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DynaFlexPro (DFP), released in the middle of 2005 by
MotionPro, Inc., and currently in version 2.2.8, is
marketed by MapleSoft, Inc., of Waterloo, Ontario

[1]. DFP is a Maple toolbox that allows control engineers
to symbolically create mathematical models for analyz-
ing the dynamic behavior of large articulated multibody
systems. DFP combines graph-theoretic modeling tech-
niques with Maple’s computer-algebra manipulation
capabilities to automatically create the symbolic equa-
tions of motion (EOMs). 

BACKGROUND
Machines and mechanisms typically possess an underlying
articulated skeleton composed of multiple rigid or flexible
bodies interconnected by joints. Examples range from pis-
ton cranks in internal combustion engines, automobile
steering and suspension mechanisms, aircraft landing gear
and control-surface mechanisms, to CD disk changers,
reclining chair mechanisms, and windup toy mechanisms,
to automated processing, packaging, and handling
machines in industry. The spatial layout of bodies and
joints determines the permissible and restricted motions
and forces and thereby governs the transmission, modula-
tion, and redirection of energy from the source into a
usable mechanical form. 

Designers have created, refined, and tailored articulated
multibody systems, with various types and numbers of bod-
ies and joints, to match the diversity of end applications.
Early efforts relied on the intuition of the designer to
understand the interactions among bodies and thus the
overall system behavior. The term system behavior encom-
passes both the motions and forces experienced within the
articulated multibody system as well as with respect to
the environment. Even as late as the 1950s, the design and
control of multibody systems was the realm of master-
designers and their apprentices due to a lack of mathe-
matical modeling and analysis methods. More
importantly, it was faster and easier to build physical pro-
totypes and test controllers in situ than to analyze the
devices using mathematical techniques.

Modern control techniques use plant models to analyze
system behaviors, which for multibody systems can be creat-
ed from the governing EOMs. Linearized plant models are
desirable from the linear-superposition-based analysis per-
spective but can adequately capture system behavior only

for a limited range of inputs and operating conditions. Con-
sequently, controlling systems such as robots and disk drives
requires full nonlinear dynamic models to achieve enhanced
performance over a wide range of operating conditions. 

COMPLEXITY OF MULTIBODY DYNAMICS
Textbooks such as [2]–[6] discuss the challenges encoun-
tered in modeling and analyzing the governing EOMs of
articulated multibody systems. In their simplest form, the
governing EOMs are a system of constant-coefficient linear
ordinary differential equations (ODEs). For example, linear
ODEs can model the dynamics of one-dimensional (1D)
translational systems such as strings of springs, masses,
and dampers. However, rotations in two and three dimen-
sions introduce nonlinearities in the form of trigonometric
terms with multivalued inverses, which make the mathe-
matical handling difficult. These difficulties are compound-
ed when transitioning from planar [two-dimensional (2D)]
systems to spatial [three-dimensional (3D)] systems. 

Second, many multibody systems such as active car sus-
pensions and flight simulators possess one or more closed
kinematic loops to enhance stiffness and payload capacity.
In effect, these loops reduce actuation requirements by cre-
ating algebraic equality constraints that must be satisfied
by the system’s degrees of freedom (DOFs). The algebraic
constraints combine with the ODEs to comprise a system
of differential algebraic equations (DAEs). Hence, the
modeling and performance analysis of such multibody
systems requires the ability to mathematically and compu-
tationally handle DAE systems.

Finally, products such as disk-drive read heads, compos-
ite-fiber bicycle frames, and microelectromechanical-sys-
tems (MEMS) devices are designed to be lightweight and
fast, in which case the effects of body flexibility become
increasingly important. These effects can be modeled by
using systems of partial differential equations (PDEs) in
place of rigid-body ODEs, so that a flexible multibody sys-
tem with closed loops entails a system of PDE-based DAEs.
The spatially dependent PDE-based system is more difficult
to handle, both mathematically and computationally, when
compared to the original ODE-based system.

