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Capacity Bounds in Random Wireless Networks
Alireza Babaei, Prathima Agrawal, and Bijan Jabbari

Abstract: We consider a receiving node, located at the origin, and
a Poisson point process (PPP) that models the locations of the de-
sired transmitter as well as the interferers. Interference is known
to be non-Gaussian in this scenario. The capacity bounds for addi-
tive non-Gaussian channels depend not only on the power of inter-
ference (i.e., up to second order statistics) but also on its entropy
power which is influenced by higher order statistics as well. There-
fore, a complete statistical characterization of interference is re-
quired to obtain the capacity bounds. While the statistics of sum
of signal and interference is known in closed form, the statistics of
interference highly depends on the location of the desired transmit-
ter. In this paper, we show that there is a tradeoff between entropy
power of interference on the one hand and signal and interference
power on the other hand which have conflicting effects on the chan-
nel capacity. We obtain closed form results for the cumulants of
the interference, when the desired transmitter node is an arbitrary
neighbor of the receiver. We show that to find the cumulants, joint
statistics of distances in the PPP will be required which we obtain
in closed form. Using the cumulants, we approximate the interfer-
ence entropy power and obtain bounds on the capacity of the chan-
nel between an arbitrary transmitter and the receiver. Our results
provide insight and shed light on the capacity of links in a Pois-
son network. In particular, we show that, in a Poisson network, the
closest hop is not necessarily the highest capacity link.

Index Terms: Capacity, interference, Poisson point process (PPP).

I. INTRODUCTION

The exact distribution of network self-interference, i.e., the
interference originated from the set of nodes simultaneously
transmitting with the desired transmitter, is not generally known
in random networks. However, assuming that the receiver is sub-
ject to a Poisson field of interferers, characteristic function and
cumulants of interference power have been found in [1]–[3].

For capacity analysis in a random Poisson network, two sim-
plifying assumptions are usually made. First, interference is as-
sumed to have a Gaussian distribution (e.g., [4], [5]). This as-
sumption renders Shannon capacity result for additive white
Gaussian noise (AWGN) channels applicable. The interference,
however, is known to be non-Gaussian in a Poisson network [6].
Second, the Poisson point process (PPP) is assumed to model
the interferers while the desired transmitter is assumed to be de-
tached and its distance to the receiver to be deterministic [4].
This assumption simplifies the calculation of signal and inter-
ference statistics. In a more realistic scenario, the desired trans-
mitter belongs to the PPP that models the locations of nodes
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in the wireless network. This leads to a more involved problem
which is to obtain the statistics of interference when the receiver
is subject to a Poisson field comprising of the desired transmitter
as well as the interferers. Since the desired transmitter does not
contribute to the interference, interference comes from a PPP
with one point eliminated.

The Shannon capacity in Poisson wireless networks has been
considered in [5]. The author makes the assumption that nodes
transmit independent information flows and that every flow is
impacted by other flows as if they were Gaussian noise. Based
on this assumption, the author makes use of AWGN channel ca-
pacity. In their seminal work, Gupta and Kumar consider the
transport capacity of wireless network by considering a proto-
col model and a physical model for successful reception over a
hop [7]. Recently, the distribution of interference has been con-
sidered in capacity analysis. In [8], considering an ultra wide-
band (UWB) scenario, in which multiuser interference (MUI)
is known to be non-Gaussian, it has been shown that by using
higher order statistics of interference and designing receivers
which are adapted to the non-Gaussian interference, capacity
can improve dramatically. In [9], a generalized Gaussian model
is used for interference originated from secondary network in
a cognitive wireless network. Power control is used to shape
the statistics of interference and to improve the capacity of a
primary link. Shannon’s capacity bound for the general addi-
tive channels can be used to explain the improvement in ca-
pacity when statistics of interference, higher than the second
order, are considered. For a general additive channel, with the
receiver output y[n] = x[n] + z[n], where z[n] is the additive
noise/interference, we have

W log2

(
1 +

Pr

N∗

)
≤ C ≤W log2

(
N

N∗ +
Pr

N∗

)
(1)

where C is the channel capacity, W is the channel bandwidth,
Pr is the signal power, N∗ is the noise/interference entropy
power, and N is the noise/interference power [9]. We consider
an interference-limited case, where noise can be ignored com-
pared to the interference. For a general distribution of interfer-
ence, we have N ≤ N∗. For fixed interference power, both of
upper and lower bounds of capacity, therefore, decrease with the
interference entropy power. For the Gaussian distributed inter-
ference, as a result of its maximum entropy property, capacity
takes the minimum value and the bounds degenerate to equal-
ity1. We can see that, for a fixed interference power, Gaussian
distributed interference is the worst case from capacity perspec-
tive whereas non-Gaussian interference can be advantageous to
the link capacity.

The previous work for statistical characterization of interfer-
ence focus on interference power (e.g., [1]–[3]). However, to
obtain results for channel capacity, we need to characterize in-

1For the Gaussian case, we have N = N∗ and C = W log2 (1 + Pr/N).
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Fig. 1. System model (Rm is the distance between mth nearest trans-
mitter and receiver and R0 is the radius of the prohibited region).

terference amplitude. In this paper, we consider a Poisson field
consisting of the desired transmitter and the interferers and ob-
tain the cumulants of interference amplitude. We then show that
the main reason for non-Gaussianity of interference is the inter-
ference originated from nodes which are in close proximity to
the receiver2. We can therefore see that if the desired transmit-
ter has a closer distance to the receiver,
• The received signal is stronger,
• The network self-interference power is smaller, and
• Intuitively, the network self-interference is closer to Gaussian.
This is because the considered node being the desired trans-
mitter and not an interferer, excludes a major source of non-
Gaussianity from the set of interferers.

These factors have conflicting effects on the channel capacity.
While the first two results lead to higher channel capacity, inter-
ference closer to Gaussian means higher entropy power of inter-
ference which in turn has an inverse effect on channel capacity
(see the upper and lower bounds in (1)). One consequence is that
the closest hop may not be the highest capacity link. The aim of
this paper is to verify this intuition using quantitative analysis
and obtain analytical results on link capacities in Poisson ran-
dom networks.

