how a list

of markers can be automatically inferred from a large set of

candidates by using a supervised learning algorithm and HPA’s

index as the target signal; this approach delivers a correlation

greater than 97% with the target signal on unseen data.

IV. RELATED WORK

Similar studies have been performed using the content of

web search queries. In [10] the frequency of influenza-related

queries on Yahoo! search engine has been proven to be corre-

lated with influenza and mortality rates in the United States,

whereas in [5] a representative set of user search queries has

been extracted by applying a linear regression fit with official

health reports, achieving on average a linear correlation of

90%. Similarly, user queries on a Swedish medical website

have been used to learn ILI rates in Sweden [11].
Our study makes use of independent data, and hence can be

used both as an alternative source of information, or combined

with other data sources (or methods), to achieve an even higher

accuracy. Used in a stand-alone manner, our method can be

TABLE V: 73 stemmed markers extracted by applying LASSO

on the aggregated data set of regions A-E. The markers are

sorted in a descending order based on their weights (read

horizontally, starting from the top-left corner). 72 of them

have also occurred in Table IV but here the order (i.e. the

corresponding weights) is different.

muscl like appetit read unwel child

work follow season page throat nose

check suddenli pleas immun phone swine

sick dai symptom consid sens breath

cough loss recognis peopl number mild

home condit mention servic runni member

wors diseas diarrhoea high short onlin

pregnant small exist headach unsur cancer

stai concern fever earli tired carefulli

import weaken nation famili similar temperatur

feel ach flu case sore unusu

spread vomit ill thermomet pandem increas

stage far

considered as more reliable since it performs better than the

aforementioned ones.

Other recent studies have attempted to extract epidemic

information from textual data streams originating in social

media, mostly “traditional” blogs, but also Twitter. The study

reported in [12] deals with a similar question to ours, but with

the important difference that it is based on blogs (where ge-

olocation is not very accurate) and simply counts occurrences
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of only 2 keywords achieving a linear correlation of 76.7%

with the official ILI rates. In [13], where the authors mainly

present an infrastructure for collecting data from Twitter, it

is reported that the increasing numbers of tweets with illness

oriented vocabulary might indicate an emerging epidemic, but

there is no comparison with any ground truth in order to

validate this. Neither of these methods uses machine learning

to automatically select the features and learn a flu-scoring

function.

Various online tools6,7, created to detect “chatter” about a

disease are somewhat related to our work, in that they do

collect twitter or web media data, but again there is no use

of ground truth or machine learning, and hence they also act

mostly as news aggregators.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented a method for tracking the flu epidemic in

the UK by using the contents of Twitter; our approach could

give an early warning in various situations, but mostly can give

timely and free information to health agencies to plan health

care. This method is based on the textual analysis of micro-

blog contents, is calibrated with the ground truth provided by

the HPA, and could also be extended to the contents of text

messages sent via mobile devices (besides privacy concerns),

as the latter are of the same format with tweets (140 characters

limitation).

Our approach can automatically learn the inputs (textual

markers and their weights) of a scoring function that correlates

very highly with the HPA flu score (> 95%). This method only

requires access to the time series of geolocated blog contents

and a ground truth. It is entirely language independent, and

we are planning to extend this to other languages soon.

Differently from [5], where only data from traditional flu

seasons have been used for a 5-year period, this paper is

based on 6 months of data (June to December, 2009). Like

that study our method can potentially be affected by panic

or other factors that push people to post about illness-related

symptoms. Differently from search engine logs, in this type

of data, we can isolate more informative “self diagnostic”

statements, that are less likely to be caused by general panic

or discussions about the flu.

If we aim at predicting HPA’s rates, we may still need

to separate media hype and discussions about the flu from

reporting of actual flu cases, which is what we are trying to

count. In this case, it is likely that just counting the word “flu”

(like most existing systems do) will be much more subject to

hype than detecting statements about symptoms, e.g. “I have

a fever”. This is why a learning system should be trained

to automatically discover which keywords are more useful

to predict the ground truth rates. Indeed, in our system most

words relate to symptoms, not just to discussions of flu.

Future work will involve the exploitation of geographic

information and also include the integration of other data

6Monitoring US health using Twitter, http://www.cs.uiowa.edu/∼asignori/
projects/twitter-monitor-us-health/.

7Medical Information System (MedISys), http://medusa.jrc.it/medisys/.

sources, for example weather, to improve the accuracy of

predictions. A generalised version of this method can also be

applied to generate automatically the most informative “diag-

nostic markers”, that can allow us to monitor more than one

epidemic at once (if their symptoms are different) in various

countries independently of their language. The general concept

of this work is an application of open source intelligence [14],

which could also be applied for learning tendencies in different

types of contexts such as politics, finance, and public opinion.
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de Informática, pp. 263–272, 2009.

[14] F. Stalder and J. Hirsh, “Open source intelligence,” First Monday, vol. 7,
no. 6, 2002.

416