SOFTWARE PACKAGES FOR MULTIBODY DYNAMICS
Over the past three decades, numerous multibody comput-
er-aided engineering (MCAE) software packages have been
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developed to automate and simplify the modeling and
analysis of multibody system performance; well-known
examples include DADS, ADAMS, Working Model, visual-
NASTRAN, and SD/FAST [7]–[10]. These tools allow the
user to piece together multibody systems by specifying the
spatial layout of the components and interconnections
within a 3D graphical user interface. More importantly, the
formulation and solution engines allow the user to simulate
and analyze the multibody system under a variety of initial
conditions and inputs. However, these software packages
do not give the user direct access to the underlying EOMs.
Hence, control methods that depend on explicit equations
would require either an independent derivation or a tech-
nique for fitting models by system identification. 

Several noncommercial (and typically unsupported)
packages have been created for the automatic symbolic
generation of the EOMs of multibody systems, leveraging
general-purpose symbolic manipulation engines such as
Maple and Mathematica. For example, MBsymba [11], [12]
is a Maple-based GNU freeware licensed package for
symbolically modeling multibody systems that imple-
ments both Lagrangian and Newton-Euler formulations.
However, the constraints imposed by symbolic manipula-
tion of large matrices, the required symbolic differentia-
tions, or the unavailability of appropriate recursive
formulations for closed-loop multibody systems [13] limit
these packages to medium-sized multibody systems. 

DYNAFLEXPRO FEATURES
DFP offers unique capabilities that help overcome some of
the limitations noted above. Specifically, DFP uses a graph-
theoretic-modeling approach to create kinematic and dynam-
ic EOMs within a systematic and automated symbolic
implementation [14]–[17]. While a symbolic or numeric study
of the system is possible using Maple’s built-in ODE solver
dsolve, DFP also offers the capability to export the EOMs to
other platforms (C, Fortran, and Matlab) using code-genera-
tion tools. Although SimMechanics/RealTimeWorkshop [18]
also offers code-generation capabilities for real-time multi-
body simulations, DFP has a distinct advantage since it uses
the symbolic EOMs as the basis for code generation. The
resulting optimized and thus efficient code is better-suited for
real-time simulation and real-time control implementations. 

ILLUSTRATIVE CASE-STUDY
We now illustrate the various features of DFP using a
case-study of a system of two masses connected by a lin-

ear spring and damper. All of the results given below are
generated using DynaFlexPro 2.2.8 with Maple 10.02 on a
1.7 GHz Pentium-M PC with 256 MB RAM running 
Windows XP.

Figure 1 illustrates the four stages of creating and simu-
lating the EOMs. The first stage involves the construction
of frames of reference, interconnections between bodies,
and application of motion and force drivers. In the second
stage, a Java-based GUI ModelBuilder (MB) aids the user
in translating the modeling decisions of the first stage into
a form suitable for further processing by the set of Maple
routines. The automated generation of symbolic EOMs
from the ASCII based ∗.dfp file forms the third stage, cul-
minating in the creation of a Maple module providing
multiple access methods to the EOM data. The fourth stage
is the simulation of the system dynamic equations that can
either use Maple’s numeric and symbolic capabilities or
can be implemented on an external simulation platform.

Stage 1: Preliminary Modeling
Consider the system of two masses coupled by a spring
and damper shown in Figure 2. The two masses are
assumed to be at rest separated by a distance L when a
spring having zero rest length and a translational damper
are attached. A time-varying external force F2x(t) is
assumed to be acting on the second mass. We assume that
the absolute translational motions of the two masses are
constrained along the global x axis.

The selection of generalized coordinates to describe the
system’s DOFs can create significantly different formula-
tions. Absolute generalized coordinates can be created in
terms of the displacements x0i(t) of the centers of mass mi
for each of the two bodies (i = 1, 2) from a preferred iner-
tial frame. Alternatively, the relative displacements x01(t)
and x12(t) of various bodies can serve as relative general-
ized coordinates, x12(t) where denotes the relative dis-
placement m2 of with respect to m1 from the equilibrium
configuration, that is, x12(t) = x02(t) − L − x01(t). Alterna-
tive coordinate descriptions are possible, for example, the
motion of the system’s center of mass (rigid mode) as well
as the relative motions of various bodies (flexible modes)
can be used in a vibration analysis setting. We assume that
the initial conditions in terms of absolute coordinates are
x01(0) = 0 and x02(0) = L + δ , where δ is the initial dis-
placement of the mass m2 from its equilibrium position.
Correspondingly, in terms of relative coordinates we
assume x01(0) = 0 and x12(0) = δ.

