Abstract:
Shallow p+/n junctions are produced by low-energy (10-keV) boron implantation into amorphous silicon layers formed by a prior implantation of Si+ ions. Junctions about 0....Show MoreMetadata
Abstract:
Shallow p+/n junctions are produced by low-energy (10-keV) boron implantation into amorphous silicon layers formed by a prior implantation of Si+ ions. Junctions about 0.1 µm deep with good electrical characteristics (reverse current density Jr< 10-7A/cm2at - 1 V) are obtained both by electron-beam annealing (1100°C, 2 s) and conventional furnace annealing (800°C, 30 min). It is shown that, in the case of the furnace treatment, lower annealing temperatures produce very high reverse currents, while excellent electrical characteristics (Jr< 10-8A/cm2) are achieved at higher annealing temperatures (900°C), the junction extending, however, much deeper into silicon (0.26 µm).
Published in: IEEE Electron Device Letters ( Volume: 5, Issue: 9, September 1984)