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Abstract—Compressed sensing (CS) is an innovative technique
allowing to represent signals through a small number of their
linear projections. Hence, CS can be thought of as a natural candi-
date for acquisition of multidimensional signals, as the amount of
data acquired and processed by conventional sensors could create
problems in terms of computational complexity. In this paper, we
propose a framework for the acquisition and reconstruction of
multidimensional correlated signals. The approach is general and
can be applied to dimensional signals, even if the algorithms we
propose to practically implement such architectures apply to 2-D
and 3-D signals. The proposed architectures employ iterative local
signal reconstruction based on a hybrid transform/prediction
correlation model, coupled with a proper initialization strategy.

Index Terms—Compressed sensing (CS), hyperspectral imaging,
image scanning, linear predictor, multidimensional signals, remote
sensing.

I. INTRODUCTION

C OMPRESSED sensing (CS) [1], [2] has recently emerged
as an efficient technique for sampling a signal with

fewer coefficients than the number dictated by classical
Shannon/Nyquist theory. The assumption underlying this
approach is that the signal to be sampled is sparse or at least
“compressible,” i.e., it must have a concise representation in
a convenient basis. In CS, sampling is performed by taking a
number of linear projections of the signal onto pseudorandom
sequences. Therefore, the acquisition presents appealing prop-
erties such as low encoding complexity, since the basis in
which the signal is sparse does not need to be computed, and
universality, since the sensing is blind to the source distribution.
Reconstruction of a signal from its projections can be done
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e.g., using linear programming [2], with a complexity that is
, with the number of samples to be recovered.

Plenty of applications are possible, ranging from image and
video to biomedical and spectral imaging, just to mention a
few. A single-pixel camera has been demonstrated in [3] and
[4], which uses a single detector to sequentially acquire random
linear measurements of a scene. This kind of design is very inter-
esting for imaging at wavelength outside the visible light, where
manufacturing detectors is very expensive. CS could be used to
design cheaper sensors, or sensors providing better resolution
for an equal number of detectors. For example, in [5] an archi-
tecture is proposed based on Hadamard imaging, coupled with
reconstruction techniques borrowed from CS.
The acquisition of multidimensional signals could benefit

from CS due to its low-complexity sampling process and the
reduction of the number of samples to be taken, processed and
transmitted. In this case, a serious problem arises regarding
the computational complexity of the reconstruction process.
The conventional approach of measuring the signal along all
dimensions at once leads to very large , making the recon-
struction computationally intractable. The simplest solution
is to take separate sets of measurements grouping subsets of
dimensions and to perform separate reconstructions. For ex-
ample, an hyperspectral image could be acquired in the spatial
or spectral dimensions. However, this “separate” approach does
not yield satisfactory performance in terms of mean-squared
error (MSE), as it neglects the overall correlation among every
dimension. In the example above, the spatial CS approach
completely neglects the spectral correlation, and the spectral
approach neglects the spatial one.
The authors of [6] showed a way to recast a multidimensional

CS problem to a 1-D one, by the means of Kronecker products
of sensing and sparsity matrices. The problem of this approach
is that the dimensionality of the CS problem to be solved rapidly
grows as the product of the sizes of each dimension. The authors
of [7] apply CS to blocks of images considering wavelets as
sparsity basis. Reconstruction algorithms for multidimensional
signals have also been proposed in [8]–[10] for hyperspectral
images and multiview video.
In this paper, we propose a generic framework for CS acqui-

sition and reconstruction of multidimensional signals. Then, we
propose architectures for 2-D and 3-D signals. The framework is
general since the principles behind the architectures we propose
can be easily extended to -dimensional signals, with arbitrary
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. Moreover, the proposed architectures can be practically im-
plemented following the algorithms we devise for each archi-
tecture. The architectures we propose can be applied to several
scenarios we describe in the following paragraphs.
The first architecture describes a practical implementation for

devices that acquire 2-D visual information through progressive
scanning [11]. These devices are equipped with a 1-D array of
detectors, and a 2-D image is obtained via the repeated use of
the array over different slices of the 2-D object to be imaged.
This is a very important scenario, which encompasses many ap-
plications. Amongst others, it is worth mentioning at least two
examples, which we will focus on in the respective sections of
this paper. The first is given by flatbed scanners, where each
line of the image is acquired by a 1-D optical sensor moving in
the orthogonal direction. The second one is represented by air-
borne and spaceborne imagers of the pushbroom type for re-
mote sensing applications. In this case, the 1-D sensor is carried
on a flying platform such as an airplane or satellite; the sensor
looks down at the earth, and acquires a line-by-line scan of the
underlying scene, while each line is oriented in the across-track
direction, and the platform flight moves the sensor from one
line to the next one. These applications, as well as several other
ones, can clearly benefit from CS. Devices similar in principle
to the single pixel camera can be applied to progressive scan-
ning, where a 1-D micromirror array can be used to directly
sense lines in the CS format. In the case of the remote sensing
imaging system, CS can lead to a simpler and cheaper system,
which uses a single detector and produces a reduced number of
sampling. Detectors can be costly in the wavelengths outside the
visible spectrum, and the reduced number of samples allows to
implement simpler onboard processing systems. For the flatbed
scanner, CS would be extremely useful in order to develop a
scanner of small size, as the CS sensor needs not be of the same
physical size as the document being scanned. Moreover, in both
cases, processing and data handling would be greatly reduced,
which is important in order to reduce power consumption in
the remote sensing case, and in order to enable application to
small-sized low-power devices in the flatbed scanner case.
The second scenario is the acquisition of hyperspectral im-