DFP is a Maple toolbox that allows control engineers

to symbolically create mathematical models for analyzing the dynamic

behavior of large articulated multibody systems.
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Stage 2: ModelBuilder and DFP File Creation
DFP supports a library of modeling components, including
rigid bodies, flexible beams, forces, torques, springs,
dampers, and a variety of joints. System models are gener-
ated by piecing together individual components available
from the library and exporting the resulting model as an
ASCII DFP input file (∗.dfp file). A Java-based MB graphi-
cal user interface (GUI) considerably simplifies the process
of building the system model in block-diagram form, visu-
alization of various interconnections, setting of various
parameters, and exporting the final ASCII ∗.dfp file. How-
ever, an experienced user can quickly create or modify a
system ∗.dfp file by using only an ASCII text editor. 

Two mechanical body elements are added to the
default ground body in an MB window to create the
model for a linear spring-mass-damper system. The pri-
mary frame of reference for each rigid body is a center of
mass (COM) frame, represented by a crossed circle sym-
bol. Alternative body-fixed frames can be defined relative

to this frame at appropriate points-of-interest, such as
locations of joints or the application of external forces.

FIGURE 2  A translational two-mass-spring-damper system. The
case-study illustrates the capabilities of DFP for formulating EOMs
in relative or absolute coordinates, solving them in numeric and
analytic form, performing forward- and inverse-dynamics analyses,
incorporating nonlinear elements, performing sensitivity analysis,
and exporting to external packages. 
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FIGURE 1  The four stages of simulating a system with DynaFlexPro. The user selects model topology and variables of interest in Stage 1
and thus retains influence over the form of the resulting EOMs. In Stage 2, a GUI helps translate this user intent into an appropriate DFP
model. Stage 3 then facilitates the use of high-level DFP commands for the automated generation of symbolic EOMs that can be parametri-
cally simulated in Stage 4.
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On Mass 1, Frame 1 is located at a distance L along the
local (positive) x axis, while Frame 2 on Mass 2 is colocated
with the COM frame. The lumped mass at the COM is
denoted by m1(i = 1, 2). The inertia defined in the local
COM reference frame can be any positive-definite matrix
whose eigenvalues satisfy the triangle property as required
by realistic bodies. However, if the COM frame is aligned
with the principal mass distribution axes, then the inertia is
a diagonal matrix. Properties for the two rigid-bodies are
assigned in symbolic form, as shown in Figure 3(d). 

Joint elements are created by dragging a directed arrow to
connect appropriate frames as shown in Figure 3(b). The joint
properties window shown in Figure 4(a) facilitates the selec-
tion of joint types, orientation of critical axes, naming of user
variables in numeric or symbolic form, and assignment of
motion- or force- drivers. Joints 1, 2, and 3 are selected to be
prismatic joints acting along the positive x axis. In this exam-
ple, Joint 3 is a redundant constraint added to facilitate later
derivations in absolute coordinates. One of the unique fea-
tures of DFP is that redundant constraints can be detected and

FIGURE 3  The ModelBuilder GUI helps create the DFP input file. (a) A new model window; (b) two-mass-spring-damper model; (c) a typical
rigid-body element-properties window; and (d) assigned rigid-body properties in the two-mass-spring-damper model. The point-and-click
interface simplifies adding bodies, connecting them with articulations, and setting various properties in numeric and symbolic form, as
shown for the two-mass-spring-damper case.

(a) (b)

(c) (d)

File

Load Save Export to DFP Load Save Export to DFP

View Help File View Help
DynaFlexPro: Model Builder DynaFlexPro: Model Builder

Ground

Ready

Name: Mass1

Properties

Mass: m1

Inertia Matrix

Pos. Variables Vel. Variables

T-Tree

R-Tree

Ready

Ground Joint1 Mass1

Mass2Joint3 Joint2

Force Driver

Right clicking
gives this menu

Add Mechanical Body
Add Flexible Beam

Zoom
Properties 

Body Properties

l1xx
l1yy

l1zz

0 0

00

0 0

Cancel OK

Property Body Element 1 Body Element 2

Name Mass1 Mass2

Mass M1 M2

Inertia

T-tree Unchecked

Unchecked

Unchecked

UncheckedR-tree

I1xx

I1zz

0 0
00

0 0
I1yy

I2xx

I2zz

0 0
00

0 0
I2yy



DECEMBER 2006 « IEEE CONTROL SYSTEMS MAGAZINE 131

automatically eliminated from the EOMs. While springs and
dampers can be individually modeled, parallel stiffness and
damping can be directly included with the prismatic-joint
definition as done for Joint 2. The assigned properties for
each of the three joints are given in Figure 4(b).

