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Have you ever seen a birthday party balloon 
shaped as a bunny rabbit or a teddy bear or 
Mickey Mouse? Sure, you have. Did you know 
that Laplace’s law governs the mechanical be-
havior at every single point over their respec-
tive surfaces? Ha-ha-ha… a healthy laugh 
comes out, ‘cause it sounds like Alice’s little 
fancy joke! Imagine… His Honor, Le Marquis 
de Laplace, playing with puppets!

There are two beautiful laws contrib-
uting to the mechanisms associated 
with intraventricular pressure build-

up. Both are significant in cardiac physi-
ology. The first one is physiological, born 
around 1914 after a series of experiments 
were carried out in London by Ernest 
Henry Starling (1866–1927) and his col-
laborators, while the second one is physi-
cal, found in a monumental opera, La 
Mécanique Céleste, authored by the French 
mathematician and astronomer Pierre Si-
mon Laplace (1749–1827) and published 
in several volumes between 1790 and 
1825 [1], [2].

Here, we want to deal with the lat-
ter, first saying what it is all about, and 
thereafter briefly searching in the regu-
lar physiology textbooks for its apparent 
background and/or origin, and finally 
mentioning its applications to better un-
derstand some pathophysiological behav-
iors. Another note will tackle its math-
ematical derivations, for there are several, 
including their historical chronology that 
brings to light the question of who first 
really found the law, while a final note 

will discuss a few epistemological puz-
zling aspects. Altogether, Laplace’s law 
will be covered in three notes. Surely we 
can anticipate that Laplace was not the 
first who ever cared about the heart, ves-
sels, and bubbles. Somehow, someone 
in the middle credited him with the law, 
which, incidentally, is not usually taught 
in regular physics courses. The subject Le 
Marquis did study was surface tension of 
liquids contained in capillaries.

What Is Laplace’s Law?
The relationship is often and tradition-
ally found in physiology textbooks when 
referring to hollow organs such as the 
cardiac chambers, blood vessels, blad-
der, stomach, uterus, lungs, or the like. 
It states that the intracavitary pressure 
(Pic), more precisely the difference with 
the external pressure (which frequently is 
ignored as being constant and is usually 
equal to the atmospheric pressure), is di-
rectly proportional to the wall stress (Ws) 
and inversely proportional to the equiva-
lent radius (Req) or

 Pic5 k Ws h/Req (1)

where k is a constant and h is the wall 
thickness. Another convenient way of 
expressing it is by stating that the prod-
uct PicReq is proportional to the Wsh (wall 
stress and wall thickness) product. The 
equivalent radius is a concept trying to 
reduce any cavity shape into a sphere 
(quite a reduction, indeed, but models 
always simplify things out); hence, you 
as a reader must work out a procedure to 
do that and, obviously by and large, such 

a sphere has little in common with the 
original shape.

Another simpler form applies to spheri-
cal bubbles (typically, soap bubbles) with 
a wall of negligible thickness; in other 
words, it refers to a film under tension, the 
so-called surface tension (T), which is de-
fined as the tangential force (tangent to the 
surface) applied perpendicularly to a unit 
length segment lying on the surface. How-
ever, if we consider a membrane separat-
ing two spaces of any shape with tension in 
it (as the bunny rabbit balloon mentioned 
earlier), its curved surface can always be 
decomposed into many elements (kind of 
caps resembling a parachute), each defined 
by two mutually perpendicular circumfer-
ences of respective radii, R1 and R2, which 
are called the principal radii of curvature (be-
cause they define the curved surface ele-
ment) [3], [4]. Inside the balloon, the pres-
sure P (actually, the difference between 
the inside and outside pressure, which 
most frequently is the atmospheric pres-
sure, as stated earlier) is given by

 P5 T c 1

R1

1
1

R2
d  (2)

where T is the already mentioned surface 
tension in dynes/cm and R is the radii 
expressed in centimeters. It is easily seen 
that pressure is measured in dynes/cm2. 
However, (2) incorrectly assumes a uni-
form tension value all around the 360° 
of the studied point Q (Figure 1); more 
realistic is to consider tension T1 and T2, 
respectively, corresponding to each prin-
cipal curvature radius, i.e.,

 P5
T1

R1

1
T2

R2

 (3)

and we will stick to the latter from now on.
When both the radii and tension val-

ues are equal, we have a sphere (such as 
a bubble), and the equation simplifies to

