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This article presents a review of some of the early develop­
ments in nonlinear control engineering. It begins by briefly 

examining the status prior to World War II and then concentrates 
on the developments in approximately the following two dec­
ades. A significant amount of the work will be seen to have as its 
foundation the need to obtain methods to solve wartime problems 
related to servomechanisms, fire control, and missile controL 
The major analytical techuiques of the phase plaue, the describ­
ing function and Tsypkin's method for relay systems, are dis­
cussed at length. Two important aspects in obtaining control 
engineering solutions to problems, which are often forgotten by 
theoreticians , are the existence of simulation facilities and the 
capabilities of the available hardware to implement specific 
solutions at an allowable cost. Later sections therefore comment 
on these aspects. Also, a brief review of some of the early papers 
on nonlinear control is given, and finally some comments are 
provided on the continuing relevance of these early methods and 
some still unsolved problems. 

Introduction 
T he purpose of the article is to review developments in 

nonlinear control engineering up to approximately 1960. This is 
a suitable end point for many reasons. First, many people might 
define the start of the "modem era" as the fIrst IFAC Congress 
which was held in Moscow in 1960, and second, the first publi­
cation from what bccamc our Society was the May 1956 issue 
of the IRE PGAC. It is also particularly convenient from my 
point of view, since I started my graduate studies in 1956. 
Perhaps most important, however, is the fact that significant 
work took place on nonlinear control engineering during the 
wartime period of the early 19408. lL took about a decade for 
these activities to become generally known to what at the time 
was a relatively small control engineering community compared 
with the situation today. Further, the page limit would not allow 
justice to be done to later work even if the author felt such a 
rcvicw was possible. 

The article is organized as follows. The next section reviews 
the situation that existed prior to 1940 and during the war with 
respect to the problems that needed to be solved and the ap­
proaches used. The next three sections then cover the three mail! 
theoretical approaches used for studying nonlinear systems in 
the period 1940-1960, namely the phase plane, the describing 
function, and special methods for relay systems. Simulation has 
always played, and still does play, a major role in the study of 
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nonlinear systems, but the hardware available during this period 

both for system simulation and implementation was far removed 

in many ways from today's technology. This situation is looked 

at in some detail under the heading "Hardware Technology." In 

the following section, some comments are given on the publica­

tions available around 1960 to give an idea of the size of the 

control community and its concern with nonlinear problems. I 
have called the final section "Reflections and Conclusions." 

There, some personal opinions are given on the current relevance 

of these early methods and the difficulties that still remain in 

dealing with nonlinear systems. 

The Early Years 

Prior to 1940 

Although nonlinear control systems were being successfully 

applied, for example the Tirrill regulator and the flyball governor, 

they were made to work without any significant theoretical 

understanding. Control engineering, as a subject, was in its 

infancy in the late '30s, and some of the techniques that could 
be used for studying nonlinear systems had been, and were being, 

developed by mathematicians and physicists interested in non­

linear differential equations that occurred in modeling problems 

in such areas as celestial mechanics, mechanical vibrations, 

acoustics, and electronic oscillators. The major activity concen­

trated on second-order nonlinear differential equations of the 

form 

x + co�x = mg(x, x) (1) 

which were satisfactory models for the study of many of these 
physical problems. The main approaches used were perturbation 

techniques, harmonic balance, and the phase plane. 

In the perturbation technique /..l is a small parameter and a 

solution of the form 

x(t)= L,/..lJXj(t) 
j=O (2) 

is sought. During this period there was considerable intercst in 
finding limit cycle solutions for some of these differential equa­
tions, and difficulties were encountered in using the perturbation 

approach until the problem was solved by Lindstedt [11 and 

Poincare [2] They replaced t by ,/00, where 00 is the unknown 

limit cycle frequency, and used the series expansions 
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X(T) = Ll1j Xj(1:) 
j�O (3) 

and 

0)= Ll1jO)j j=O (4) 

where roo is the oscillation frequency with 11 = 0, to obtain 
solutions. 