II. SIGNAL AND INTERFERENCE STATISTICS

We consider a two-dimensional PPP with density λ that mod-
els the locations of the desired transmitter and the interfer-
ers and assume that the receiver is located at the origin (see
Fig. 1). The desired transmitter and the interferers use the same
power level P . Assuming that the desired transmitter is the
mth nearest neighbor to receiver, the aggregate of signal and
interference amplitudes is Z = Xm + Im, where Xm is the
received signal amplitude and Im is the received interference
amplitude. We denote the distance between the receiver and
its mth nearest transmitter as Rm (see Fig. 1). The baseband
model for the received signal from the mth nearest transmitter
is (

√
Pam/R

α/2
m )ζme

jφm , where ζm is Rayleigh fading com-

2This has been shown to be the case for interference power in [3] and [10].

ponent with E{ζ2m} = 1, α/2 is the amplitude loss exponent3,
φm is a random phase shift uniformly distributed in [0, 2π], and
am is the complex-valued information symbol. Without loss of
generality, we assume P = 1. Moreover, we can safely assume
that ζm, Rm, and φm are independent. In order to characterize
the signal and the interference, both in-phase and quadrature-
phase components, need to be considered. In [11], the authors
find the joint characteristic function of in-phase and quadrature-
phase components of interference from finite-area as well as
infinite-area Poisson field of interferers4. In this paper, we con-
sider a binary phase shift keying (BPSK) modulation with real-
valued equiprobable symbols am ∈ {−1, 1} and therefore, only
focus on the in-phase component. The analysis for a general
constellation entails characterizing the quadrature-phase com-
ponent as well which can be done using exactly the same ap-
proach5. With this assumption, and defining Um = cos(φm),
we have Xm = ζmUmam/R

α/2
m , Z =

∑
i ζiUiai/R

α/2
i , and

Im =
∑

i�=m ζiUiai/R
α/2
i . Given that φm is uniformly dis-

tributed in [0, 2π] and using transformation of random variables,
the probability density function (pdf) of Um [12] can be found
as

fUm(u) =
1

π
√
1− u2

, −1 < u < 1. (2)

In order to avoid the singularity in the path loss model for
small distances, we consider a prohibited region around the re-
ceiver and assume that a node cannot transmit if its distance to
the receiver is less than R0 (see Fig. 1). In this section, we seek
to obtain the statistics of Z , Xm, and Im.

A. Cumulants of Sum of Signal and Interference

By using the Campbell’s Theorem (see Appendix A), the nth
cumulants of Z =

∑
i ζiUiai/R

α/2
i can be found as

κn(Z) = 2πλE{ani }

·
∫ 1

−1

∫ ∞

0

∫ ∞

R0

(
ζu

r
α
2

)n

r drfζ(x) dxfU (u) du

=

⎧⎨
⎩

2πλμnE{ζn}
nα
2 − 2

R
2−nα

2
0 , even n

0, odd n

which holds for 2− nα/2 < 06 and is found using

E{ani } =

{
1, even n
0, odd n.

Using (2), we have

μn = E{Un
i } =

∫ 1

−1

un du

π
√
1− u2

=
((−1)n + 1)Γ(n+1

2 )√
πnΓ

(
n
2

)
where Γ(·) denotes the gamma function7.

3α is the power loss exponent and its range of values is between 2 and 6
depending on the propagation conditions.

4In this paper, unlike [11], the PPP models the locations of both the desired
transmitter and the interferers.

5Note that the capacity bounds in (1) can still be used with BPSK assumption
as the bounds are concerned with the interference statistics and not the type of
modulation that interferers use.

6Note that κ1(Z) = 0 and the condition 2− nα/2 < 0 holds for n ≥ 2 and
α > 2.

7We have used Wolfram Alpha [13] to find this integral.
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B. Cumulants of Signal

We assume that the desired transmitter is the mth nearest
neighbor to receiver. In order to find the cumulants of signal
amplitude (i.e., Xm = ζmR

−α/2
m Umam), we first find its mo-

ments. Due to independence assumption of ζm, Rm, Um, and
am, we have

E{Xn
m} = E{ζnm}E{R−nα

2
m }E{Un

m}E{anm}.
For Rayleigh fading with E{ζ2m} = 1, we have E{ζnm} =
Γ(1 + n

2 ), and E{Un
m} and E{anm} are found in the previous

section. For a given n and α and depending on the value of
n, closed-form and approximation results are found in [14] and
[15] forE{R−nα/2

m }. Using these results,E{Xn
m} can be found

in closed-form. To obtain the cumulants of Xm, we note that
the cumulants and the moments of a random variable can be
uniquely determined from one another. In particular, we have
κ1(Xm) = E{Xm} and for n ≥ 2 [16],

κn(Xm) = E{Xn
m} −

n−1∑
k=1

(
n− 1

k − 1

)
κn−1(Xm)E{Xn−k

m }.

C. Cumulants of Interference

In this section, we seek to find the cumulants of interfer-
ence given that the transmitter is the mth nearest neighbor to
the receiver, i.e., κn(Im) for Im = Z − Xm. Since the dis-
tances, i.e., the random variables {Ri}, are not independent,

Xm = ζmR
−α/2
m Umam and Im =

∑
i�=m ζiUiai/R

α/2
i also

are not independent and κn(I −m) �= κn(Z)− κn(Xm).
We use the following relationship fornth cumulant ofZ−Xm

[16]:

κn(Z −Xm) =
n∑

j=0

(
n

j

)
(−1)n−jκ(Z,Z, · · ·︸ ︷︷ ︸

j

, Xm, Xm, · · ·︸ ︷︷ ︸
n−j

)

where κ(Z,Z, · · ·︸ ︷︷ ︸
j

, Xm, Xm, · · ·︸ ︷︷ ︸
n−j

) indicates joint cumulants. We

can therefore write

κn(Im) = κn(Z −Xm)

= κn(Z) + (−1)nκn(Xm)

+

n−1∑
j=1

(
n

j

)
(−1)n−jκ(Z,Z, · · ·︸ ︷︷ ︸

j

, Xm, Xm, · · ·︸ ︷︷ ︸
n−j

).