 P5
2T

R
. (4)

Figure 1 graphically clarifies the concep-
tual framework from which the spherical 
and cylindrical cases are easily visualized 
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by stretching the parachute in the longi-
tudinal AB direction (to become a cylin-
der) or equalizing both AB and CD arcs 
(which is the case of a sphere). Also ob-
serve that the tension T2 along CD tends 
to zero as the radius R2 tends to infin-
ity, because the cavity is now a cylinder; 
hence, the equation becomes even sim-
pler, or P = T1/R1, which is precisely the 
case of a blood vessel.

Thus, if the latter equation for the sphere 
is compared with (1) by equating both the 
right-hand terms (because the pressures in-
side are the same), it comes out that

 k Ws  h5 2T  (5)

or

 Ws5
2T

kh
5

KT

h
5

KF

d.h
 , (6) 

clearly showing that wall stress is pro-
portional to the surface tension 
distributed over the wall thick-
ness. The constant K 5 2/k can 
eventually be equated to one, 
while d is the unit length over the 
surface to which the force F acts 
perpendicularly and tangentially 
to the same surface. Observe that 
the product d.h represents a small 
rectangular cross-sectional area 
over which a perpendicular force 
F is applied. It must be underlined 
that T is equal all around the sur-
face point Q only when the cavity 
is a sphere. Besides, a uniform dis-
tribution in depth can be assumed 
over the wall thickness, h, at each 
level; the latter situation, howev-
er, is not met in practice, as ten-
sion shows an increasing gradient 
from the inner to the outer layers.

Regarding Principal Radii: 
“At each point on a given two-
dimensional surface, there are 
two principal radii of curvature. 
The principal directions corre-
sponding to the principal radii 
of curvature are perpendicular 
to one another. In other words, 
the surface normal planes at 
the point and in the principal 
directions are perpendicular 
to one another, and both are 
 perpendicular to the surface 
tangent plane at the point.” 

The latter short paragraph is a quote 
from [4]. The radii fully characterize the 
curved surface element.

To complement (6): Wall stress is 
an extremely important concept in 
cardiology. Excessive stress causes 
injury to the cardiac tissue and 
the latter, in turn, may end up in 
lower contractility and consequent 
insufficiency. One clinical strategy 
aims at reducing wall stress, which 
acts as an internal load to the heart. 
Remember also, this is mechanical 
stress, not related to psychological 
stress; the former refers to a possible 
physical rupture while the latter 
may be interpreted as an emotional 
rupture risk (the so-called nervous 
breakdown). Nonetheless, the latter 
can lead to the former. Thus, be-
ware of the boss, spouse, or money 
issues! 

Where Does the Law Come from?
When one of these authors (Max E. 
Valentinuzzi) faced the law as a gradu-
ate student in the physiology courses, 
he tried to remember in which physics 
course he had seen it before as an engi-
neering undergraduate; however, there 
was no memory of it. His colleague (Al-
berto J. Kohen), an active physics lec-
turer in engineering, did not recall it 
either. We both consulted with a couple 
of physicists and checked several physi-
ology textbooks, and the results were 
disappointing. The physicists had no 
recollection, and the information found 
in the textbooks ranged from very poor 
(or even wrong) to right but incomplete 
or limited and far from being indisput-
ably convincing, both historically and 
mathematically speaking. Let us review 
a few, after browsing original copies 
resting in my (Max E. Valentinuzzi) per-

sonal library over a period from 
1914 to 1993.

The first mention was found in 
a Spanish translation of a rather old 
textbook published in 1926, which 
was used by Max E. Valentinuzzi’s 
father when a medical student in 
Buenos Aires back in 1928 (Gley 
[5]). Laplace and the Mécanique 
Céleste are briefly referred to but 
not in regard to any of the expres-
sions described herein. The author 
vaguely refers to the respiratory 
gas exchange studies that Laplace 
apparently carried out with the 
chemist Lavoisier. Neither the sec-
tion was devoted to the cardiovas-
cular system nor the thoracic cage 
or the lungs (seen as compliant 
cavities) recalls such law.