Careful selection of a body, joint, or force element into
the T-tree or R-tree allows the user to specify the vari-
ables for the final formulation. Such a selection must also
ensure that all frames are connected without the forma-
tion of closed loops, as discussed below.

Stage 3: Generation of EOMs from the ∗.dfp File
The process of generating the EOMs is accomplished using
the four lines of code (see Figure 5) once the DFP input file
“DoubleMSD.dfp” is available.

Stage 4: Simulating the System

Forward Dynamics
The user has the ability to generate solutions for the EOMs
in any desired combination of symbolic and numeric form,
taking advantage of Maple’s unique capabilities. We
assigned numeric values for each of the masses
(mi = 1 kg, i = 1, 2), damping coefficient (d12 = 1 N-s/m),

and spring constant (k12 = 5 N/m). Setting F2x(t) = 0 and
δ = 0.5 m allows us to compute an analytical expression
for the initial-condition, zero-input system response
UnforcedSoln, which is then plotted in Figure 6(b).

In cases where such an analytic solution might not be
feasible, dsolve/numeric can be used directly on the
EOMs. However, invoking BuildSimCode converts the
EOMs into a Maple function or Maple procedure as shown
in Figure 7. Faster optimized simulations result when this
code is numerically integrated within Maple, in which case
the results are identical to those shown in Figure 6(b).

Alternatively, exporting the EOMs to other platforms
such C, Fortran, or Matlab is possible using the code gen-
eration module of Maple. Figure 8 depicts the optimized

FIGURE 4  Selecting interconnection properties. (a) Typical joint-element properties window and (b) assigned symbolic values for the three
joints of the two-mass-spring-damper case. In addition to simplifying the selection of properties, the interface permits the user to specify
which variables are to appear in the EOMs in either numeric or symbolic form.
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Matlab code for the pXdot procedure generated by the
BuildSimCode module.

Sensitivity Analysis 
Dynamic parameters from the symbolic EOMs are accessi-
ble for parametric analysis. In this example, the EOMs can
be solved in closed form while retaining one of the masses
as a parameter m1 and a closed-form expression obtained
for the resulting sensitivity surface. Maple’s function
plot3d is used to visualize the effect of this parameter on
the solution x01(t) in Figure 9.

Inverse Dynamics
The governing equations generated by DFP can also be used
for inverse dynamics calculations. In a prescribed motion for-
mulation, we specify a sinusoidal motion x01 = sin(t) with
unit amplitude for mass m1. The resulting equations can be
solved to determine the required force F2x(t) and the relative
displacement of the two masses x12(t) as shown in Figure 10.

The flexibility and power of DFP are evident once a
basic model for a system is ready. By changing only a few
parameters within the MB interface or DFP command line
instructions, the dynamic equations for systems can be

FIGURE 6  Analytical forward dynamics. (a) Code for obtaining closed-form initial-condition response and (b) parametric plots of the resulting
solution. DFP takes advantage of Maple’s symbolic manipulation capabilities to obtain an analytical expression for system responses that
can subsequently be plotted.
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, x01(t) = −      e−t

(a)

ParaSubs := [m1 = 1, m2 = 1, d12 = 1, k12 = 5, F2x(t) = 0, L = 1]
ics := x01(0) = 0, x12(0) = 0.5, D(x01) (0) = 0, D(x12) (0) = 0
SysODE := eval(ODE, ParaSubs)
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FIGURE 5  Generating EOMs in relative coordinates x01(t),x12(t). These symbolic EOMs can be generated using only four lines of DFP code
operating on the DFP input file. However, the user retains significant control over the types of analyses as well as the form of the EOMs
through the command options. 

with(DynaFlexPro):
dfpFile := cat(GetDFPdir( ), "/DoubleMSD.dfp"):
Model := BuildEQs(dfpFile,["DynSimpType", "Simplify"]):
with(Model): ODE := GetDynEQs( )
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created in a variety of coordinate frames or formulations,
as discussed below.