(3)

For example, for n = 2, we have

κ2(Im) = κ2(Z) + κ2(Xm)− 2κ(Z,Xm)

and κ(Z,Xm) = E{ZXm}−E{Z}E{Xm}. Therefore, to ob-
tain the joint cumulants, we might need to have the joint statis-
tics of Z and Xm. For the case of κ2(Im), however, there is no
need for joint statistics, as

E{ZXm} = E

⎧⎨
⎩Xm(Xm +

∑
i�=m

Xi)

⎫⎬
⎭

= E{X2
m}+

∑
i�=m

E{XmXi}

= E{X2
m}. (4)

This result is found by noting that for i �= m, we have

E{XmXi} = E{am}E{ζm}E{Um}E{ai}E{ζi}E{Ui}
· E{R−α

2
m R

−α
2

i }
= 0

as E{Ui} = 0 and E{ai} = 0. In the Appendix B, we find
κ3(Im) = 0. To find higher order cumulants, however, joint
statistics of distances will be required.

D. Joint Statistics of Distances in a Poisson Point Process

It is known that if nodes are distributed according to a two-
dimensional PPP with density λ, the squared ordered distances
from the receiver have the same distribution as the arrival times
of a one-dimensional PPP with density λπ [17], [18]. Conse-
quently, for any set of indices {l1, l2, · · ·, ln} where l1 < l2 <
· · · < ln, the joint pdf fR2

l1
,R2

l2
,···,R2

ln
(x1, x2, · · ·, xn) can be

found as follows:

fR2
l1
,R2

l2
,···,R2

ln
(x1, x2, · · ·, xn)

= fR2
l1
,R2

l2
−R2

l1
,···,R2

ln
−R2

ln−1

(x1, x2 − x1, · · ·, xn − xn−1)

=
(λπ)ln

Γ(l1)Γ(l2 − l1)· · ·Γ(ln − ln−1)

· xl1−1
1 (x2 − x1)

l2−l1−1· · ·(xn − xn−1)
ln−ln−1−1e−λπxn ,

0 ≤ x1 ≤ x2 ≤ · · · ≤ xn

which is found using the fact that R2
l1

and R2
li
− R2

li−1
, i > 2

are independent Erlang random variables with rate parameterλπ
and shape parameters l1 and li − li−1, respectively8. Using this

joint pdf, we find E
{
Rβ

l1
Rβ

l2
· · ·Rβ

ln

}
.

Proposition 1: We have

E
{
Rβ

l1
Rβ

l2
· · ·Rβ

ln

}

=

∫ ∞

0

∫ xn

0

· · ·
∫ x2

0

x
β
2
1 x

β
2
2 · · ·x

β
2
n

· fR2
l1
,R2

l2
,···R2

ln
(x1, x2, · · ·, xn) dx1 · · · dxn

=
1

(λπ)n
β
2

n∏
k=1

Γ(lk + k β
2 )

Γ(lk + (k − 1)β2 )
. (5)

Proof: See Appendix C. �

III. ENTROPY AND ENTROPY POWER OF
INTERFERENCE

In this section, we seek to find N∗(Im), the entropy power of
interference. The entropy power is related to the entropy, h(Im),

8In a one-dimensional Poisson process with density λπ, the inter-arrival times
are independent and identically distributed (i.i.d.) exponential random variables
with mean 1/λπ and sums of inter-arrival times are Erlang distributed. Particu-
larly, R2

l1
is the sum of l1 i.i.d. exponential random variables with mean 1/λπ

and R2
li

− R2
i−1 is sum of li − li−1 i.i.d. exponential random variables with

mean 1/λπ [15].
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through [19]

N∗(Im) =
1

2πe
exp (2h(Im)) . (6)

In the following, we use the Gram-Charlier expansion to ap-
proximate pdf of Im. We then approximate its entropy. First, we
introduce the normalized random variable Ĩm with zero mean
and unit variance as

Ĩm =
Im − κ1(Im)√

κ2(Im)
. (7)

From Gram-Charlier series expansion and by considering the
first three terms, we have

fĨm(x) ≈ φ(x)

[
1 + κ3(Ĩm)

H3(x)

3!
+ κ4(Ĩm)

H4(x)

4!

]

where Hi(x) is the ith order Chebyshev-Hermite polynomial,
φ(x) is the pdf of standardized Gaussian distribution (i.e., with
zero mean and unit variance), and using (7), we have

κn(Ĩm) =
κn(Im)

κ
n/2
2 (Im)

, n ≥ 2.

The entropy of Ĩm is by definition

h(Ĩm) =

∫
fĨm(x) log(fĨm(x)) dx.

Using the orthogonality of {Hi(x)}, and after some mathemat-
ical manipulation, we can show that

h(Ĩm) ≈ 0.5 ln(2πe)− κ23(Ĩm)

2× 3!
− κ24(Ĩm)

2× 4!
(8)

where 0.5 ln(2πe) is the entropy of standardized Gaussian dis-
tribution [20]. Also, from (7) and (8),

h(Im) = 0.5 ln(κ2(Im)) + h(Ĩm)

= 0.5 ln(2πeκ2(Im))− κ23(Im)

12κ32(Im)
− κ24(Im)

48κ42(Im)
. (9)

The entropy of interference, therefore, depends on its skewness
(i.e., κ3(Im)/κ

3/2
2 (Im)) and kurtosis (i.e., κ4(Im)/κ22(Im)) as

well as its variance (i.e., κ2(Im) ). In the appendix, we show that
κ3(Im) = 0 and therefore, the skewness of Im is zero. Using (6)
and (9), we have

N∗(Im) =
κ2(Im)

exp

(
kurt2(Im)

24

) (10)

where kurt(Im) indicates the kurtosis of Im. As expected, for
the case that Im is Gaussian, we have kurt(Im) = 0 and
N∗(Im) = κ(Im). This corresponds to the highest value that
N∗(Im) can attain. On the other hand, the higher the kurt(Im),
the smaller N∗(Im) is. Note that by considering higher order
cumulants in the Gram-Charlier approximation for pdf of Im,
N∗(Im) will depend on higher order cumulants as well. How-
ever, simulation results confirm that characterization of inter-
ference up to fourth order provides a good approximation for
interference statistics.