Averaging methods for obtaining solutions to Equation (1) 
werc given by Van dler Pol [3] and Krylov and Bogoliubov [4]. 
The formulation used by the latter authors, which was slightly 
different from that of Van der Pol, is the procedure that has been 
adopted morc frequcntly in subsequcnt literature. In their method 
of slowly varying amplitude and phase, Krylov and Bogoliubov 
showed that an approximate solution to Equation (1) is 

x = a(t)sin[coot + <!J(t)] (5) 

wherc a(t) and (tl are thc solutions of the differential equations 

a = (11 f2nmo)f:" g(asin8, amo cos8)cos8d8 (6) 

� = (J.l/2naooo )J(�" g( a sine, aooo cose)sinede (7) 

Various forms of harmonic balance technique were used by 
many authors, after the original work of Duffing (5), to study 
both free and forced oscillations. Both thc perturbation and 
harmonic balance approaches are tedious algebraically, since 
they involve the collection of similar terms in what becomes a 
large equation for complex expressions for g( x, x). They were 
therefore only applied to systems with simple nonlinear func­
tions g( x. x) . The works of Duffing on nonlinear vibrations and 
Van der Pol on electronic oscillators resulted in specific non­
linear second-order equations being named after them. Using 
these methods, techniques were also found for predicting phe­
nomena unique to nonlinear systems, such as limit cycles, jump 
phenomena, suhharmonic oscillations, and synchronization or 
frequency entrainment. 

The phase plane method was introduced by Poincare [2] and is 
undouhtedly one of the most useful early methods which ha� proved 
of value for control systems design. Poincare recognized that a 
solution for the second-order nonlinear differential equation: 

.r = p(x, y) 

Y=Q(x, y) (8) 

could be skctched in a phasc planc-a plot of y against x-using 
the fact that the slope of the solution curve, or trajectory, at a 
point in the phase plane is: 

y I x = dyl dx = Q(x, y)1 p(x, y) (9) 

Many contributions [6] following Poincare's work were made 
to topics in phase plane topology, such as information on singular 
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points and the structure of trajectories near to them, conditions 
for the existence of limit cycles, and so on, in subsequent years. 
The phase plane approach became a valuable tool of the control 
engineer from the late '30s primarily because many control 
problems of interest in subsequent years were concerned with 
servomechanisms, which could often be approximated by sec­
ond-order dynamics. Another major reason was the recognition 
that the method could be used effectively for the type of non­
linearities encountered in these systems, which could be approxi­
mated reasonably well by linear segmented characteristics, 
unlike the continuous functions previously considered. 

Although a stability theory for linear differential equations 
had been established about the time of Poncare's work, little 
seems to have been done on general nonlinear differential equa­
tions as distinct from second-order ones. Although Lyapunov's 
[7] original work was first published in 1892 in Russia, it appears 
to have been neglected for many years and certainly only became 
known to scientists outside thc USSR toward the cnd of the 
1950s. 

The m�or effort at this time on investigations into the effects 
of nonlinearity in control systems was being undertaken at MIT 
[8]. Here Bush and his co-workers were developing differential 
analyzers, using mechanical integrators, for the study of non­
linear differential equations and required accurate servomecha­
nisms for curve-following applications. Hazen [8] implemented 
various designs, including some using relays, and was aware of 
the limitations on the performance caused by backlash in the 
gears. This early link between nonlinear control and simulation 
is particularly intercsting with respect to the continued impor­
tance of the latter in control engineering. 

Wartime Problems 
The requirement for accurate fire-control systems led to 

significant work on servomechanisms in both the U.K. and the 
U.S. The problems associated with the major inherent nonlinear 
effects in these systems, such as friction, hacklash, and saturation 
in amplifiers, were soon recognized, and techniques for analyz­
ing their effects and innovative ideas for reducing them, such as 
the use of dither and anti-backlash gears, were developed. 

In Germany, nonlinear control problems were also being 
encountered in the design of the controls for guided weapons, 
whose development at that time was far in advance of anything 
elsewhere. In the U.K. a servo-panel was formed in 1942 which 
functioned as might a committee of a learned society hy organ­
izing meetings for the general exchange of information on weap­
ons control. Similarly, in the U.S. a National Defense Research 
Committee (NDRC) was set up in 1940, and one division was 
eventually established under Hazen's chairmanship devoted to 
the study of fire control problems [8]. The methods being used 
to study nonlinear effects were primarily the phase plane and 
later the describing function approach, with relay systems being 
studied by both methods. Minorsky r9] did, however, in a paper 
published in 1941, make a brief reference to nonlinear control 
problems and the possibility of using Lyapunov's method. 