Modeling Nonlinear Components
DFP simplifies modeling of the nonlinear constitutive
behavior of components. For instance, changing the spring
constant and damping coefficient properties of Joint 2 to
‘k12∗x12(t)^2’ and ‘d12/sqrt(diff(x12(t),t)),’ respectively,
allows us to model the nonlinear force-displacement behav-
ior Fk = k12x3

12 of the spring or force-velocity Fd = d12
√

ẋ12
behavior of the damper element. The resulting EOMs gener-
ated for such a system are shown in Figure 11.

Absolute Coordinates
In some cases, it might be desirable to have EOMs in absolute
coordinates. Choosing appropriate body and joint elements
for the spanning tree allows the user to select the variables
that appear in the final EOMs. In this case, selecting Joint 3 in
T-tree and R-Tree (in place of Joint 2) and reevaluating the
same worksheet generates the EOMs in absolute coordinates
as shown in Figure 12. Again, the third redundant constraint,
arising from Joint 2, is automatically detected and eliminated.

Augmented Lagrangian Constrained Formulation
Introducing constraints between DOFs of a multibody
system has traditionally complicated the formulation and
solution of the governing equations. However, DFP can
handle such constraints and automatically regenerate the
EOMs. For example, a position-level constraint can be
introduced between x01(t) and x02(t) by changing Joint 2
from a spring-damper to a weld joint within the MB inter-
face. Note that we retain Joint 3 in T-tree and R-tree as in
the previous subcase. Rerunning the original Maple work-
sheet with the modified DFP input file now creates the
system EOMs in terms of an augmented Lagrangian for-
mulation, as shown in Figure 13.

Minimal-Coordinate Constrained Formulation 
Alternatively the same model can be used to create the
minimal coordinate constrained formulation by simply
changing the elements in the spanning tree. Restoring
Joint 2 in the tree (that is, by checking the T-tree and 
R-tree properties) in place of Joint 3 yields a constrained
formulation in terms of a minimal set of generalized coor-
dinates, as shown in Figure 14.

Planar Models for the Two-Mass-Spring-Damper
In all of the examples considered thus far, the system
translates along the x axis. An extension to 2D planar
motions can be accomplished by changing the properties
of Joint1 and Joint3 to “planar.” The trigonometric non-
linearities, which are tedious to work with manually, are
automatically handled using DFP. The two resulting for-
mulations, namely, minimal unconstrained ODE versus

FIGURE 7  Numerical forward-dynamic solutions. When an analytic solution is not feasible or desirable, the EOMs can either be solved
numerically using dsolve or converted into Maple functions and procedures. The latter approach facilitates efficient and stable numerical
solution particularly for systems with differential-algebraic EOMs.
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BuildSimCode(Model, {"Xdot"}, "MapleProc", "Optimize", ParaSubs)
OdeICs := array([0, 0, 0, 1])
OdeVars := convert(convert([Model:- νX], Vector), list)
Soln := dsolve(numeric, implicit = false, procedure = pXdot, abserr = 1e−8,
  relerr = 1e−7, start = 0, initial = odeICs, output = listprocedure,
  procvars = odeVars, range= 0.5) : L := 1

"State Variables: ", [                    [                     ] ]d
dt

x01(t), d
dt

x12(t), x01(t), x12(t)

 [                     ][                     ]d
dt

x01(t), d
dt

x12(t), x01(t), x12(t)

"beginning optimization..."
"optimization complete"

"Procedure/Function generated:", "pXdot"
odeICs := [0 0 0 1]

odeVars :=

(1)

FIGURE 8  Export of EOMs to Matlab in state-space form. Additional-
ly DFP can export the EOMs to C and Fortran taking advantage of
Maple’s code-generation tools. In all cases, using the symbolic
EOMs as the basis for code generation creates optimized code that
is well suited for real-time simulations or real-time control.