IV. CAPACITY BOUND

Given that the desired transmitter is the mth nearest neighbor
to the receiver, the capacity bound in (1) can be written as

W log2

(
1 +

X2
m

N∗(Im)

)
< C < W log2

(
κ2(Im) +X2

m

N∗(Im)

)

whereX2
m is the signal power. Let us denote the lower and upper

bound of capacity as Cl and Cu, respectively. For the additive
Gaussian channel, we have N∗(Im) = κ2(Im) and the bound
degenerates to equality (i.e., C = W log2

(
1 +X2

m/κ2(Im)
)
).

Note that Xm is a random variable. To obtain meaningful deter-
ministic values, one approach is to average the lower and upper
bounds to find the ergodic capacity bounds (i.e., C̄l = E{Cl}
and C̄u = E{Cu}). This requires the pdf of Xm. In our ap-
proach, we consider an equivalent deterministic channel for the
link between the desired transmitter and the receiver with the
received power equal to E{X2

m} and define

Ĉl =W log2

(
1 +

E{X2
m}

N∗(Im)

)
, (11)

Ĉu =W log2

(
κ2(Im) + E{X2

m}
N∗(Im)

)

=W log2

(
exp

(
kurt2(Im)

24

)
+
E{X2

m}
N∗(Im)

)
(12)

where the second line in (12) is found using (10).
Note that to maximize the upper and lower bounds, using

(10), (11), and (12), κ2(Im) needs to be minimized whereas
kurt(Im) and signal power, i.e.,E{X2

m}, have to be maximized.
In other words, the transmitter which leads to minimum inter-
ference power, maximum signal power and maximum kurtosis
leads to the highest capacity link. To find the index of trans-
mitter which maximizes the bounds, rigorous optimization of
(11) and (12) is required which is an involved task. In the next
section, we use simulation and an numerical results for this pur-
pose.

V. SIMULATION AND ANALYTICAL RESULTS

We consider a two-dimensional PPP with density λ and as-
sume that the receiver is located at the origin. The desired trans-
mitter and interferers use the same power level, P = 1. The
power loss exponent, α, is assumed to equal 3. Rayleigh fading
with second moment equal to 1 is considered. The prohibited
region (in which no node can transmit) is a circle with radius
R0 = 1 and with the center at the receiver. In subsection II.C,
κ2(Im) is obtained. Also, in the Appendix B, κ4(Im) is found
and we find κ1(Im) = κ3(Im) = 0. To find κ4(Im), we need to
have the value of

∑
i�=m E{R−α

m R−α
i } which requires the joint

statistics of Rm and Ri, i �= m. Proposition 1 is used to find
this summation for two values of λ = 0.01 and λ = 0.1.

In Fig. 2, we show the analytical and simulation results for
E{Rβ

3R
β
6 } for different values of β and for λ = 0.1. We have

verified the accuracy of result found in Proposition 1 for other
combinations of distances and node densities and the analytical
results match with simulation.
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Fig. 2. Analytical and simulation results for E{Rβ
3R

β
6 }.

Fig. 3. Analytical and simulation results for kurtosis of interference vs.
desired transmitter index (λ = 0.01).

Fig. 4. Analytical and simulation results for interference power vs. de-
sired transmitter index (λ = 0.01).

In Figs. 3–6 for λ = 0.01 and in Figs. 7–10 for λ = 0.1,
we have numerically evaluated the obtained analytical results
for kurtosis of interference, interference power, entropy power
of interference (from (10)), and upper and lower bounds of ca-

Fig. 5. Analytical and simulation results for entropy power of interference
vs. desired transmitter index (λ = 0.01).

Fig. 6. Analytical and simulation results for upper and lower bounds
of capacity and AWGN capacity vs. desired transmitter index (λ =
0.01).

pacity (from (11) and (12)) when the desired transmitter node
is any of the closest 50 neighbors of the receiver. Alongside,
simulation results are shown which confirm the accuracy of the
analytical values. Without loss of generality, we assume W = 1
which renders the capacity unit bps/Hz.

In Fig. 3, analytical and simulation results are shown for the
kurtosis of interference when the desired transmitter node is
any of the closest 50 neighbors. When the desired transmitter
is the closest neighbor, the interference has the smallest kurto-
sis, which means the highest proximity to Gaussian distribution.
This is expected and is a consequence of the closest neighbor,
which is the major source of non-Gaussianity, being the desired
transmitter rather than contributing to the aggregate interferer.
As the distance of the desired transmitter to the receiver in-
creases (i.e., as the index of transmitting node becomes larger),
the kurtosis of interference will be almost fixed. This means that
the more remote nodes have less influence on the kurtosis of in-
terference. In Fig. 4, the interference power is shown when the
desired transmitter node is any of the closest 50 neighbors (i.e.,
κ2(Im), 1 ≤ m ≤ 50). As expected, interference power will
increase when the desired transmitter is a farther neighboring
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Fig. 7. Analytical and simulation results for kurtosis of interference vs.
desired transmitter index (λ = 0.1).

Fig. 8. Analytical and simulation results for interference power vs. de-
sired transmitter index (λ = 0.1).

node. In Fig. 5, interference entropy power is shown versus the
index of the desired transmitter. As seen from (10), both inter-
ference power and its kurtosis influence on the entropy power
of interference. While the interference power monotonically in-
creases with the transmitter index, the kurtosis does not show
the same monotonic behavior. The behavior of interference en-
tropy power, therefore, depends on which of these factors have
the dominant effect. The results in Fig. 5 show that the kurtosis
has the dominant effect and the entropy power has the minimum
value when the desired transmitter is the second closest neigh-
bor. Fig. 6 shows the analytical and simulation values for the
upper and lower bounds of capacity versus the desired transmit-
ter index. The results indicate that the lower and upper bounds
of capacity have the maximum value when the desired transmit-
ter is the second closest neighbor. Alongside, the AWGN capac-
ity, which depends only on the power of interference, has been
shown. As expected, AWGN capacity provides a pessimistic es-
timation of capacity by ignoring the higher order statistics of
interference. Moreover, it is monotonically decreasing as it de-
pends only on the interference power which monotonically in-
creases as the index of desired transmitter increases.