ages. Satellite imaging is a highly effective tool in a variety
of scientific and engineering contexts because of the informa-
tion it provides about the nature of the materials being imaged.
While traditional digital imaging techniques produce images
with scalar values associated with each pixel location, in multi-
and hyperspectral images these values are replaced with a vector
containing the spectral information associated to that spatial lo-
cation. The resulting image is therefore 3-D (two spatial and one
spectral dimensions), and spectral resolution is very important
for several applications, including classification, anomaly de-
tection, and spectral unmixing. Despite the huge potential, how-
ever, many modern satellite imagers face a limiting trade-off be-
tween spatial and spectral resolution. In fact, the total number of
samples that can be acquired is constrained by the size of the de-
tector array. This limits the usefulness and cost-effectiveness of
spectral imaging for many applications. This scenario intends
to investigate the possibility of overcoming this limitation by
means of a new imaging architecture based on CS, that is, an ar-
chitecture in which the acquisition system does not detect single

pixels of the scene, but rather a small number of measurements.
Reconstruction of the image is going to be performed at the
ground station, and all subsequent processing steps (radiometric
and geometric calibration, orthorectification, and applications)
would be performed on the reconstructed image. In this paper,
we consider several possible architectures that are based on the
constraints imposed by real-world spectral imaging systems. A
first architecture is derived from 2-D imaging systems, and is
based on the concept of a sensor that acquires the image as a
whole, both spatially and spectrally. In this case, the single-pixel
camera paradigm is still applicable, provided that this single
pixel is actually a single-pixel spectral imaging device, i.e., one
that separates the spectral components of the incoming light
into several different wavelengths, in such a way that the in-
tegration of spatially modulated light can be done individu-
ally in each spectral channel, yielding a different set of linear
measurements for each wavelength. The second architecture
mimics spectral imagers of the pushbroom type. These scan-
ners have a 2-D sensor, but the two dimensions correspond to
the spectral (wavelength) dimension and one spatial dimension,
i.e., the direction perpendicular to the flight path. At a given
flight position, the scanner acquires at once one spatial-spectral
slice, i.e., one line of the image with all its spectral components;
as the satellite or airplane moves one, another spatial-spectral
slice is acquired, and this process is repeated until the desired
image length has been obtained. In this paper, we also consider
a CS imaging architecture based on this paradigm. We assume
that the single-pixel concept is applied to spectral slices, i.e.,
there is a diffractive element before the single pixel, so that the
spatial-spectral slice can be modulated before being sensed by
the single detector. It is worth noticing that these architectures
would yield significant benefits to hyperspectral imaging sys-
tems. They would allow to reduce the cost and size of the sensor
itself, for the same spatial and spectral resolution, thanks to the
reduced number of detectors. Moreover, they would allow to
greatly simplify onboard data handling, since the compressed
acquisition process would generate much less data than a con-
ventional system, allowing to employ less memory and com-
puting power, eliminating the need of onboard compression al-
together, and eventually leading to reduced power consumption,
which is a critical aspect of any remote sensing mission. Despite
the very appealing advantages, however, these acquisition ar-
chitectures entail a reconstruction problem of huge size. Indeed,
optimal reconstruction must exploit signal sparsity (and hence
correlation) in all dimensions, requiring to solve the reconstruc-
tion problem at once employing a 3-D transform as sparsity
model. This problem has huge computational complexity, and
becomes infeasible for rather small image sizes, highlighting the
need of techniques that can achieve near-optimal performance
with a reasonable computational complexity.
In this paper, we address these scenarios, and tackle the re-

construction problem for 2-D and 3-D signals. In particular, for
2-D images, we propose a simple progressive acquisition algo-
rithm, where rows are acquired independently of each other, but
the reconstruction is performed jointly over all rows. Joint re-
construction is achieved through an iterative algorithm that cor-
relates different rows through linear prediction filters, instead
of taking a multidimensional transform as sparsity domain. Pre-
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diction filters allow to exploit correlation in both horizontal and
vertical dimensions, even if the acquisition is performed in one
direction only. The main concept is to exploit correlation along
the vertical direction by iteratively predicting each line and re-
constructing the prediction error only, which is more compress-
ible than the line itself. Results show that few iterations of the
proposed algorithm suffice to significantly improve the MSE of
the reconstruction, allowing to obtain high-quality reconstruc-
tion results with feasible complexity. On the other hand, for 3-D
images we have more degrees of freedom than in the 2-D case.
For example, in [12] it has been shown that 2-D spatial CS (i.e.,
every spectral channel is measured independently) has better
performance than spectral CS (in which every spectral vector
is measured independently), just because the former approach
models correlation in two dimensions, and the latter in only one.
However, it should be noted that even spatial CS achieves an
MSE that is not small enough for many hyperspectral applica-
tions, as the relative error is around for sensible values of
the number of acquired samples. The key idea is that, in order to
improve reconstruction quality, correlation must be exploited in
all three dimensions of the spectral cube. To achieve this goal,
we propose several approaches, combining an accurate model-
ling of the spatial-spectral correlations, with the low complexity
of sequential, as opposed to fully joint, reconstruction. In par-
ticular, instead of modelling the correlation by means of a 3-D
transform, and hence attempting to reconstruct the hyperspec-
tral cube as a whole, we employ a linear correlation model of
the hyperspectral image, and iteratively apply this model band
by band, improving the quality of the reconstructed image. An
alternative algorithm applies the model to the spectral rows of
the image, iterating along rows.
Since the quality of the reconstructed signal depends on two