The Phase Plane Method 
As previously mentioned, the fact that many servomecha­

nisms could be approximated by second-order dynamics led to 
the use of the phase plane for analyzing the effects of various 
nonlinearities, such as nonlinear operations on the error, torque 
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saturation, friction, and backlash in these systems. Thc major (d) X2 - ve, Xl <-2 
difference from the "classical" approach was that the nonlineari-

ties were often approximated by linear segmented charac- we have 

teristics, with the result that the phase plane could be divided up 
into several regions with trajectories in each region described by xl = X2, X2 = 5/2, 
different linear differential equations. Models of nonlinear phe-
nomena can often be obtained using linear segmented charac- a parabola in the phase plane. 
teristics, but in some cases they may involve significant 
simplifications of the actual effect. Backlash, for example, is (e) X2 - ve, LY21 < 2 
often modeled using thc nonlinear characteristic of Fig. 1, which 
assumes a high friction-to-inertia ratio for the load shaft, and is we have 

never satisfied precisely in practice. In some situations, whcn 
acceleration or deceleration is taking place in a system with xl = x2, x2 + Xl -1/2 = 0 , 
backlash, multiple impacts may occur between gear teeth so that 
the modeling of the precise phenomenon is extremely difticult. a circle in the phase plane. 

Other advantages of the phase plane method are that systems 
that have changes in their parameters or have more than one (f) X2 - ve, Xl > 2 
non Ii near element can be studied. A simple example of the latter 
is the block diagram of Fig. 2, which is an approximate model we have 

of a servomechanism with nonlinear effects due to torque satu-
ration and Coulomb friction. XI = X2, .k2 � -3 / 2 , 

The differential equation of motion in phase variable form is 

(10) 

and where Is denotes the saturation nonlinearity and sgn the 
signum function, which is + 1 for X2 > 0 and -1 for X2 < O. It is 
easily seen that there are six linear diffcrential equations that 
describe the motion in different regions of the phase plane. For 
Xl positive Equation (1) can be written 

a parabola in the phase plane. Since all the phase plane trajecto­

ries are described by simple mathematical expressions, it is 

straightforward to calculate specific phasc plane trajectories for 
any initial conditions. In other cases the equations of motion in 
the various regions may be more complicated, if, for example, 
in Fig 2 viscous friction is included and Xl is still taken equal to 
xI' but can often be easily sketched. Knowledge of the phase 

plane approach is obviously also of value in obtaining a "feel" 
for the system's behavior and interpreting simulation results. 

so that for 

(a) X2 + ve, XI < -2 

we have 

a parabola in the phase plane. 

(b) X2 + ve, Ixd < 2 

we have 

a circle in the phase plane. 

ec) X2 +ve, Xl> 2 

we have 

a parabola in the phasc plane. Similarly, for X2 negative 

36 

Many papers and books were written during the 1950s that 
analyzed problems using the phase plane technique but they 

involved no new fundamental theoretical concepts [10-14]. The 

major contributions investigated differcnt nonlinear effects in 
specific second-order systems, for example, to provide an under­

standing of the effects of torque saturation, nonlinearity in the 
error channel, backlash, friction, and relay control in second-or­
der systems. Optimum control using relays was studied, and the 
phenomena of chattering in relay systems was also understood. 

A significant number of books written in the period 1950-
1960, such as references [15-19], give a detailed coverage of the 
phase plane approach. 

nix) 

x 

Fig. 1. Backlash characteristic. 
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Fig. 2. Block diagram of servomechanism. 

The Describing Function Method 

Out ut 
Position 

The describing function (DF) method appears to have been 
used independently during the wartime period by Goldfarh in 
Russia, Dutilh in France, Oppelt in Germany, Kochenburger in 
the (;'S., and Daniell in the U.K. [20], but publications describing 
their work did not appear until later. The method is identical to 
a harmonic balance approach, where only the first harmonic is 
balanccd, but was developed in a way more snitable for use in 
feedback control, where typically nonlinear systems were being 
modeled in terms of interconnected blocks of static nonlinear and 
dynamic (transfer function) elements. The DF, N(a), of a non­
linear element was defined as the ratio of the fundamental output 
to the magnitude uf an applied sinusoidal input. Thus, when 
using tbe DF in analysis the higher harmonics produced by a 
sinusoidal input are neglected, and both the idea of using the 
method and its justification arose from the fact that observations 
of the output of servomechanisms in which limit cycles occurred 
often revealed them to be nearly sinusoidal, indicating good 
low-pass filtering had taken place. Most of the early uses of the 
DF were directed at the study of feedback systems with a single 
nonlinear effect, such as backlash, dead zone, saturation. and 
friction or containing a relay. Many papers were written in the 
'50s using the DF to study the occurrence of limit cycles and to 
study system stability, since it was widely assumed, for the 
situation of Fig. 3, of a single odd symmetrical nonlinear element 
pIns dynamics, but had not yet been proven, that if the linear 
system was stable for all gains within the sector occupied by the 
odd symmetric nonlinearity, illustrated in Fig. 4 for positive 
values only, any instability was only possible in the form of a 
limit cycle. 