In Fig. 7, the kurtosis of interference is shown versus the de-

Fig. 9. Analytical and simulation results for entropy power of interference
vs. desired transmitter index (λ = 0.1).

Fig. 10. Analytical and simulation results for upper and lower bounds of
capacity and AWGN vs. desired transmitter index (λ = 0.1).

sired transmitter index for λ = 0.1. The interference is again
closest to Gaussian (i.e., the kurtosis has the minimum value)
when the desired transmitter is the closest node to the receiver.
Fig. 8 shows that, as expected, the interference power monoton-
ically increases with the desired transmitter index. It also has
the dominant effect on the entropy power of interference (see
(10)) and causes the entropy power to monotonically increase
with the transmitter index as well (see Fig. 9). The lower and
upper bounds of capacity are shown in Fig. 10 to monotonically
decrease with the desired transmitter index for λ = 0.1. We
can see from Figs. 8 and 9 that interference power and interfer-
ence entropy power are almost equal. This is an indication that
for λ = 0.1, the distribution of interference is close to Gaus-
sian. This can also be seen from the kurtosis of interference in
Fig. 7 which is relatively small. The AWGN capacity is also only
slightly smaller than the lower bound of capacity.

Our results provide insight on the link capacities in Poisson
wireless networks. As discussed, the capacity bounds depend
on three factors: Signal power, interference power, and inter-
ference entropy power. The entropy power of interference is af-
fected by the higher order statistics of interference. While, in
a Gaussian interference scenario, the entropy power equals the
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variance (i.e., interference power) in a non-Gaussian case, it
also depends on the higher order statistics like its kurtosis (see
(10)). The interference power increases with the desired trans-
mitter index. The kurtosis on the other hand, does not increase or
decrease monotonically. As shown in Figs. 3 and 8, the kurtosis
takes the minimum value when the closest neighbor is the de-
sired transmitter. The kurtosis increases for the first few neigh-
bors and then decreases and reaches a fixed value. The entropy
power of interference, therefore, does not necessarily increase
monotonically as we observed for the case of λ = 0.01. The
signal and interference power on the other hand, increase and
decrease monotonically with the desired transmitter index, re-
spectively.

The above mentioned factors, i.e., signal power, interference
power and entropy power of interference have conflicting ef-
fects on the channel capacity bounds. For λ = 0.01, the inter-
ference entropy power is minimum and as a consequence, upper
and lower bounds of the channel capacity are maximum, not for
the closest hop link, but for the link between the second nearest
neighbor and the receiver. For λ = 0.1, however, the interfer-
ence entropy power monotonically increases with the desired
transmitter index. Consequently, the capacity bounds monoton-
ically decrease with the desired transmitter index.

VI. CONCLUSIONS

In this paper, considering the higher order statistics of inter-
ference and by assuming a Poisson filed consisting of the desired
transmitter as well as the interferers, we obtain bounds on the ca-
pacities of links in Poisson random networks. We use the Shan-
non’s capacity bound for general additive channels for this pur-
pose. We show that there is a tradeoff between entropy power of
interference on the one hand and signal and interference power
on the other hand which have conflicting effects on the channel
capacity. We obtain closed form results for the cumulants of sig-
nal and interference amplitude and use them to obtain bounds for
the links capacities. The links capacities are shown to be influ-
enced by statistics of interference higher order than the variance.
Therefore the uncorroborated Gaussian assumption of interfer-
ence is rather naive and leads to pessimistic capacity results.
Moreover, by showing that the capacity is not merely a func-
tion of interference power (i.e., second order statistics), but also
depends on its higher order statistics (e.g., kurtosis), we show
that the capacity is not necessarily a monotonically decreasing
function of the hop distance between the receiver and the trans-
mitter. Particularly, we have shown that the closest hop may not
necessarily be the highest capacity link. For future work, the ob-
tained bounds in (11) and (12) can be more exact by considering
the pdf of signal power. Moreover, an optimization can be per-
formed to find in closed-form, the neighboring transmitter that
has the maximum capacity link to the receiver.

APPENDICES

A. Campbell’s Theorem

Assume that Π is a PPP over a region S with density
λ(x), x ∈ S and assume that f : S → R is a measurable
function. Campbell’s theorem [21] is a key result that gives the

characteristic function of a sum of the form

F =
∑
X∈Π

f(X).

The characteristic function is found as

ψF (ω) = E{ejωF } = exp

(∫
S

(jωf(x)− 1)λ(x)dx

)
.

Consequently, nth cumulant of F can be found as

κn =
1

jn

[
∂n lnψF (ω)

∂ωn

]
ω=0

=

∫
S

fn(x)λ(x)dx.

B. Cumulants of Im

In subsection III.C, κ2(Im) was found. Here, we obtain re-
sults for κn(Im), n = 1, 3, and 4. For n = 1, using (3),

κ1(Im) = κ1(Z −Xm) = κ1(Z)− κ1(Xm).

Since both κ1(Z) and κ1(Xm) equal 0, we have κ1(Im) = 0.
For n = 3,

κ3(Im) = κ3(Z −Xm)

= κ3(Z)− κ3(Xm) + 3κ(Z,Xm, Xm)

− 3κ(Z,Z,Xm)

and we have

κ(Z,Xm, Xm) = 2E2{Z}E{Xm} − E{Z2}E{Xm}
− 2E{ZXm}E{Z}+ E{Z2Xm},

κ(Z,Z,Xm) = 2E{Z}E2{Xm} − 2E{ZXm}E{Xm}
− E{Z}E{X2

m}+ E{ZX2
m}.