Almost 40 years later, a small 
but outstanding book by the fa-
mous Alan C. Burton presented 
the law as in (2), discussing and 
obtaining excellent and useful 
consequences applicable to cir-
culatory physiology. However, 
no lead was given regarding its 
mathematical background, and 
the concept of wall stress was 
lacking [6]. Close in time, the tra-
ditional 19th edition of Howell-
Fulton [7] textbook explicitly re-
fers to the law when dealing with 
vessels and the heart. It mentions 
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FIGURE 1 Parachute-like shape of a curved surface ele-
ment cut from a complex irregular volume (e.g., a bunny 
rabbit balloon). The membrane thickness is negligible. 
There are two segment osculating curves, AB and CD, 
each part of a circumference and perpendicular to each 
other at point Q. Their respective radii (called principal 
radii) are R1 and R2 with centers O1 and O2. At point Q, 
force F applied perpendicularly to the length element 
d pulls tangentially along CD. Another similar force (not 
shown) does the same along curve AB. F/d is defined as 
the surface tension in the CD direction, while the other 
force divided by the perpendicular unit length segment 
d defines the surface tension in the AB direction. In fact, 
the tangentially applied forces should be named F1 and 
F2, respectively, to be precise. In the case of a sphere, 
both surface tensions are equal. In the case of a long 
cylinder (CD becomes a straight line with infinite radius 
R2), surface tension is only radially defined, i.e., along 
the arc AB.
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other authors too, and quite interest-
ing numerical examples and illustrative 
graphs are given, but the mathematical 
expression is presented again in the sim-
plified and incorrect form of (2), with-
out any derivation [7]. Soon thereafter, 
we found that the textbook by David 
F. Horrobin [8]. Several times the law 
is mentioned along with its applica-
tions in cardiovascular, respiratory, and 
bladder physiology, but once more no 
good mathematics is given, and even a 
historical error shows up when Laplace 
appears as “having studied the relation-
ship between a vessel radius, tension in 
its wall, and the pressure across it.” No, 
to the best of our knowledge, he never 
did that. In turn, Mountcastle, in 1968, 
came out with another well-known 
textbook, where the law is barely and 
poorly referred to [9]. No other com-
ment appears as pertinent in it.

Skipping over a decade, we found 
two of the mostly used textbooks in 
medical schools—that of William F. Ga-
nong’s and Guyton’s [10], [11]; how-
ever, the information in them regard-
ing the said law is extremely poor. By 
the same token, the Spanish edition of 
a huge treatise by Lloyd H. Smith and 
Samuel O. Thier, barely and even al-
most as passing, mentions the law and 
the simple equation (2) form, adding 
also a few other minor comments [12]. 
Very meager in this respect is the discus-
sion offered by the traditional Best and 
Taylor in another Spanish edition based 
on Brobeck’s version [13]. In Argentina, 
the traditional Houssay’s physiology, in 
its 6th edition, gives a good discussion 
of all cardiac biomechanics based on 
the modern concepts of the pressure–
volume diagrams [14]. Laplace’s law is 
given in a simplified form, where two 
semispheres are the reference shapes 
when trying to pull them apart by the 
pressure P inside. Such pressure can be 
expressed as a force F over the sphere 
cross-sectional equator area, i.e.,

 P5 F/pR2, (7)

and the tendency to separate both halves 
apart must be counteracted by the surface 
tension T generated by the same force, but 
applied perpendicularly to the equator 
circumference, i.e.,

 T5 F/2pR. (8)

Solving the two equations above for 
F and equating both results produces 
PpR25 T2pR, from which P5 2T/R is 
easily obtained, identical to (4). However, 
although its mathematics and physics are 
correct, they are restricted in reach, lack-
ing generality.

To finish this quick tour along time 
through several common textbooks, let 
us go back to 1914, almost a 100 years 
ago, to browse Leonard Landois’ Span-
ish version of his physiology treatise [15]. 
It does not mention the law. Thus, the 
conclusion is that Laplace’s law has been 
referred to frequently but poorly in the 
regular physiology textbooks, and even 
errors are detected. No good and convinc-
ing mathematical derivation is given, and 
no clue seems to be found regarding its 
first inclusion in physiology—indeed dis-
appointing.

Thereafter, we established a search in 
the regular and more specialized scien-
tific physiology literature, where better and 
more detailed information could be found.