Aizermann [21] had presented his famous conjecture, which 
was soon invalidated by the innovative choice of counterexam­
ples, that the nonlinear system of Fig. 3 would be stable if the 
linear system with gain K replacing the nonlinear element was 
stable for all values of K within the sector occupied by the 
nonlinearity. 

Few of the aforementioned papers contributed anything sig­
nificantly new to describing function theory but provided insight 
into the effects of nonlinearity in thc bchavior of a large number 
of practical systems. Two exceptions were extensions of the 
approach to determine the stability of any predicted limit cycle 

[22] and use of the DF method to determine the forced harmonic 
response of a nonlinear system [23,25]. Graphical methods de­
veloped for studying the latter situation enabled a much clearer 
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Fig. 3. Simple feedback loop. 

y 

o 

Fig. 4. Sector bounded nonlinearity. 

---------­
x 

appreciation of the jump phenomenon, which may occur in the 
frequency response of a nonlinear system. 

Considering a nonlinear element n(x) with input x = a sin8 
and corresponding output y(8) then if n(x) has odd symmetry the 
fundamental component in y(8), namely blsin8 + alcos8, has 

21" bl = - y(8)sin8d8 
1t 0 (11) 

2
1" 

a) = - y(8)cos8de 
1t 0 (12) 

The describing function, N(a), is then given by 

N(a) = (bl + jal)/a (13) 

which will be real, that is, al = 0, if the nonlinearity is single­
valued. To investigate the possibility of a limit cycle in the system 
of Fig. 3 the characteristic equation 

1 + N(a)G(s)ls = jill = 0 (14) 
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is then examined. Typically this is done using a Nyquist diagram 

where the loci Gljw) and C(a) = -lIN(a) are plotted, and any 
intersection of the loci gives the amplitude and frequency of a 
possible limit cycle. The stability of the limit cycle is normally 
obtained from the direction of crossing of the two loci using the 
criterion due to Loeb [22], which is a necessary but not sufficient 
condition. Tables of describing functions for various nonlineari­
ties are given in many books. and the method is easy to apply as 
shown in Pig. 5, which is for the case of an on-off relay with 
hysteresis. having output h of ±l and hysteresis .0. of ±1, control­
ling a linear plant with transfer function 5e·O.5s/(s+ Il It is easy 
to show for this relay that 

It [, 2 2 )1/2 .] 
C(a)=-4h \a -.0. -J.0. 

(15) 

which is a line parallel to the negative real axis. The limit cycle 
solution is given from the intersection of C(a) and Gljw) in Fig. 
5. 

Several papers discussed compensation of nonlinear systems 
to avoid limit cycles predicted by the DF method. The most 

common procedure was to design a linear compensator, Gcljw), 
to change the open-loop dynamics so that no intersection existed 

between the CCa) and GcGljw) loci on the Nyquist diagram. 
Other approaches included nonlinear compensators which, es­
sentially, modified the inherent system nonlinearity by placing 
another nonlinearity effectively either in ,eries or parallel. Some 
nonlinear integrators were also proposed and used successfnlly 
in spccific problems [26, 27]. 

In the late '50s many papers developed extensions to the basic 
DF method so that more complicated behavior of nonlinear 
systems could be examined. The first extension was to allow for 
the sitUation where the input signal to the nonlinearity also 
contained a biaS signal. This is typically the case when the 
nonlinearity is asymmetrical or the loop contains constant dis­
turbance or reference signals. This situation requires a sine plus 
bias describing function with the nonlinearity being represented 

by two gains, one to the bias y and one to the sinusoid a, both of 
which are functions of a and y To solve for a possible limi t cycle 
the bias and fundamental are balanced around the loop resulting 

o ' , 

1m _____ ------------

-0.5 � 
---

<0=1 437 <0=1 401 a 
·1 

-1.5 " 

-2,5 L-_�_� __ � __ '-_---------L-_ 

-1.5 -1.45 -1.4 -1.35 ·1.3 -1.25 ·1 2 -115Re1.1 

Fig. 5. Graphs for the solutions of the relay oscillation frequency by 
the DF and Tsypkin methods. 
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in a bias balance equation as well as an equation similar to 
Equation (14). 