factors: 1) the initialization of the iterative procedure and 2) the
accuracy of the linear prediction filters, we consider different
initialization strategies based either on a 2-D CS approach or on
a simplified 3-D strategy [13] and test different prediction filters
looking for the one providing better performance.
This paper is organized as follows. Section II contains

the background of this work, notations and definitions. In
Section III, we describe in detail the algorithms we propose. In
Section IV, we show some results obtained by simulations and
we conclude our work in Section V.

II. BACKGROUND

Notation and Definitions

We denote (column-) vectors and matrices by lowercase and
uppercase boldface characters, respectively. The th ele-
ment of a matrix is . The th row of matrix is

. The th element of a vector is . The transpose of
a matrix is .
The stack operator denotes the column vector ob-

tained by stacking the columns of on top of each other, from
left to right.
We denote 3-D variables by calligraphic letters, e.g., .
is the matrix obtained by fixing index in the first dimen-

sion of . is the matrix obtained by fixing index

in the second dimension of . is the matrix obtained
by fixing index in the third dimension of .
The notation denotes the number of nonzero elements

of vector . The notation denotes the -norm of the
vector and is defined as . The notation

denotes the Euclidean norm of the vector and is defined

as . The notation denotes
a Gaussian random variable with mean and variance .
The notation (written in block matrix

form, where the pair spans the range of indexes of ) de-
notes the Kronecker product of times

A. Compressed Sensing

In the standard CS framework, introduced in [14], a signal
which has a sparse representation in some basis
, i.e.,

can be recovered by a smaller vector , ,
of linear measurements , where is the
sensing matrix. The optimum solution, requiring at least

measurements, would be

Since the norm minimization is a NP-hard problem, one can
resort to a linear programming reconstruction byminimizing the
norm

(1)

provided that is large enough ( ).
The same algorithm holds for signals which are not exactly

sparse, but rather compressible, meaning that they (or their rep-
resentation in basis ) can be expressed only by significant
coefficients, while the remaining ones are (close to) zero.
When the measurements are noisy the minimization with

relaxed constraints is used for reconstruction

(2)

where bounds the amount of noise in the data. It has been
shown in [15] that extracting the elements of at random
from a Gaussian or Rademacher distribution (i.e., with
the same probability), and, in general, from any sub-Gaussian
distribution, allows a correct reconstruction with overwhelming
probability.

III. PROPOSED ARCHITECTURES

In this paper, we propose a general framework for multidi-
mensional signals, allowing to exploit the low complexity and
universality of CS in the acquisition process, with a manage-
able complexity of the reconstruction algorithm. Refer to Fig. 1,
which depicts the canonical approach of considering the multi-
dimensional signal as a single signal [Fig. 1(a)] and the archi-
tecture proposed in this paper [Fig. 1(b)], based on progressive
scanning and iterative reconstruction. Multidimensional signals
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Fig. 1. Block Diagram of an architecture processing the whole signal (a) and of the novel iterative architecture (b).

are often captured in a progressive way, in a sequence of acquisi-
tions corresponding to subsets of the coordinates. The principle
is to acquire separately each signal dimension (or subsets of di-
mensions, considering them as single signals). Then, instead of
reconstructing the whole set of measurements at once, as done
with Kronecker Compressed Sensing (KCS) [13], an iterative
algorithm is applied to dimensions not involved in the measure-
ment process. At each iteration, a linear prediction filter is used
to aid the reconstruction process, measuring the prediction and
reconstructing the prediction error only, which is supposed to be
more compressible than the original signal. For example, if an
hyperspectral image is acquired band by band, the iterative al-
gorithm is applied on wavelength dimension. At each iteration,
each band is predicted, acquired with the same sensing matrix
used to acquire that band, themeasurement of the predicted band
is subtracted from the measurement of the band itself and the CS
reconstruction is applied to this “measurement prediction error,”
only.
In the following, we specialize the approach to 2-D and 3-D

signals. We propose novel architectures for 2-D and 3-D acqui-
sition and reconstruction, and the corresponding algorithms im-
plementing the proposed architectures.

A. 2-D Signals

According to typical progressive scanning approaches, like
the ones used by commercial flatbed scanners or by remote
sensing systems acquiring environmental pictures, an image is
acquired by sensing pixels of each row in a progressive
fashion, until rows are acquired. Hence, the acquired
image will result as a matrix of pixels of size ,
which will be compressed (and, accordingly, decoded) using a
conventional technique. This process requires the acquisition
(and processing) of pixels. When and
are large, processing of this huge amount of data may represent
an issue, especially when dealing with low cost or low com-
plexity devices.
For this reason, we propose a very simple acquisition scheme,

based on CS linear measurements taken on each row, without
any further processing. This reduces the amount of data to be
acquired and processed. The reconstruction algorithm relies on
linear prediction filters in order to improve the quality of CS re-
construction, by correlating the measurements of adjacent rows
in order to exploit their statistical dependencies during the re-
construction stage, largely improving over individual separate
reconstruction.