The first application of this law in 
physiology we could find, and to the best 
of our knowledge, was that of Robert H. 
Woods [16], in Dublin, Ireland, back in 
1892. In fact, later on, this author pub-
lished a letter seriously questioning some 
concepts previously made public by Sam-
ways [17]. Let us reproduce almost verba-
tim that letter because it is enlightening 
indeed. It indicates two sources for the 
same article, while it clearly shows that 
a complete understanding of the subject 
had not been yet reached. The equation 
given seems to include the factor t for 
both thickness and wall stress, although 
the author only mentions the former, 
and the equation is not fully correct, as 
already explained earlier.

In the British Medical Journal of 23 
January  1897, there appears an ar-
ticle by Dr. D.W. Samways, in which 
he details a series of experiments 
with two bags of different capacities 
distended under the same pressure, 
and applies the conclusions drawn to 
the working heart. In the year 1892, 
I read before the Royal Academy of 
Medicine, in Ireland, and published 
both in its Transactions and in the 
Journal of Anatomy and Physiology [16], 

a paper on A Few Applications of a 
Physical Theorem to Membranes in the 
Human Body in a State of Tension, a 
copy of which I now enclose, where 
the same experiment was described 
in the same connection, with this 
difference, that my paper treats the 
subject mathematically. Both Dr. 
Samways and I have shown that a 
small contracting sac has a mechan-
ical advantage over a large one, but 
he pushes the matter to an absurdity 
when he contends that the left au-
ricle by its contraction sends blood 
into the contracting ventricle. There 
are no valves between the auricle 
and the lungs, and therefore raising 
the intraauricular pressure during 
contraction of the ventricle could 
only result in the blood following 
the path of least resistance, name-
ly, back into the pulmonary veins. 
To add another reason may seem 
“wasteful and ridiculous excess,” 
but it will be found that the mean 
radius of curvature of the contracted 
auricle is nothing like small enough 
to enable it to raise the pressure of 
its contents to anything approach-
ing that of the ventricle when the 
relative thicknesses of the walls are 
taken into account. By taking the 
formula given in my paper (p. 367), 

 P5 t 11/r11 1/r 2 ,
where P is the pressure of blood, 
t the thickness of the wall at any 
point, and r1 and r, the maximum 
and minimum radii of curvature at 
that point, and applying it to the con-
tracted auricle and dilated ventricle 
in question, its value will be found to 
be greater for the ventricle than for 
the auricle. 

Robert H. Woods, M.B., F.R.C.S. 
(Dublin, 30 January) 

Máximo Valentinuzzi, Sr., retook the 
subject many years later in regard to the 
human uterus, having carried out mul-
tiple experiments in vitro and in bal-
loon models [18], [19]. For historical 
reasons, he called it as Barrau–de Snoo’s 
law, instead of Laplace’s law, since Karl 
de Snoo, in Utrecht, The Netherlands, 
had also studied the laboring uterus in 
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The Netherlands in 1936, while Barrau, 
a mathematician, verified and apparent-
ly simplified the calculations [20]. These 
latter authors stated the law by saying 
that “tension on a given surface point 
of the uterus equals the product of the 
intrauterine pressure and the curvature 
radius at that point,” which is similar to 
the statement given earlier after (1) but 
simpler; however, they did not seem to 
have recognized Laplace’s long-standing 
priority. Nonetheless, first, de Snoo and 
afterward Valentinuzzi repeating it, a 
geometrical and ingenious demonstra-
tion was offered [18]–[20]. It will be de-
veloped in the second note of this sub-
ject when dealing with its mathematical 
foundations.

In a short communication, Martin 
and Haines [21], from the University of 
Oklahoma, performed an experimental 
study of the left ventricular thickness 
and radii in calf, dog, rabbit, guinea pig, 
hog, and rat with the purpose of check-
ing how well the numerical values fol-
lowed Laplace’s surface tension law. As-
suming blood pressure to be constant (= 
C), they rearranged the equation as in 
(2), but replacing T by t and defining the 
latter as ventricular thickness, i.e., quite 
similar to what Woods presented in 1892 
[17]. Their results gave an average C of 
0.737 with a coefficient of variation of 
22%, whereas the heart weight varied 
767 times. No units are given. Thus, this 
article does not add any significant infor-
mation to our search.