As mentioned previously, control engineers interested in 
nonlinear problems knew of the earlier studies that revealed the 
existence of specific nonlinear phenomena such as jump phe­
nomena, subhannonic oscillations, and frequency entrainment 
in simple nonlinear differential equations, and they were there­
fore interested in extending the describing function approach to 
study the possibilities of the occurrence of these phenomena in 
control loops, particularly servomechanisms. It was realized that 
to do this the response of nonlinear elements to two harmonic 
inputs would need to be investigated. West et al. [28] called this 
the dual input describing function and examined the response of 
single-valued nonlinearities to inputs of thc form a sin8 + b sin 
(1l8 Hp), where Il was an odd integer. The resulting gains for the 
nonlinearity to the fundamental and nth harmonic arc functions 

of the three parameters a, b, and cp, as well as the chosen value 
of n. Analytical results are only easily found for simple non­
linearities such as a cubic so that to obtain results for saturation 
West et al. [28] had to use computational techniques. From their 
computations for the dual input describing function they were 
able to obtain conditions for the existence of subharmonic oscil­
lations and jump phenomena in saturating servomechanisms. 
The solution to the latter problem requires the dual input describ­
ing function for the special case of n = I, when it is usually 
referred to as the incremental describing function. It was also 
shown how the incremental describing function could be used to 
assess the stahility of a limit cycle [29]. 

Similar work was being done in the U.S. by Oldenburger [30], 
who concentrated primarily on the situation of a system with two 
unrelated sinusoidal inputs. In this case the dual input describing 
function for the nonlinearity depends upon the input amplitudes 
a and h only. He used his formulation to examine such effects as 
the introduction of dither into a system to quench a limit cycle 
and the possibilities for changing the behavior of a nonlinear 
system by the injection of anothcr signal. In problems involving 
dual input describing function methods it was often found that 
the accuracy of the approach was not as good as that for the single 
input case due to the increased distortion components present at 
the nonlinearity input caused hy cross modulation products. 

It was not surprising that after the considerable interest 
aroused in control problems involving random inputs during the 
19LOs by Wiener [31] that engineers should start to examine the 
problem of nonlinear systems with random inputs. The pioneer­
ing work was done by Booton [32], who used the lerrnel[uivalent 
gain for the nonlinearity describing function when the input was 
Gaussian. IIis approach was to approximate the nonlinearity by 
a linear gain, such that thc error bctween the nonlinearity output 
and that from the linear gain with the same random input applied 
to both was a minimum. He used minimization of the mean 
squared error as his criterion and obtained an "amplilude" de­
pendent gain, Keq, which is a function of thc root mean square 
value of the random input. Other contributions were made by 
Barrett and Coales [33] and West and Nikifomk [34]. It was soon 
realized, due to the properties of Fourier Series, that Booton's 
dcfinition of cquivalent gain was consistent with that of the 
sinusoidal DF, and it was later shown that the equivalent gain is 
not only the best gain but also the best linear filter approximation 
for a nonlinearity for sinusoidal or Gaussian inputs [35,36]. The 
approach was soon extended to Gaussian plus bias and multiple 
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sinusoidal and Gaussian inputs, with similar work being done in 

the U.K. [37], U.S. [381. and Japan [39]. Good coverage of 

describing function methods can be found in references [40] and 
[41]. 

Relay Systems 
During the late '40s and early '50s, relays were finding 

increasing application in control systems as a relatively cheap 

and reliable power amplifier. It was rcalized that, unlike other 
continuous nonlinear elements, the output from a relay, once it 
had switched, became independent of the input. This led to the 

development by Hamel in France [42] and Tsypkinin Russia [43] 
of techniques for the accurate evaluation of limit cycles in relay 
systems. Both started by assuming a periodic form for the relay 
output, with Hamel then working in the time domain and Tsypkin 
in the frequency domain to produce the same solution. For a relay 
with no dead zone, the resulting graphical approach to find any 
limit cycle from both methods, although the curves are labeled 

differently, is essentially the same. The Tsypkin approach is 

briefly reviewed for a system controlled by an on off relay with 

hysteresis, and the reader is referred elsewhere for more detailed 
infonnation [40, 41,44]. Consider the system of Fig. 6, where 

the relay output has the basic square wavefonn shown. The 

output can be expressed as the Fourier series 

() 
4h � 1 . 