function pXdotreturn = pXdot (N, t, X_in, ODE)
      zz (2)  =  0.1e1;
      zz (1)  =  X_in (2) ;
      zz (6)  =  0.5000000000e0;
      zz (3)  =  0.1e1 *  zz (6) ;
      zz (4)  =  0.0e0;
      zz (5)  =  (−0.5e1 *  X_in (4) − 0.1e1 * zz (1) − 0.1e1 *
                    zz (4) * zz (2) )  /  (0.1e1 − 0.1e1 * zz (2) * zz (3) ) ;
      ODE (1)  =  zz (4)  −  0.1e1  *  zz (5)  *  zz (3) ;
      ODE (2)  =  zz (5) ;
      ODE (3)  =  X_in (1) ;
      ODE (4)  =  zz (1) ;
      pXdotreturn  = ODE (4) ;

with(CodeGeneration) : Matlab(pXdot);
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augmented Lagrangian, can be created by selecting or
eliminating Joints 2 and 3 within the spanning tree. The
selection parameters are shown in Tables 1 and 2, while
the corresponding EOMs are shown in Figure 15.

The minimal unconstrained ODE formulation is creat-
ed in terms of four relative generalized coordinates corre-
sponding to the three DOFs of Mass 1 in the plane
coupled with the one DOF due to the prismatic joint. The

ensuing system of four second-order differential equa-
tions in relative coordinates is shown in Figure 15(a). Fig-
ure 15(b) shows the EOMs developed using absolute
coordinates of the two masses wherein six second-order
ODEs coupled by two Lagrange multipliers are obtained.
At first glance, it might appear that the absolute coordi-
nate formulation gives a smaller and simpler set of equa-
tions as compared to the minimal ODE formulation.

However, equations with unknown
Lagrange multipliers cannot be
solved independently of the two
constraint equations arising from
the prismatic joint, which is
accessed using the procedure Get-
PosCons. Thus, a larger DAE sys-
tem, involving the six ODEs and
two nonlinear algebraic equations,
must be solved to obtain the system
response in contrast to the more
direct solution process for the sys-
tem of four ODEs of Figure 15(a).

ADDITIONAL FEATURES OF DFP
Several features of DFP are not dis-
cussed in this review due to limit-
ed space. The DynaFlexPro Web
portal [1] has many user-friendly
tutorial examples and user-con-
tributed examples in Maple E-
book format that illustrate these
features.

FIGURE 9  Parametric study of changes in mass m1 from 0.5 to 1.5 kg with (a) DFP/Maple Code and (b) x01(t) versus m1 and t . The user
can take advantage of Maple’s symbolic and numeric capabilities for simulation-based performance-variability studies using parametric
sweeps.

ParaSubs := [m2 = 1, d12 = 1, k12 = 5, F2x(t) = 0, L = 1];
SysODE := eval(ODE, ParaSubs);
mySys := SysODE[1], SysODE[2];
ics := x01(0) = 0, x12 (0) = 1, D(x01) (0) = 0, D(x12) (0) = 0;
UnforcedSoln := dsolve( [mySys, ics] );
assign(UnforcedSoln); L := 1;
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FIGURE 10  DFP/Maple code for an inverse-dynamics problem. The generated EOMs can be
manipulated to solve various problems of interest. For example, by prescribing the motions of
the system components, we can obtain symbolic expressions for the driving forces. This
process is useful for selecting motors and controllers from a design perspective.

x01 := t → sin(t );
m1 := 1 : m2 := 1 : k12 := 5 : b12 := 1;
ics := x12(0) = 0, D(x12 ) (0) = 0;
Force1 := solve( {ODE [1]}, F 2x(t ) );
Force2 := solve( {ODE [2]}, F 2x(t ) );
Force := subs(Force1, Force2 );
dsolve( {ics, Force[1]}, {x12(t ) } );

x12 (t) =     cos(t) −      sin(t ) −      e−5t5

Force :=   −2 sin(t) +       x12(t) = −sin(t ) +        x12(t ) + 5x12(t ) +       x12(t )

Force2 :=   F2x(t ) = −sin(t ) +       x12(t) + 5x12(t ) +       x12 (t )

Force1 :=   F2x(t ) =−2 sin(t ) +       x12(t )d2

dt 2

d2

dt 2

d2

dt 2
d
dt

d2

dt 2

d
dt

1
26 26

5
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Introductory examples are organized around simple
systems involving a single moving rigid body with one
joint such as the simple pendulum, spring-mass-
damper, two-dimensional particle motion, and the spin-
ning top. Systems with more than one moving rigid
body are introduced using a planar two-link, serial-
chain manipulator example.