To obtain κ3(Im), E{ZXm}, E{Z2Xm}, and E{ZX2
m} need

to be found. In (4), E{ZXm} is found to equalE{X2
m}. Using

the same approach,

E{ZX2
m} = E{X2

m(Xm +
∑
i�=m

Xi)}

= E{X3
m}+

∑
i�=m

E{X2
mXi} = E{X3

m}

which is found using E{Ui} = 0. Also,

E{Z2Xm} = E{Xm(Xm +
∑
i�=m

Xi)
2}

= E{X3
m}+ 2

∑
i�=m

E{X2
mXi}+

∑
i�=m
j �=m

E{XmXiXj}

= E{X3
m}

which is found using E{Ui} = E{Um} = 0. Since the odd
moments of Z and Xm equals 0 (see subsections II.A and II.B),
we can see that κ3(Im) = 0. For κ4(Im),

κ4(Im) = κ4(Z −Xm)
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= κ4(Z) + κ4(Xm)− 4κ(Z,Xm, Xm, Xm)

+ 6κ(Z,Z,Xm, Xm)− 4κ(Z,Z, Z,Xm)

and we have

κ(Z,Xm,Xm, Xm) = −6E{Z}E3{Xm}
+ 6E{ZXm}E2{Xm}+ 6E{X2

m}E{Z}E{Xm}
− 3E{ZX2

m}E{Xm} − E{Z}E{X3
m}

− 3E{ZXm}E{X2
m}+ E{ZX3

m},

κ(Z,Z,Xm, Xm) = −6E2{Z}E2{Xm}
+ 2E{Z2}E2{Xm}+ 8E{ZXm}E{Z}E{Xm}
+ 2E{X2

m}E2{Z} − 2E{Z2Xm}E{Xm}
− 2E{ZX2

m}E{Z} − E{Z2}E{X2
m}

− 2E2{ZXm}+ E{Z2X2
m},

κ(Z,Z,Z,Xm) = −6E3{Z}E{Xm}
+ 6E{Z2}E{Z}E{Xm}+ 6E{ZXm}E2{Z}
− E{Z3}E{Xm} − 3E{Z2Xm}E{Z}
− 3E{Z3}E{ZXm}+ E{Z3Xm}.

To obtain κ4(Im),E{ZX3
m},E{Z2X2

m}, andE{Z3Xm} need
to be found. We have

E{ZX3
m} = E{X3

m(Xm +
∑
i�=m

Xi)}

= E{X4
m}+

∑
i�=m

E{X3
mXi}

= E{X4
m}

which is found using E{Ui} = 0 and

E{Z2X2
m} = E{X2

m(Xm +
∑
i�=m

Xi)
2}

= E{X4
m}+ 2

∑
i�=m

E{X3
mXi}+

∑
i�=m
j �=m

E{X2
mXiXj}.

We have
∑

i�=mE{X3
m} = 0 and

∑
i�=m
j �=m

E{X2
mXiXj} =

∑
i�=m
j �=m
i�=j

E{X2
mXiXj}+

∑
i�=m
j �=m

E{X2
mX

2
i }.

We have
∑

i�=m
j �=m
i�=j

E{X2
mXiXj} = 0 and

∑
i�=m

E{E{X2
mX

2
i }} = E2{ζ2}E2{U2}

∑
i�=m

E{R−α
m R−α

i }.

Also,

E{Z3Xm} = E{Xm(Xm +
∑
i�=m

Xi)
3} = E{X4

m}+

3
∑
i�=m

E{X3
mXi}+ 3

∑
i�=m
j �=m

E{X2
mXiXj}E{Xm(

∑
i�=m

Xi)
3}.

Using the same approach, we have
∑

i�=m E{X3
mXi} = 0,

E{Xm(
∑

i�=mXi)
3} = 0, and

E{Z3Xm} = E{X4
m}+ 3

∑
i�=m
j �=m

E{X2
mXiXj} = E{X4

m}

+ 3E2{ζ2}E2{U2}
∑
i�=m

E{R−α
m R−α

i }.

To find E{Z2X2
m} and E{Z3Xm}, therefore, we need to have∑

i�=mE{R−α
m R−α

i }.

C. Proof of Proposition 1

Let A = (λπ)ln

Γ(l1)Γ(l2−l1)···Γ(ln−ln−1)
. We then have

E
{
Rβ

l1
Rβ

l2
· · ·Rβ

ln

}
=

A

∫ ∞

0

∫ xn

0

· · ·
∫ x2

0

x
β
2
1 x

l1−1
1 (x2 − x1)

l2−l1−1 · · ·

x
β
2
n−1(xn − xn−1)

ln−ln−1−1x
β
2
n e

−λπxndx1 · · · dxn−1dxn.

We first find∫ x2

0

x
β
2
1 x

l1−1
1 (x2 − x1)

l2−l1−1dx1 =

x
l2+

β
2 −1

2 B

(
l1 +

β

2
, l2 − l1

)

where B(.) is the beta function [22]. Using induction,∫ xn

0

· · ·
∫ x2

0

x
β
2
1 x

l1−1
1 (x2 − x1)

l2−l1−1 · · ·

x
β
2
n−1(xn − xn−1)

ln−ln−1−1dx1 · · · dxn−1

= B

(
l1 +

β

2
, l2 − l1

)
B(l2 + β, l3 − l2) · · ·

·B
(
ln−1 + (n− 1)

β

2
, ln − ln−1

)
x
ln+(n−1) β

2 −1
n

and

E
{
Rβ

l1
Rβ

l2
· · ·Rβ

ln

}
= AB

(
l1 +

β

2
, l2 − l1

)

·B(l2 + β, l3 − l2) · · ·B
(
ln−1 + (n− 1)

β

2
, ln − ln−1

)

·
∫ ∞

0

x
ln+n β

2 −1
n e−λπxndxn.

Noting that

∫ ∞

0

x
ln+n β

2 −1
n e−λπxndxn =

Γ
(
ln + nβ

2

)

(λπ)ln+n β
2

and using the equality B(x, y) = Γ(x)Γ(y)/Γ(x+ y) [22], the
result in (5) is found after simplification.



BABAEI et al.: CAPACITY BOUNDS IN RANDOM WIRELESS NETWORKS 9

ACKNOWLEDGEMENTS

The authors would like to thank the reviewers for their valu-
able comments.

REFERENCES

[1] E. S. Sousa, “Performance of a spread spectrum packet radio network link
in a Poisson field of interferers,” IEEE Trans. Inf. Theory, vol. 38, no. 6,
pp.1743–1754, Nov. 1992.

[2] M. Souryal, B. Vojcic, and R. Pickholtz, “Ad hoc, multihop CDMA net-
works with route diversity in a Rayleigh fading channel,” in Proc. IEEE
MILCOM, 2001, pp. 1003–1007.