1) Acquisition: The image acquisition algorithmwe propose,
labelled as Algorithm 1, is very simple and consists in taking
linear measurements of each row of the image in a progressive
fashion. To minimize the risks of failures in the reconstruction
side, a different sensing matrix is drawn for each row.
The image to be measured can be divided into rows.

For each row, linear measurements are taken, where
and is the desired vertical resolution.

In summary, the scene we wish to acquire is represented by
the matrix . For each row of , we draw
a matrix whose elements are Gaussian i.i.d.
such that , with and

. Then, we take linear measurements of
which will form the rows of the matrix of measurements

, namely

A more complex algorithm, based on CS and able to capture
spatial correlation in both directions (horizontal and vertical),
could acquire in a single shot the whole image in a single mea-
surement vector of length .

where , ,

Even if this algorithm performed better than the one proposed
here since the reconstruction would optimally exploit the cor-
relation in two dimensions through a 2-D transform matrix, it
would require the solution of (1) for a vector of length

. For realistic values of and , the solu-
tion of (1) would be impossible to perform in reasonable time.
On the other hand, the proposed approach splits the problem into
smaller (and hence tractable) subproblems. However, in doing
so, it does not neglect the spatial correlation in vertical direction,
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which is modelled and employed in the reconstruction process
through the use of linear prediction filters.
2) Reconstruction: A trivial reconstruction algorithm based

on the acquisition scheme described in Section III-A1 would
simply apply the reconstruction (1) to recover separately each
line of given the corresponding and .
Instead, we propose an algorithm which iteratively improves

the current estimate of by modelling statistical dependencies
between adjacent lines. We label this Algorithm 2. We count the
iterations using the index . The estimation of at iteration
is denoted with .
In particular, the algorithm evaluates a first image reconstruc-

tion using some initialization strategy (iteration
). Then, the iterations start. The intuition is as follows. For each
row, if we are able to reliably predict it using the reconstruc-
tion of the upper and lower lines at previous iteration with some
linear prediction filter , obtaining , we can compute the
“measurement” of this prediction by applying matrix to
. Then we calculate the prediction error in the linear measure-

ment domain by subtracting this “predicted measurement”
from the original measurement row . The error will be
then reconstructed using (1), leading to a prediction error on the
signal samples equal to . Adding to provides a new
estimate of . Since the new estimate is more accurate than
the old one, the process can be repeated by estimating a new,
more accurate prediction. If the prediction of the row is accurate
enough, the prediction error is going to be more compressible
than the original vector. As a consequence, for an equal number
of measurements, the reconstruction will yield lower MSE.
We support this claim by numerical simulations, whose results
are shown in Section IV-A2.
Different initialization strategies are described in

Section III-D, while prediction filters for 2-D signals are

described in Section III-C1. Since (1) is a convex problem and
the prediction filters we test are linear, the overall algorithm
can be considered as a projection onto convex sets. This
ensures the convergence of the algorithm to the intersection of
the constraint sets (if any) [16].

B. 3-D Signals

As has been said, acquisition of 3-D hyperspectral images
can be performed in different ways. Common to the various ap-
proaches are the signal dimensions, which determine the spa-
tial and spectral resolution of the imaging system. The spec-
tral resolution is given by the number of individual wavelengths

that the system is able to discriminate. In one possible
approach, each wavelength is sensed individually, leading to
different measurements for each spectral channel. In another ap-
proach, the system measures spatial-spectral slices individually,
and different wavelengths are separated during the CS recon-
struction process. In both cases, we assume that the user intends
to acquire or reconstruct each spectral channel with a resolution
of pixels. In both cases, we can represent the
original data as a cube with two spatial and one spectral dimen-
sion, and interpret them either as a collection of spectral
channels, or as a collection of spatial-spectral slices. In
the following we take the first approach, and consider an hy-
perspectral image as a collection of

spectral channels , , each
consisting of a frame, i.e.,

1) Acquisition: According to Algorithm 3, for each spectral
channel a collection of measurements is ac-
quired as

where each sensing matrix is taken as
Gaussian i.i.d. and . For simplicity, is taken
as the same value for all spectral channels. The measurements
of all channels are then collected in the matrix . This setting
is amenable to separate spatial reconstruction of each spectral
channel using a 2-D transform as sparsity domain. However, we
expect that separate spatial reconstruction does not yield a suf-
ficiently accurate estimate of the original image, since it lacks
modelling of spectral correlation, which is very strong for hy-
perspectral images.
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2) Reconstruction: The idea behind the iterative reconstruc-
tion is that, as in the 2-D case, if we can obtain a prediction of
a spectral channel , e.g., applying the operator to chan-
nels and of some initial reconstruction, then we can
cancel out the contribution of this predictor from the measure-
ments of , and reconstruct only the prediction error instead
of the full spectral channel. If the prediction filter is accurate,
the prediction error is expected to be more compressible than
the full signal, and the reconstruction will yield better results as
shown in Section IV-A2. In particular, the iterative procedure
starts from the initial reconstruction of all spectral channels.
At this stage, we do not specify how we generate such initial re-
construction, which is generically denoted by to indi-
cate that it is computed from randomprojections andmeasure-
ment matrices . Then, for every channel we first obtain

. After that, we compute prediction error

measurements as , andweuse to recon-
struct the th channel summing theCS reconstructionof to .

is the 2-D sparsity transform matrix. If
is the sparse representation of the 2-D signal for some
and , then , where

(3)

This process is performed on all bands, and is iterated until con-
vergence. Again, it is worth noting that since (1) is a convex
problem and the prediction filter is linear, this algorithm can be
cast in terms of projections onto convex sets [16], guaranteeing
convergence to the intersection of the constraint sets (if not
empty). The proposed iterative reconstruction scheme is shown
in Algorithm 4.