The planar four-bar, planar slider crank, and planar
parallel manipulator examples extend the discussion to
systems with one or more closed kinematic loops. The
closed kinematic loops introduce algebraic constraints
that interact with the underlying ODEs to create systems
of DAEs. The suitable formulation and solution of such
DAE systems has created many challenges in the past

[19]–[21] but can be transparently handled by DFP as
shown in the examples.

The presence of compliant structural members in a
multibody system adds difficulty to symbolic EOMs gen-
eration. The planar spinup flexible beam and planar slider-
crank with flexible-connecting-rod examples highlight the
simplified automated processing possible using DFP.
Additionally, these examples are structured to allow a
novice to progress from rigid-body equivalents to their
nonrigid counterparts. 

The extension to spatial multibody systems is also
illustrated using several examples. The spatial slider
crank example is developed systematically as an exten-
sion of the planar slider-crank example by altering the

FIGURE 11  Nonlinear constitutive behavior. With (a) new elemental constitutive equations and (b) the resulting system EOMs. The graph-
theoretic approach used by DFP uses element models, potentially with highly nonlinear constitutive laws, interconnected by a linear graph.
Thus, initially unmodeled nonlinearities can be included by simply changing the corresponding elemental constitutive equation.

ODE :=

(m1 + m2)
d2

dt2
x01(t) + m2 − F2x(t)

m2
d2

dt2
x01(t) − F2x(t) + k12x12(t)3 + d12

dt2
x12(t)

d

dt
x12(t)+ m2

(b)(a)

Connection Properties

Name: Joint2

Connection Type: Prismatic joint

User Variables Force Driver Motion Driver

Force Driver

Enable force driver

Spring Constant [K]:

Undeformed Length [L]:

Damping Coefficient [D]:

Actuator force [F]:

K12*x12(t)∧2

0

0

b|12/sqrt(diff(x12(t),t)

T-Tree

R-Tree

OKCancel

d2

dt2
x12(t)

d2

FIGURE 13  Augmented Lagrangian formulation. DFP provides
the user with direct control over selecting the formulation and
included variables. Thus, for constrained systems, the EOMs
can be developed in extended generalized coordinates with
added Lagrange multipliers. Solving such augmented systems
permits the calculation of the internal constraint forces as well
as the external system response.

ODE :=

m1
d2

dt2
x01(t) − λ1(t)

m2
d2

dt2
x02(t) + λ1(t) − F2x(t)

FIGURE 12  EOMs developed in terms of absolute coordinates x01(t)
and x02(t). Selecting appropriate body and joint elements to include in
the spanning tree allows the user to obtain the final EOMs in terms of
absolute coordinates.

ODE :=

m1
d2

dt2
x01(t) − k12x12(t) − d12

m2
d2

dt2
− F2x(t) + k12x12(t) + d12

d
dt

d
dt

x12(t)x02(t)

x12(t)
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joints. Finally, the development of symbolic, closed-
form EOMs for a 6DOF Stewart-Gough platform serves
as the capstone example. 

LIMITATIONS AND SCOPE-OF-USE
No review would be complete without a discussion of the
potential limitations and scope-of-use of such software.
This discussion is especially pertinent in light of the numer-
ous commercially available MCAE software packages. 

First, and foremost, there is an implicit assumption
that a user has the capability to perform the initial mod-
eling. Suitable selection of frames of reference, general-
ized coordinates,  and other aspects can have a
tremendous influence on the resulting form and size of
the EOMs. Thus, while the Java GUI facilitates the speci-
fication of interconnections in block-diagram form, the
user still needs to specify the sequence of interconnec-
tions. Second, although the current library of compo-
nents is reasonably comprehensive, the modeling of
certain large multibody systems could pose some chal-
lenges to a novice. Third, DFP still does not possess the
conveniences that commercial-off-the-shelf packages
offer in terms of model creation and simulation. Features
such as 3D visualization capabilities, automated mass
and inertial calculations (to name a few) are currently
missing. Finally, while the automated processing to cre-
ate the EOMs has been adequately shielded from the
user, the user is expected to have a good grasp of Maple

FIGURE 14  Minimal generalized-coordinate formulation for con-
strained systems. The EOMs can be automatically regenerated by
altering the joint properties and rerunning the same Maple work-
sheet. This capability can be used to generate the EOMs in terms of
a minimal set of generalized coordinates.