[3] A. Babaei and B. Jabbari, “Interference modeling and avoidance in spec-
trum underlay cognitive wireless networks,” in Proc. IEEE ICC, Cape
Town, South Africa, May 2010, pp. 1–5.

[4] J. Venkataraman and M. Haenggi, “Optimizing the throughput in random
wireless ad hoc networks,” in Proc. 42nd Annual Allerton Conf. Commun.
Control Comput., Oct. 2004.

[5] P. Jacquet, “Shannon capacity in Poisson wireless network model,” Prob-
lems of Inf. Theory, vol. 45, no. 3, pp. 193–203, 2009.

[6] X. Yang and A. P. Petropulu, “Co-channel interference modelling and
analysis in a Poisson field of interferers in wireless communications,”
IEEE Trans. Signal Process., vol. 51, pp. 64–76, Jan. 2003.

[7] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Trans. Inf. Theory, vol. 46, no. 2, pp.388–404, Mar. 2000.

[8] J. Fiorina and D. Domenicali, “The non validity of the Gaussian approxi-
mation for multi-user interference in ultra wide band impulse radio: From
an inconvenience to an advantage,” IEEE Trans. Wireless Commun., vol.
8, no. 11, pp. 5483–5488, Nov. 2009.

[9] A. Babaei, P. Agrawal, and B. Jabbari, “Satistical shaping of interference
to maximize capacity in cognitive random wireless networks,” in Proc.
IEEE MILCOM, San Jose, USA, 2010, pp. 123–127.

[10] A. Hasan and J. G. Andrews, “The Guard Zone in Wireless Ad hoc Net-
works,” IEEE Trans. Wireless Commun., vol. 6, no. 3, pp. 897–906, Mar.
2007.

[11] K. Gulati, B. L. Evans, J. G. Andrews, and K. R. Tinsely, “Statistics of co-
channel interference in a field of Poisson and Poisson-Poisson clustered
interferers,” IEEE Trans. Signal Process., vol. 58, no. 12, Dec. 2010.

[12] A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochas-
tic Processes. 4th ed., McGraw-Hill, 2002.

[13] Wolfram alpha: Computational knowledge engine. [Online]. Available:
http://www.wolframalpha.com

[14] A. Babaei and B. Jabbari, “Distance distribution of bivariate Poisson net-
work nodes,” IEEE Commun. Lett., vol. 14, no. 9, pp. 848–850, Sept. 2010.

[15] M. Haengi, “On distances in uniformly random networks,” IEEE Trans.
Inf. Theory, vol. 51, no. 10, pp. 3584–3586, Oct. 2005.

[16] M. G. Kendall and A. Stuart, The Advanced Theory of Statistics. vol. 1,
3rd ed., Griffin, London, 1979.

[17] X. Liu and M. Haenggi, “Throughput analysis of fading sensor networks
with regular and random topologies,” EURASIP J. Wireless Commun.
Netw., pp. 554–564, Sept. 2005.

[18] R. Mathar and J. Mattfeldt, “On the distribution of cumulated interfer-
ence power in Rayleigh fading channels,” Wireless Netw., vol. 1, no. 1,
pp. 31–36, 1995.

[19] A. Dembo, T. Cover, and J. A. Thomas, “Information theoretic inequali-
ties,” IEEE Tran. Inf. Theory, vol. 37, no. 6, pp. 1501–1518, Nov. 1991.

[20] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis.
John Wiley, 2001.

[21] J. F. C. Kingman, Poisson Processes. Oxford University Press, 1993.

[22] R. A. Askey and R. Roy, Beta function. NIST Handbook of Mathematical
Functions, Cambridge University Press, 2010.

[23] S. Ihara, “On the capacity of channels with additive non-Gaussian noise,”
Inf. Control, vol. 37, pp. 34–39, 1978.

[24] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions.
Dover, 1972.

Alireza Babaei received his B.S. and M.S. degrees in
Electrical Engineering from K. N. Toosi University of
Technology and Iran University of Science and Tech-
nology, Tehran, Iran in 2003 and 2005, respectively,
and his Ph.D. degree in Electrical and Computer Engi-
neering from George Mason University (GMU), Fair-
fax, Virginia, USA in 2009. He is the recipient of an
outstanding graduate student award from GMU and
is currently a Postdoctoral Fellow at the Electrical and
Computer Engineering Department of Auburn Univer-
sity. He has served as a Guest Editor for IEEE Wire-

less Communications magazine. His areas of active research are modeling and
performance evaluation of random wireless networks, information theory, and
cognitive radio networks.

Prathima Agrawal is the Samuel Ginn Distinguished
Professor of Electrical and Computer Engineering and
the Director of the Wireless Engineering Research and
Education Center, Auburn University, Auburn, Al-
abama. She is also the Auburn Site Director of Wire-
less Internet for Advanced Technology (WICAT).
WICAT is a National Science Foundation (NSF) Cen-
ter under the Industry University Cooperative Re-
search Center (IUCRC) program. Prior to her present
positions, she was an Assistant Vice President of the
Network Systems Research Laboratory and an Ex-

ecutive Director of the Mobile Networking Research Department, Telcordia
Technologies (formerly Bellcore), Morristown, New Jersey, where she worked
from 1998 to 2003. From 1978 to 1998, she worked in various capacities at
AT&T/Lucent Bell Laboratories, including creating and serving as Head of the
Networked Computing Research Department, Murray Hill, New Jersey. Her
research interests include computer networks, mobile and wireless computing,
and communication systems. She has published more than 200 papers in IEEE
and other journals and conference proceedings in areas related to networks and
VLSI. She holds 51 US patents. She received the Distinguished Alumnus Award
from the Indian Institute of Science in 2006, the Telcordia CEO Award in 2000,
and the Distinguished Member of the Technical Staff Award from AT&T Bell
Laboratories in 1985. She is the recipient of the IEEE Computer Society’s Dis-
tinguished Service Award in 1990 and the IEEE Third Millennium Medal in
2000. She is a Fellow of the IEEE and the Institution of Electronics and Telecom-
munications Engineers (IETE), India, and a Member of the ACM. She received
the B.E. and M.E. degrees in Electrical Communication Engineering from the
Indian Institute of Science, Bangalore, India, and the Ph.D. degree in Electrical
Engineering from the University of Southern California in 1977.