Another experimental set of measure-
ments was run by Valentinuzzi et al. in 
1987 [22]. Burton’s predictions were 
found to be correct, i.e., the left ventric-
ular wall is thicker around the middle 
region and toward the base. However, it 
was also found that the law held only for 
hearts in systole and when the papillary 
muscles were included as part of the wall 

thickness. The study included canine, 
cow, chicken, and human hearts.

Concluding the second part of this 
section, the specialized literature displays 
a good deal of experimental tests, and a 
mathematical demonstration was located 
(which is left for our second note dealing 
with Laplace’s law). Probably, there are 
more reports testing it experimentally, 
but we think it would not add anything 
of significance.

How Can the Law Be Applied 
in Pathophysiology?
The simplified version of the law, as in (4) 
for a sphere or as in its cylindrical version, 
is good enough to make qualitative predic-
tions giving the basis for the many good 
physiological discussions found in the text-
books. Let us go back first to our birthday 
balloon; when air is blown in, a certain 
volume needs to build up before a pres-
sure gauge would detect a small pressure 
value, in turn developing some counteract-
ing surface tension. As more air gets in, the 
pressure inside increases, and the surface 
tension also increases. When the balloon 
becomes too big, simple finger touching sig-
nals a large surface tension and, therefore, a 
possible rupture risk. All these phenomena 
are static in nature.

William Ganong in his well-used 
textbook [10], or in earlier editions such 
as the 7th edition of 1975, explains the 
case of a blood vessel using the equation 
P = T1/R1 (see above): the smaller the 
vessel’s radius, the smaller the wall ten-
sion to balance the distending pressure. 
Moreover, when pressure in a small ves-
sel is reduced, a point is reached where 
blood flow becomes zero, although the 
pressure is not zero. The latter is called 
critical closing pressure (see previous para-
graph when a balloon is inflated and 
compare both statements, as the latter 
phenomenon describes its counterpart). 

Also notice that surface tension (in a 
thin film) appears as loosely and con-
fusedly mixed with the concept of wall 
stress (where thickness plays a role). 
A few numerical values illustrate this 
 (given in the table below).

An aneurysm (literally meaning wid-
ening, from Greek) is a sac formed by 
the dilatation of the walls of an artery 
or vein. The elastic properties change 
dramatically so that the walls become 
more compliant and, thus, mechanically 
weaker. Since surface tension in a cylin-
der appears only tangentially and along 
the circumferential cross section, as the 
vessel weakens, a dissecting aneurysm 
(wall rupture) only occurs longitudi-
nally, because the pull is perpendicular 
to the vessel direction. The law predicts 
such behavior, and clinical practice dem-
onstrates it.

Consider now any of the cardiac 
chambers, say the left ventricle. A dilated 
heart shows a larger equivalent radius, 
while its wall becomes thinner than nor-
mal. Thus, the myocardium must devel-
op a greater tension during contraction 
to sustain the required pressure, and in 
the end, poor ejection of blood may oc-
cur. Conversely, if hypertrophy takes 
place (say because of hypertension or 
excess physical training), the ventricular 
wall gets thicker, partially compensating 
for the necessary increase in wall stress. 
We do not enter into the etiology of these 
cardiac pathologies; we underline only 
the law that explains the behavior.

Another example: anatomical obser-
vations in normal ventricles showed that 
the radius at the basal region is larger 
than at the apical zone, thus approximat-
ing the left ventricle with two superim-
posed spheres, an upper and a lower one, 
as Valentinuzzi et al. did [22]. Since the 
pressure inside is the same, Laplace’s law 
clearly explains why the wall is thicker 
in the former than in the latter. Besides, 
the right ventricle develops a much lower 
pressure than the left, and as a conse-
quence, its wall is thinner.