Y t =- � -sm noot 
1t n=I(2) n (16) 

and correspondingly the plant output c(t) and its derivative c (t) 
are given by 

4h = 1 c(t)=-- L - IC(jnoo)lsin(noot+<Plz l 
rc n=I(2) n (17) 

(·(t) = 4hoo �: 2.IC(jnoo)lcos(noot+<Pn) 
Ie n=I(2) n (18) 

provided limHoosC(s) = 0, where <pn = LG(jnoo). T he analysis is 
possible [41] provided G(s) is proper but the aforementioned 

assumption is made here to simplify the presentation. 
For this output to be generated as assumed the relay input -c(t) 

must satisfy the conditions 

-c(O) = fl, - c(t) > 0 (19) 

By substituting into these conditions the expressions for c(O) 
and c (0) from Equations (17) and (18) it is easy to show that the 

necessary condition for a limit cycle becomes the locus A(oo), 
must satisfy the conditions. 

o 

Y:!i----f--r -----1--1 -+--1 " 
TI2 T

h 

Fig. 6. Relay system and relay output waveform. 

A(oo)=- 1 UG(noo)+ l..VG(nm) 4h [ = . ]  
1C n=1(2) n (21) 

Herc G(jOJ) = UG(OJ) + jVG(oo) and closed forms for thc 
summations are available for specific transfer functions G(jOJ). 
Solutions for any limit cyclc frequency can thcn be found by 

finding the intersections of A(m) = (1t/4h)A(OJ) and the relay DF 
on a Nyquist diagram as shown in Fig. 5 for the cxample given 
in the previous section. 

Since in the case considered the relay has no dead zone, only 
one nonlinear equation has to be solvcd to obtain thc solution for 
the limit cycle frequency. If, however, the relay has dead zone, 
the method yields two equations to solve for the two unknown 
parameters, namely the limit cycle frequency and the pulse 
width. These equations are only necessary conditions, so to 
ensure the solution is valid the relay input waveform must be 
evaluated to check that it does produce the relay output initially 
assumed, that is, there are no "false" switchings. It was also 
shown by Tsypkin that the stability of any predicted limit cycle 
can be determined exactly, which is a major advantage of this 
approach. The method was also extended to determine asymmet­
rical limit cycles in an autonomous system and the forced re­
sponse to a sinusoidal input, while in recent years several further 
extensions have been made. 

Hardware Technology 
It is appropriate to comment briefly on the hardware used in 

simulation and also that available for implementing control 
systems during the 1950s. Simulation studies of complex non­
linear systems were greatly affected by the time taken to set up 
the simulation , the slow speed of the simulation, and the reliabil­
ity of the hardware. Similarly, the hardware that was used to 
implement control systems was, by today's standards, bulky, 
heavy, noisy, and expensive, and limited the complexity of 
control algorithms that could be implemented within an allow­
able cost. 

Simulation 
ReA(oo) < U and ImA(oo) =-6 (20) As mentioned earlier, differential analyzers were built in the 

where 
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19308 to perform simulations, and these were succeeded in the 
wartime period by electronic simulators. Reference [45], by 
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Williams and Ritson, gives an excellent account on the status of 
the simulators toward the end of that period. The heart of the 
simulator was the vacuum tube DC amplifier, the forerunner of 
today's operational amplifier. Williams did a lot of work in this 
area during the wartime period and maintained close contact with 
the work done at MTT. He was a co-author of the volume Vacuum 
Tube Amplifiers published in the Radiation Laboratory series by 
McGraw-Hill. Compared to today's operational amplifiers they 
were significantly inferior in terms of size, reliahility, cost, power 
consumption, and accuracy. Typically the amplifiers were sup­

plied from ±300 volts DC and of course required 6.3 volts AC 
for the heaters. Because of drift problems, sophisticated tech­
niques of chopper stabilization had to be used in the amplifiers. 
especially when they were required to be used as integrators . 

To implement nonlinear functions was also extremely tedi­
ous. Early function generators used biased vacuum tube diode 
circuits to approximate specific characteristics by adjusting lhe 
break point and slope for the contribution from each individual 
diode. Even operations which we now take for granted, such as 
multiplication, were very difficult. Several forms of multiplier 
were available. blll the most popular one was probably the 
quarter squares tcehnique, that is. the product of xy was deter­
mined from (x + y)2 -(x - y)2. This required operational amplifiers 
to add and subtract signals, as well as square law characteristics 
which were normally again implemented using diode circuitry. 
Costs were also a problem; good simulators used chopper stabi­
lized DC amplifiers that, in today's valuation. would cost several 
thousand dollars. Put another way, a good operational amplifier 
cost more than my month's salary when I first started as an 
assistant lecturer, as so did a good multiplier. 