Remark 3.1: The proposed acquisition and reconstruction ar-
chitecture for 3-D signals can be applied in any of the three di-
mensions. For example, the acquisition can be performed for
each spectral row (instead of spectral channels), and the recon-
struction can be performed iterating over rows. The respective
algorithms can be obtained by Algorithms 3 and 4 by properly
rotating indexes and dimensions.

C. Linear Prediction Filters

1) Row Prediction Filters for 2-D Signals: We consider here
several linear prediction filters for 2-D sig-
nals, looking for the one providing fastest convergence and best
MSE performance. We denote as the result of the prediction.
Prediction filter labelled as P1 estimates the current1 line to be
predicted as the average of the upper and lower lines

Prediction filter labelled as P2 predicts each pixel of current
line as the average of adjacent pixels of upper and lower lines

Finally, prediction filter labelled as P3 predicts each pixel of
current line as the weighted average of adjacent pixels of upper
and lower lines. Weights depend on the distance from the pixel
to be predicted, namely

with and .
In Section IV-A, we test the performance of the linear predic-

tion filters and of the overall algorithm.
2) Band Prediction Filter for 3-D Signals: In the following

we describe the linear prediction stage employed in
Algorithm 4. The prediction filter operates in a blockwise
fashion. Prediction of spectral channel is performed dividing
the channel into nonoverlapping spatial blocks of size 16 16
pixels. Each block is predicted from the spatially co-located
block in a reference spectral channel (typically the previous
or next band). Focusing on a single 16 16 block, we de-
note by the pixel of an hyperspectral image in th
line, th pixel, and th band, with , and

.
Samples belonging to the block are predicted from the

samples of the reconstructed reference band. In partic-
ular, a least-squares estimator [17] is computed over the block.
First, a gain factor is calculated as , with

and
. and are the average values of the co-located recon-

structed blocks in bands and . Then the predicted values
within the block are computed for all as

.

1Here and in the following equations, we omit the index ( ) denoting current
iteration.
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This one-step prediction filter is employed in such a way as
to take full advantage of the correlation between bands. In par-
ticular, the current band is very correlated with its two adjacent
bands, while the correlation tends to decrease moving further
away. Eventually, we define a predictor for a block in the current
band as the average of two predictors obtained from the pre-
vious and the next band. . Hence,
the prediction filter applies this predictor to the two ad-
jacent reconstructed spectral channels in a blockwise manner
as described above, yielding a predicted spectral channel .
Exceptions are made for the first and last band, where only the
available previous/next band is used for the prediction.

D. Initialization Strategies

1) Separate Reconstruction: Separate reconstruction repre-
sents the trivial way for reconstructing signal acquired with pro-
gressive algorithms like Algorithm 1 or Algorithm 3. It simply
consists in applying the reconstruction (1) to recover each
separately acquired portion of the original signal (i.e., a line

of an image or the frame of an hyperspectral image)
independently from each other, given the corresponding and

.
2) Kronecker Compressed Sensing: Given the above, we

have investigated the possibility of implementing a more so-
phisticated reconstruction algorithm which allows the proposed
scheme to achieve good performance even for low , i.e., for
high compression ratios. To this aim, we considered the sim-
plified 3-D reconstruction scheme proposed in [6], [13], where
it is shown that Kronecker product matrices are a natural way
to generate sparsifying and measurement matrices for the ap-
plication of CS to multidimensional signals, resulting in a for-
mulation that is denoted by KCS. In KCS, starting from the as-
sumption that the signal structure along each dimension can be
expressed via sparsity, Kronecker product sparsity bases com-
bine the structures for each signal dimension into a single ma-
trix and representation. This allows to obtain separable trans-
forms matrices, thus maintaining the computational complexity
to an acceptable level. Similarly, Kronecker random product
measurement matrices for multidimensional signals can be im-
plemented by performing a sequence of separate random mea-
surements obtained along each dimension. Given the above, the
application of KCS to the problem at hand is straightforward.
We describe the initialization based on KCS for the more gen-
eral 3-D signal case, which can be trivially specialized to the 2-D
case: the separate (band-by-band) random projections

can be used to get a reconstruction scheme which
profitably exploits correlation in all dimensions by using a sep-
arable 3-D Kronecker product sparsity domain. More specifi-
cally, we consider DCT transforms for both spatial and spec-
tral domains since DCT transform is better than other typical
transforms used in CS (e.g., Wavelet transform) on small spa-
tial crops, while a wavelet transform would arguably provide
better performance over a larger image. Accordingly, denoting
by and the DCT sparsifying operator for the spatial
and spectral domain, respectively, reconstruction is given by

where and can be obtained by means of
linear program reconstruction

where and is the block-diagonal sensing ma-
trix obtained as

The reconstructed set of images can then be used as starting
point for the iterative algorithm proposed in Algorithm 4.