The law also finds a place in respira-
tory physiology. Alveolar surface tension 
is controlled by a substance called surfac-
tant, and T is inversely proportional to 
its concentration. Surfactant molecules 
are spread apart as alveolar size increas-
es during inspiration  (concentration 

Vessel P (mmHg) (dyn/cm2) R (cm) PR 5 T (dyn/cm) Wall thickness, h (mm)
Aorta 120 200,000 C

160,000 1.25 170,00 G 2.00

Vena cava 8 16,500 C

11,000 1.50 21,000 G 1.50

1 mmHg 5 1,333 dyn/cm2. The fourth column was calculated with the simplest equation (2) in its cylindrical 
form for vessels. For the aorta, we have taken the systolic pressure; for the vena cava, 8 mmHg was accepted. 
Check the figures of this table with others reported in the literature (as a little exercise). C means computed 
with PR 5 T; G means data from Ganong’s textbook. 
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gets down) and move closer together at 
expiration (concentration goes up), thus 
adjusting T during breathing. Were this 
not the case, the alveoli would collapse 
at expiration because of the too high 
surface tension. Another interesting and 
significant phenomenon is that a small 
alveolus connected to a larger one emp-
ties its air content in the latter, simply 
because its surface tension surpasses 
that of the bigger alveolus. Atelectasis 
and hyaline membrane are the two clas-
sical examples to illustrate the impor-
tance of alveolar surface tension in the 
respiratory act, both directly linked to 
Laplace’s law.

Micturition is a physiological function 
usually studied by cystometry, which re-
lates intravesical volume with intravesical 
pressure; hence, a nice situation to look 
at through the law. A normal cystometry 
shows a middle long flat portion indicat-
ing volume increase due to vesical fill-
ing but constant pressure, because the 
 radius of the cavity increases with surface 
 tension, thus compensating for the en-
largement. The micturition reflex is trig-
gered at a critical high volume and sur-
face tension.

The pregnant uterus appears as anoth-
er example where the law is very handy. 
It shows a behavior similar to that of the 
bladder because surface, or better, wall 
stress accommodates to the slowly in-
creasing volume [18]–[20].

Conclusions
We have presented the law as is cur-
rently found in the regular physiology 
literature and recognize certain flaws 
that seem to project from decade to 
decade. Its mathematical derivation is 
specifically never given and even one 
equation often cited is incorrect, as it 
assumes the same surface tension on 
both principal circumferences charac-
terizing the curved surface element. A 
couple of publications in this respect by 
de Snoo and by Valentinuzzi, Sr. seem 
to be an exception. Its historical origin 
appears confusing at best, and proper 
definition of the important concept of 
wall stress is usually not clearly given. 
The next note on the subject will offer 
the several demonstrations we have 
found, which simultaneously indicate 
a historical enlightening chronology.

Pierre Simon de Laplace: A noble-
man carrying the title of Marquis was 
born at Beaumont-en-Auge, France, in 
1749, and died in Paris, in 1827. The so-
lar system for him originated in a rotating 
nebulous formation. He heavily contrib-
uted to probability theory. The Laplacian 
operator,

D5=25
'2

'x2 1
'2

'y2 1
'2

'z2,

also called nabla squared, remembers 
him. The celestial mechanics (La Mé-
canique Céleste) mentioned earlier was, 
without doubt, his opera magna writ-
ten over a long span of time. In it, sev-
eral subjects were dealt with, going 
well beyond the field of astronomy. 
Its reading is rather difficult, because 
the author was not a didactic writer 
or too clear in his style. In theoretical 
physics, the theory of capillary attrac-
tion is due to Laplace, who accepted 
the idea that the phenomenon was 
due to a force of attraction. The part 
that deals with the action of a solid 
on a liquid and the mutual action of 
two liquids was ultimately completed 
by Gauss. In 1862, Lord Kelvin (Sir 
William Thomson) showed that if we 
assume the molecular constitution of 
matter, the laws of capillary attraction 
can be deduced from the Newtonian 
law of gravitation.

Laplace was vain and selfish, a fact 
not denied even by his warmest ad-
mirers; his conduct to the benefactors 
of his youth and his political friends 
was ungrateful and contemptible, 
while his  appropriation of the results 
of those who were comparatively un-
known seems to be well established. 
Of those whom he treated, three rose 
to distinction (Legendre and Fourier, 
in France, and Young, in England). It 
should also be added that toward the 
close of his life, and especially to the 
work of his pupils, Laplace was both 
generous and appreciative [2].

Antoine Laurent de Lavoisier 
(1743–1794), founder of modern chem-
istry, tragically ended his life in the guil-
lotine during the terror period of the 
French Revolution.

Leonard Landois was a German 
physiologist (1837–1902) who pro-
duced the first faithful blood pressure 

record by just letting an arterial blood 
jet to sprinkle the surface of a rotat-
ing drum. Its dicrotic notch was clearly 
 depicted.
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