ODE := d2

dt 2 x01(t ) − F2x(t )(m1 + m2)

TABLE 1 Planar joint properties for a relative-coordinate-based minimal unconstrained ODE formulation.
The 1D translational system can be allowed to operate in the plane by converting joints 1 and 3 into planar joints.
A minimal-coordinate formulation of the EOMs can be retained by preferentially including the relative coordinates,
those of Joints 1 and 2, within the spanning tree.

Property Joint 1 Joint 2 Joint 3

T-Tree Checked Checked Unchecked
R-Tree Checked Checked Unchecked
Connection type Planar joint Prismatic joint Planar joint
First axis of translation x axis <1,0,0> – x axis <1,0,0>

Second axis of translation y axis <0,1,0> – y axis <0,1,0>

s1 x01 x12 x02
s2 y01 y12 y02
theta theta1 – theta2

TABLE 2 Planar joint properties for an absolute-coordinate-based augmented Lagrangian formulation.
A planar two-mass-spring-damper results from modifying joints 1 and 3 to be planar joints. An augmented
Lagrangian formulation of the EOMs, in terms of the absolute coordinates of the two masses and the Lagrange
multipliers, results when joints 1 and 3 are included within the spanning tree.

Property Joint 1 Joint 2 Joint 3

T-Tree Checked Unchecked Checked
R-Tree Checked Unchecked Checked
Connection type Planar joint Prismatic joint Planar joint
First axis of translation x axis <1,0,0> – x axis <1,0,0>

Second axis of translation y axis <0,1,0> – y axis <0,1,0>

s1 x01 x12 x02
s2 y01 y12 y02
theta theta1 – theta2

The governing equations generated by DFP can also

be used for inverse-dynamics calculations.



DECEMBER 2006 « IEEE CONTROL SYSTEMS MAGAZINE 137

programming concepts and data-storage constructs to
effectively use the results. 

Despite these limitations, DynaFlexPro represents the
leading edge of rapid symbolic system model generation

for high-fidelity performance analysis and control. As
such, it is ideally suited for a user who is reasonably well
versed with traditional analytical modeling, has encoun-
tered the limitations of traditional MCAE packages, and is

FIGURE 15  EOMs for a planar two-mass-spring-damper in terms of (a) relative-coordinates and (b) absolute coordinates. A minimal set of
four unconstrained second-order differential equations arises from the use of relative coordinates, whereas an augmented system of six
second-order ODEs coupled by two Lagrange multipliers results from the use of absolute coordinates. DFP thus provides the flexibility to
create either form with minimal added effort.
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looking to exploit symbolic modeling in developing real-
time engineering models of large multibody systems. 

CONCLUSIONS
Although algorithmic and computational advances have
helped create numerous MCAE tools for analyzing ever-
more-complex multibody systems, these tools have limita-
tions. First, the underlying general-purpose formulations
can introduce numerical approximations and thus errors in
subsequent numerically based solutions. Second, models
created with most MCAE tools are unsuitable for real-time
implementation. Further, models might be difficult to
parameterize using dynamic system characteristics, such
as masses or inertias as opposed to more traditional geo-
metric characteristics such as lengths that are prevalent in
MCAE systems. Finally, sensitivity analysis to parametric
changes can at best be performed numerically where the
computational overhead would restrict it to local analyses.

DFP is a new MCAE tool that exploits Maple’s symbolic
manipulation power for automatically creating the govern-
ing EOMs for large mechanical multibody systems in sym-
bolic form. The parametric nature of the resulting symbolic
model makes it well suited for the parametric system-per-
formance studies, for use in design-refinement of such sys-
tems, or the development of suitable controllers.
Furthermore, the code generation capability can be used to
export the generated model to other platforms such as Mat-
lab, C, or Fortran. Thus, engineers seeking to design, ana-
lyze, or control a mechanical multibody system can use DFP
to efficiently and rapidly derive high-fidelity system-models
that are suitable for use in real-time engineering simulators
or hardware-in-the-loop testbeds. 
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