E. Complexity

We explain here the complexity reduction obtained using Al-
gorithms 2 and 4 instead of the standard CS reconstruction al-
gorithm, processing the 2-D/3-D signal as a whole. We spe-
cialize the discussion to 2-D and 3-D signals, but it can be
easily extended to any multidimensional signal. For an

image, the standard CS reconstruction algorithm has an
complexity. Our algorithm performing

iterations has an complexity, with, usu-
ally, . Hence, the complexity gain that
can be obtained is . For 3-D signals the same con-
siderations hold. In this case, the gain will be .

IV. NUMERICAL RESULTS

A. 2-D Images

1) Choice of the Prediction Filter: First, we start by seeking
the linear prediction filter providing fastest
convergence and best MSE performance. For this test, we use
the standard lena black and white image of size 512 512.
takes the values of 32, 64, 128, 256 and the transform matrix
is the DCT matrix. We denote as the result of the prediction.
Fig. 2 shows the MSE performance of the overall system for

different values of and using the prediction filters described
above. Results show that the convergence is reached for each
value of . The bigger , the faster the convergence and the
smaller is the MSE at convergence. In any case, it can be no-
ticed that the best performance is obtained for each value of
using prediction filter labelled as P3, i.e., the weighted average.
Hence, wewill use this prediction filter in our further tests, omit-
ting to mention it from now on.
For , the MSE obtained with separately recovered

lines is . After 30 iterations, an MSE of is
obtained, with a gain of 10.2 dB. The convergence in this case
is quite slow, but the MSE is decreased as much as one order of
magnitude. Faster convergence is obtained with , as
after 15 MSE is decreased from to , with
a gain of 9.38 dB. Finally, with the MSE decreases
from to in 5 iterations only, with a gain
of 7.64 dB.
Finally, Fig. 2 shows as a reference the performance of a

“noncompressive” system. It can be noticed that the conver-
gence is reached in only one iteration, leaving a residual MSE
of due to unpredictable signal components.



COLUCCIA et al.: PROGRESSIVE COMPRESSED SENSING AND RECONSTRUCTION OF MULTIDIMENSIONAL SIGNALS 347

Fig. 2. Test of different prediction filters on lena image.

Fig. 3. Mean row compressibility of lena image. .

2) Prediction Error Compressibility: In this section, we
show results supporting the claim that accurate prediction
leads to prediction errors which are more compressible than
the original signal. Fig. 3 shows the mean row compressibility
of prediction error of the same image as previous section,
measured at each of the first 10 iterations of the reconstruction
algorithm. The data at 0th iteration corresponds to the com-
pressibility of the original image. With the term compressibility
here we mean the fraction of coefficients of the DCT of a row
of the prediction error (or of the original image) below a certain
threshold , averaged over the rows. The threshold, evaluated
for each row and at each iteration in order to take into account
norm fluctuations, is computed as ,
where is the DCT of the current row.
Fig. 3 supports the claim that the prediction error is more

compressible than the original signal and that it gets more and
more compressible along iterations.
3) Flatbed Scanner: In this section, we apply our algorithm

to images suitable to a flatbed scanner scenario. These are black

Fig. 4. The graphics used as test image for flatbed scanner scenario. (a) Con-
stellation. (b) Trellis. (c) Block Diagram. (d) Sample Text.

and white graphics and text, and are depicted in Fig. 4.
takes the values of 8, 16, 32, 64, 128, 256, and (where possible)
512. Since they all have a completely white background (rep-
resenting paper), they can be considered sparse in the pixel do-
main. Hence, the matrix is the identity matrix of size ,
namely .
Fig. 4(a) is the simplest graphic, representing a QPSK

constellation. Fig. 4(b) represents a slightly more complicated
(hence, less sparse) graphic, the trellis of a convolutional code.
Fig. 4(c) is a larger figure representing a generic block diagram.
Finally, Fig. 4(d) depicts a sample of generic text.
Table I reports the results obtained using the proposed

algorithm. The table shows, for each image, the initial MSE
(obtained using separate CS reconstruction of each line), the
MSE the algorithm converges to, the performance gain, and the
number of iterations necessary to reach convergence. Figures
confirm the results obtained in the previous section. The more
measurements are taken, the faster is the convergence and the
lower is the MSE that can be obtained when the algorithm has
converged. When the picture is very sparse, it is possible to
obtain a reduction of one order of magnitude, while when the
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TABLE I
MSE AND CONVERGENCE RESULTS ON SAMPLE GRAPHICS

Fig. 5. The AIRS sensor gran 9 hyperspectral image, 600th band.

picture is less sparse the contribution of CS is weaker, but still
a reduction of about 50% in MSE can be obtained.
4) Remote Sensing: To test the performance of the pro-

posed scheme in a remote sensing scenario, we use a spectral
band extracted from hyperspectral image “granule 9” of the
AIRS sensor. AIRS is an ultraspectral sounder with 2378
spectral channels, used to create 3-D maps of air and sur-
face temperature. The spatial size is and