Simulation of process control problems invariably required a 
time delay. Before the days of hybrid computers, which appeared 
after the time considered in this presentation, time delays had to 
be approximated using sophisticated transfer functions, as, for 
example, given in the Pade table. Implementation of these. 
because of the cost of amplifiers and components, made them 
very expensive. Simulators were required by the government 
defens� agencies and industry, in particular, for studies of high­
speed flight of aircraft and guided missiles. Typical of one such 
installation was TRIDAC, a large analog computing machine 
[46] installed at the Royal Aircraft Establishment in the U.K. 
(The acronym stands for tridimensional analog computer.) The 
project took four years from its conception in 1950 to completion 
in 1954. The machine used electronic, mechanical, and hydraulic 
components, and was housed in it, own building. The power 
consumption was 600kW, of which 200kW was for the electronic 
components, which consisted of more than 8,000 vacuum tubes. 
It cost around £0.5 million, which, in today's terms. would be of 
the order of £20 million, and you can now handle the same 
problems better with a standard simulation language on a good 
Pc. Two pictures relating to TRIDAC are shown in Figs. 7 and 
8. The former shows the huge ploller used to provide graphical 
output being viewed by Princess Margaret at the official opening 
ceremony. The latter shows part of the control console. with an 
old Cossor oscilloscope clearly visible at the left-hand side. 

System Implementation 
The technology used in control system hardware was again 

far removed from today's situation. Vacuum tuhes were used for 
both operational amplifiers and power amplifiers, and apart 
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from requiring ±300 volts DC and 6.3 volt AC heaters, as 
mentioned previously, they were also bulky, unreliable, and 
expensive when compared to the situation today, and also not 
readil y usable in harsh environments. This meant that the imple­
mentation of quite simple active transfer functions for compen­
sators and filters was expensive, as was any algorithm which 
might be required to include a nonlinear function. 

Research, in fact, was carried out on synthesizing high-order 
transfer functions using complex networks around a single 
operational amplifier simply because at that time the opera­
tional amplifiers were much more expensive than resistors and 
capacitors, although low-loss capacitors were by no means 
inexpensive. Today, of course, the whole strategy is different, 
since operational amplifiers are now as cheap as the passive 
components. Power electronics was in its infancy and vacuum 
tube power amplifiers could not supply the types of powers that 
arc taken for granted these days. They wcrc typically used only 
to drive small motors; for larger motors, devices such as mer­
cury arc rectifiers, magnetic amplifiers, metadynes, and am­
plidynes wcre uscd. The technology, thereforc. was not 
available to implement sophisticated control algorithms, even 
in those cases where economic considerations did not enter into 
the equation.  

Publications 
It is possibly appropriate to renect on both the number of and 

topics covered by control engineering publications aroLlnd 1960 . 

Fig. 7 TRIDAC plolTing wbJr-. 

Fig. 8. TRIDAC operators' console. 
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As previously mentioned, the first publication of what has be­
come our Society was the May 1956 issue of the IRE PGAC. The 
volume contained seven papers in approximately 90 pages, and 
further issues followed in February 1957 and :\fareh 1958. Of 
the seven papers in the first issue, three dealt with nonlinear 
problems. Other English-language publications covering control 
engineering were the IEE proceedings, Parts A and C, the AIEE, 
the ASYIE, the LMech.E., and some covering process control and 
aerospace control. In total, these journals were publi shing around 
30 papers per annum on control engineering, of which, typically, 
around 30% dealt with nonlinear problems. 

The first WAC Congress was held in Moscow in 1960, and 
285 papers were presented. IFAC at the time had four official 
languages-English, French, German, and Russian-and there­
fore not all the conference papers are available in the proceedings 
of the Congress published by Butterworth's in 1963. This is 
probably not surprising if you have seen the results of the 
translation into Engli sh hy way of Russian of a paper first written 
in Italian! One of the volumes [47] published by Butterworths 
from material presentcd at the first IFAC Congress held in 
Moscow is entitled Theory of Nonlinear Control Systems and 
contains 14 papers. The first paper, entitled "Theory of Nonlinear 
Control," is a review paper by YH. Ku, which is primarily of 
interest for the quite extensive list of around 100 references. 
Unlike the current situation, it was common to publish discussion 
commcnts on papers at the time, and many of the papers included 
in this book have quite interesting discussion contributions. Of 
interest in the discussion to this first paper are the comments of 
M. Aizermann on the need for caution in using the describing 
function approach. The second paper, by E.P. Popov, discusses 
systems with relatively complex block diagrams containing one 
or two nonlinearities. The paper uses the approaches of harmonic 
and statistical1inearization in the analysis. The third paper is by 
V.M. Popov, who had recently published his now well-known 
stability criterion. The major contribution of the paper is in 
drawing atrention to the applications of this theorem. The next 
paper, by Shen, considers nonlinear compensation of servo­
mechanisms that have backlash. The work was done using the 
describing function approach, and an interesting contribution to 
this discussion is by Kochenburger who discusses the problem 
of modeling backlash. The next paper also uses the describing 
function method to discuss the effects of amplifier saturation in 
process control. Again using the describing function approach. 
the following paper by Kochenburgcr cxamines the effect of 
power source regulation on the response of a power amplifier in 
a feedback control system. The example is concerned with a 
hydraulic pump where the prime mover driving the pump cannot 
maintain a constant speed as the pump load is increased. 