. The dataset consists in the raw output of
the detector, without any processing, calibration or denoising
applied. We choose the 600th band, which is depicted in Fig. 5,
but very similar results have been obtained with other bands
and are omitted for brevity. takes the values of 8, 16, 32 e
64. The sparsity basis is the DCT.
Table II (Basic Algorithm) summarizes the results obtained

applying the proposed algorithm to the 600th band of the test
image. Results show that with and the conver-
gence is very slow and is not reached after 20 iterations. On the
other hand, when the convergence is obtained after 10
iterations (reducing from to , with a gain
of 11.4 dB), while taking measurements per row im-
plies the convergence after four steps only (with MSE reduction
from to and a gain of 9.29 dB).
As a term of comparison, we report here the MSE perfor-

mance of a simple reconstruction algorithm named Orthogonal
Matching Pursuit [18], whose complexity is linear in the

TABLE II
MSE AND CONVERGENCE RESULTS ON AIRS SENSOR IMAGE

number of samples of the original signal ( in this
case). We acquire and reconstruct the entire image as a whole
using and measurement, to be
compared with the performance of our algorithm with
and , respectively. For , we obtain
an MSE of , while for we obtain
an MSE of . Hence, our algorithm with
performs 3 dB better than OMP with the same total amount of
measurements, while with the gain is 8 dB.
5) Improving Performance With Kronecker Compressed

Sensing: An improvement to the performance of the algorithm
is obtained using KCS, described in Section III-D2, into the
algorithm we showcase. Hence, we use KCS to initialize
the iterative algorithm we propose in this paper (instead of
separate linewise reconstruction) and apply it to the remote
sensing scenario. The performance of this modified version of
the algorithm are reported in Table II (Kronecker improved
algorithm). The figures show two effects. First, the initial MSE
is much lower than in the separate reconstruction case. This
gain can be noticed in particular when is small and is due to
the better performance of KCS reconstruction with respect to
separate reconstruction; second, the iterative algorithm slightly
improves the overall performance and converges in very few
steps. This is due to the fact that KCS captures also correlation
in vertical direction, making the contribution of each iteration
less effective.
Fig. 6 summarizes the best MSE performance obtained by

separate row reconstruction (SRR), our Iterative algorithm ini-
tialized with separate row reconstruction (ISRR), the KCS and
our iterative algorithm with KCS initialization (IKCS) versus
the number of measurements . Best performing algorithms
are the ones implementing KCS. Plain KCS shows a gain of
7.37 dB over ISSR when , and 1.10 dB when .
When using IKCS, roughly 1 dB of additional gain can be ob-
tained with very few iterations.

B. 3-D Signals

We report reconstruction results on a few scenes that are used
as reference for onboard lossy compression in the “multispectral
and hyperspectral data compression” working group of the Con-
sultative Committee for Space Data Systems (CCSDS), namely
scene sc0 of AVIRIS (Yellowstone) and granule 9 (gran9) of
AIRS. AVIRIS is a spectrometer with 224 bands, and the size
of this image is 512 lines and 680 pixels. AIRS has already been
described in previous sections. Because of the complexity of the
reconstruction process and the large amount of data, we do not
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Fig. 6. Performance comparison of proposed algorithms versus .

Fig. 7. AVIRIS: Reconstruction MSE of Algorithm 4 as a function of the
number of iterations with initial separate 2-D reconstruction.

use the complete images, but rather a 32x32 spatial crop with all
spectral channels. Both are raw images, i.e., they are the output
of the detector, with no processing, calibration or denoising
applied. These images are noisier than the corresponding pro-
cessed images, but more realistic for application to onboard
sensors.
1) Preliminary Experimental Analysis With Initial Separate

2-D Reconstruction: We have carried out some experiments to
preliminarily assess the validity of the proposed algorithmwhen
the initial reconstruction images are computed using separate
2-D DCT transforms band by band. In particular, Fig. 7 shows
the MSE behavior experienced on AVIRIS images as a function
of the number of iterations for different values of the number
of projections . A similar behavior is observed for AIRS im-
ages. Note that for medium to high , iterations are effective
in reducing MSE, e.g., for the proposed algorithm

Fig. 8. AVIRIS: Reconstruction MSE of Algorithm 4 with 3-D Kronecker
starting point, as a function of the number of iterations.

improves the MSE up to a factor of 35 with respect to the ini-
tial reconstruction. Moreover, convergence to the minimum at-
tainable MSE is obtained in a relatively small number of itera-
tions. For lower , convergence is slower and MSE reduction
is less effective. In particular, for very low , e.g., for
convergence is very slow and MSE reduction is negligible. In
essence, the algorithm shows a threshold behavior with respect
to the initial reconstructed images: a poor initial reconstruction
prevents the iterative algorithm to improve the MSE while if the
initial reconstruction’s MSE falls below a minimum threshold,
the improvement is remarkable and convergence very fast.
2) Improving Initial Reconstruction by Means of Kronecker

CS: To assess the effectiveness of such an approach, in Fig. 8
we show the MSE behavior experienced on AVIRIS images as a
function of the number of iterations, for different , when the
starting point of the iterative scheme proposed in Algorithm 4
is obtained through Kronecker 3-D reconstruction. Comparing
with Fig. 7 it can be observed that, as expected, theMSE starting
point is much lower and convergence is achieved in few itera-
tions. Moreover, despite 3-D Kronecker reconstruction already
exploits correlation in the spectral domain, the proposed itera-
tive algorithm still allows to improve the MSE up to a factor
of 3 with respect to the initial reconstruction. In the next sec-
tion, we describe in more details the experiments we conducted
to evaluate the performance of the two proposed reconstruction
schemes, namely iterative compressed sampling (ICS) and Kro-
necker-iterative compressed sampling (KICS), which are both
based on the iterative procedure described in Algorithm 4, with
the initial point computed by means of separate reconstruction
and KCS, respectively.
3) Spectral Channel Analysis: We compare results of the

proposed ICS and KICS with those obtained through separate
spatial reconstruction (S2D) of each spectral channel and
through 3-D KCS. The reconstruction algorithm for the itera-
tive schemes is run for 40 iterations, with several values of .
Results in terms of MSE versus are shown in Figs. 9 and

10 for the AVIRIS and AIRS scenes, respectively. As can be
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Fig. 9. AVIRIS: Reconstruction MSE versus for different schemes.

Fig. 10. AIRS: Reconstruction MSE versus for different schemes.

seen, S2D spatial reconstruction yields very large mean-squared
error (MSE), typically in excess of for AVIRIS and of

for AIRS. Considering that the average signal energy for
this crop is equal to for AVIRIS and for
AIRS, spatial reconstruction yields an average percentage error
of nearly both test images, which is inadequate for most
applications.
As anticipated in Fig. 7, the proposed ICS reconstruction al-

gorithm allows to improves theMSE up to a factor of 35 for high
, but it is not effective for low . On the other hand, the 3-D

KCS reconstruction without iterative predictions performs quite
well for low but its performance are not so good for high ,
e.g., it is even worse than ICS for . Eventually,
KICS gives the best performance over the whole range of con-
sidered . In other words, combining 3-D KCS with predictive
CS allows to accurately reconstruct original images requiring a
number of linear measurements much smaller than the original
samples. On the other hand, average results provide a somewhat
biased picture though. In Figs. 11 and 12 , the individual MSE
per band and for obtained through KICS algorithm

Fig. 11. AVIRIS: Reconstruction MSE for each band, .

Fig. 12. AIRS: Reconstruction MSE for each band, .

on AVIRIS and AIRS scene is shown, respectively. As can be
seen, in most bands the MSE is very small, between 100 and
400. The average MSE is biased by a relatively small number
of bands which are reconstructed with large error. Visual inspec-
tion shows that e.g., band 104 is extremely noisy (hence not at
all sparse) and contains almost no information, while band 32
is misregistered with respect to band 31, yielding poor predic-
tion. This shows that, on average, a much lower relative error
can be achieved in most bands, except for noisy bands, which
are not very important altogether, or misregistered bands, where
improved prediction models can be employed to improve the re-
construction.
4) Separate Acquisition of Spectral Rows: Fig. 13 refers to

a 32 32 32 crop of AIRS. Instead of taking separate mea-
surements of spectral channels, here we separately acquire hor-
izontal spectral rows , where and

. The cube is then reconstructed using Algo-
rithm 4, iterating over rows instead of wavelength. In this case,
to predict spectral rows we use prediction filter P1 described in
Section III-C1. Results show that separate reconstruction (the
MSE of the initial step) applied to spectral rows leads to better
performance than the same algorithm applied to spectral chan-
nels. Nevertheless, the iterative algorithm is less effective when
iterating over rows thanwhen iterating over wavelength. Results
show that only a slight MSE gain can be obtained from itera-
tive algorithm. This effect is due to stronger correlation along
wavelength direction than between rows. Stronger correlation
is better exploited by CS, leading to better separate reconstruc-
tion performance, while weaker correlation between rows yields
only a minor contribution of the iterative algorithm.
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Fig. 13. MSE performance of ICS applied to spectral rows.

V. CONCLUSION

In this paper, we proposed a general architecture for the
acquisition and reconstruction of multidimensional correlated
signals with manageable computational complexity. The ac-
quisition is based on CS and consists in taking a sequence of
separate random linear measurements of the signal, grouping
subsets of the coordinates, in a progressive fashion. The recon-
struction process implements an iterative architecture relying
on linear prediction filters and the CS reconstruction of the
prediction error, which is supposed to be more compressible
than the original signal. Then, we specialize this framework to
2-D signals and 3-D signals, proposing practical applications
for these scenarios. For 2-D signals, we envisage applications
to flatbed scanners and remote sensing, which already perform
progressive scanning. For 3-D signals, the straightforward
application is hyperspectral imaging, even if applications
related to video could be also be imagined. For both scenarios,
we show that the performance in terms of MSE and speed of
convergence depend on two factors. On one hand, the initial
MSE of the algorithm depends on the initialization strategy.
We show that the performance obtained by trivially initializing
the algorithm with separate measurement reconstruction can be
improved by using the so-called KCS, which is able to capture
the correlation in all dimensions at the cost of an increased
computational complexity. On the other hand, the effective-
ness of the iterative algorithm in terms of MSE gain strongly
depends on the choice of the linear prediction filter and on the
amount of signal correlation along the iteration dimension.
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