The next paper, by Takahashi et aI., looks at the problem of 
process control when the valve controlling the process has a 
velocity limit. The analyzis is conducted using both the phase 
plane and describing function methods and the results compared. 
Goldfarb provides an interesting comment in the discussion 
regarding block diagram rearrangement which could be helpful 
when using the describing function approach. This is followed 
by a paper by Gille et aI., which is written in French and concerns 
investigations into forced oscillations in no nlinear systems. The 
work is concerned with a technique for deriving a rcgion in the 
complex plane which the Nyquist locus must not enter if a 
specific system is to have no jump phenomena in its frequency 

June 1996 

response. The results are similar to those given in Rcfcrcncc [28]. 
The paper by Macura deals with the linearization of nonlinear 
functions of more than one variable, and this is followed by a 
paper by Clauser that examines mUltiple frequency effects pri­
marily in nonlinear electric circuits. Forced oscillations and 
subharmonic resonances are considered. The paper on signal 
stabilization of self-oscillating systems by Oldenburger and 
Nakada discusses the same topic as Reference [30], namely the 
addition of another deterministic signal into a nonlinear system 
in order to change its response. Thc following paper, by West, 
entitled "Gain-Modulated Control Systems," examines how the 
performance of some systems can be changed by varying the gain 
of the loop signal according to some other system signal. This, 
of course, involves the use of multipliers in the system. TIle paper 
by Ferner examines an advantage of nsing nonlinear controllers 
for controlling linear plants, and the final paper looks at an 
interesting practical problem, namely, the control of plants 
whose response is direction dependent. Perhaps the most inter­
esting aspect about all these 14 papers is that a large number were 
concerned with practical problems of nonlinearity in specific 
systems, and some novel solutions were found even though the 
supporting analyzes were often only approximate. A few papers 
on nonlinear control also appeared in some of the other volumes 
published; for example, three papers on relay control were 
published in the volume on The Theory of Optimal Control. 

Reflections and Conclusions 
Although several methods have been developed for the study 

of nonlinear systems in the last three decades, they all have their 
limitations, and many problems remain unsolved. Perhaps the 
most important, and easily defined, one is that no necessary and 
sutIicient conditions have been found for the absolute stability 
of the feedback system Fig. 3 with a given nonlinearity and 
transfer function G(8). This, in principle, is a relatively simple 
problem when compared with, say, the design of a controller for 
a nonlinear plant to ensure that certain performance specifica­
tions are met, since this involves two nonlinear dynamic compo­
nents. Simple linear controllers such as PID or phase lead were 
developed historically not becanse they were the optimal solu­
tions to a problem but because they often provided satisfactory 
solutions at a reasonahle cost with the available technology. 
Today, with microprocessor controllers, the complexity of the 
control algorithm, whether linear or nonlinear, may have a 
relatively small effect on the system cost, so the opportunity 
exists to develop complex control algorithms. Without a general 
theory of nonlinear systems it is difficnlt to compare the relative 
merits of different solutions to a problem even when good 
specifications are defined for the requirements of the completed 
design, which is rare in academic papcrs. Pcrformance specifi­
cations for a nonlinear control problem may also be quite differ­
ent from the linear situation; for example, a major reqnirement 
could be that the process is controlled so that a particular mode 
of operation, say a limit cycle, does not exist, and other factors, 
such as speed of set point change, may be relatively unimportant. 
The "true" performance index for better control in industry, 
assuming it is safe and environmentally friendly, is improved 
economic benefits, which in many situations is difficult to relate 
to requirements of an analytical design. 

Perhaps this is a roundabout way of saying that nonlinear 
control problems tend to be unique and a variety of tools are 
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that they use sound physical principles and therefore can be 
useful even when used as approximations in revealing possible 
aspects of nonlinear behavior or the effect of changes in parame­
ters, so as to obtain a better understanding of the system behavior. 

This is particularly important with nonlinear systems, because 
although modern simulation facilities are excellent, checking the 

system behavior throughout the entire state space, which is 

necessary unlike the situation for a linear system, can be an 

exhaustive task. 
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