Bijan Jabbari is a Professor of Electrical and Com-
puter Engineering at George Mason University, Fair-
fax, VA, USA, and an Affiliated Faculty with ENST-
Paris, France. He served as the Editor for Wireless
Multiple Access for the IEEE Transactions on Com-
munications, was the International Division Editor
for Wireless Communications of the Journal of Com-
munications and Networks, and was on the editorial
board of Proceedings of the IEEE. He is a Coeditor of
recent books on Multiaccess, Mobility and Teletraf-
fic (Kluwer Publishing, Volume I and IV-VI). He is

the past Chairman of the IEEE Communications Society Technical Committee
on Communications Switching and Routing. He is a Fellow of IEEE and IEE,
and is a recipient of the IEEE Millennium Medal in 2000 and the Washington
DC Metropolitan Area Engineer of the Year Award, in 2003. He founded in-
novative laboratories for Internet and wireless communications research and is
helping the industry adoption of new technologies. He continues research on
multi-access communications and high performance networking. He received
the Ph.D. degree in Electrical Engineering from Stanford University, Stanford,
CA.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AgencyFB-Bold
    /AgencyFB-Reg
    /ahn2006-B
    /ahn2006-L
    /ahn2006-M
    /Albertus-ExtraBold
    /Albertus-Medium
    /AlbertusMT
    /AlbertusMT-Italic
    /AlbertusMT-Light
    /Algerian
    /AmiR-HM
    /AntiqueOlive
    /AntiqueOlive-Bold
    /AntiqueOlive-Compact
    /AntiqueOlive-Italic
    /AntiqueOlive-Roman
    /Apple-Chancery
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /AvantGarde-Book
    /AvantGarde-BookOblique
    /AvantGarde-Demi
    /AvantGarde-DemiOblique
    /BaskOldFace
    /Batang
    /BatangChe
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /Bodoni
    /Bodoni-Bold
    /Bodoni-BoldItalic
    /Bodoni-Italic
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /Bodoni-Poster
    /Bodoni-PosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /Bookman-Demi
    /Bookman-DemiItalic
    /Bookman-Light
    /Bookman-LightItalic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /Calibri
    /Calibri-Bold
    /Calibri-BoldItalic
    /Calibri-Italic
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Cambria
    /Cambria-Bold
    /Cambria-BoldItalic
    /Cambria-Italic
    /CambriaMath
    /Candara
    /Candara-Bold
    /Candara-BoldItalic
    /Candara-Italic
    /Candid
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /CGOmega
    /CGOmega-Bold
    /CGOmega-BoldItalic
    /CGOmega-Italic
    /CGTimes
    /CGTimes-Bold
    /CGTimes-BoldItalic
    /CGTimes-Italic
    /Chicago
    /Chiller-Regular
    /Clarendon
    /Clarendon-Bold
    /Clarendon-Condensed-Bold
    /Clarendon-Light
    /Cmex10
    /Cmmi10
    /Cmr10
    /Cmsy10
    /ColonnaMT
    /CombiNumerals
    /CombiNumerals-Bold
    /ComicSansMS
    /ComicSansMS-Bold
    /Consolas
    /Consolas-Bold
    /Consolas-BoldItalic
    /Consolas-Italic
    /Constantia
    /Constantia-Bold
    /Constantia-BoldItalic
    /Constantia-Italic
    /CooperBlack
    /CooperBlack-Italic
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /Copperplate-ThirtyThreeBC
    /Copperplate-ThirtyTwoBC
    /Corbel
    /Corbel-Bold
    /Corbel-BoldItalic
    /Corbel-Italic
    /Coronet
    /Coronet-Regular
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CurlzMT
    /Dotum
    /DotumChe
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Euclid
    /Euclid-Bold
    /Euclid-BoldItalic
    /EuclidExtra
    /EuclidExtra-Bold
    /EuclidFraktur
    /EuclidFraktur-Bold
    /Euclid-Italic
    /EuclidMathOne
    /EuclidMathOne-Bold
    /EuclidMathTwo
    /EuclidMathTwo-Bold
    /EuclidSymbol
    /EuclidSymbol-Bold
    /EuclidSymbol-BoldItalic
    /EuclidSymbol-Italic
    /Eurostile
    /Eurostile-Bold
    /Eurostile-BoldExtendedTwo
    /Eurostile-ExtendedTwo
    /ExpoM-HM
    /FelixTitlingMT
    /Fences
    /FencesPlain
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /FZSY--SURROGATE-0
    /Garamond
    /Garamond-Antiqua
    /Garamond-Bold
    /Garamond-Halbfett
    /Garamond-Italic
    /Garamond-Kursiv
    /Garamond-KursivHalbfett
    /Gautami
    /Geneva
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSans
    /GillSans-Bold
    /GillSans-BoldCondensed
    /GillSans-BoldItalic
    /GillSans-Condensed
    /GillSans-ExtraBold
    /GillSans-Italic
    /GillSans-Light
    /GillSans-LightItalic
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GloucesterMT-ExtraCondensed
    /Goudy
    /Goudy-Bold
    /Goudy-BoldItalic
    /Goudy-ExtraBold
    /Goudy-Italic
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Gulim
    /GulimChe
    /Gungsuh
    /GungsuhChe
    /H2gprM
    /H2gsrB
    /H2gtrE
    /H2gtrM
    /H2hdrM
    /H2mjrE
    /H2mjsM
    /H2mkpB
    /H2porL
    /H2porM
    /H2sa1M
    /HaansoftBatang
    /HaansoftDotum
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HeadlineR-HM
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Condensed
    /Helvetica-Condensed-Bold
    /Helvetica-Condensed-BoldObl
    /Helvetica-Condensed-Oblique
    /Helvetica-Narrow
    /Helvetica-Narrow-Bold
    /Helvetica-Narrow-BoldOblique
    /Helvetica-Narrow-Oblique
    /Helvetica-Oblique
    /HighTowerText-Italic
    /HighTowerText-Reg
    /HoeflerText-Black
    /HoeflerText-BlackItalic
    /HoeflerText-Italic
    /HoeflerText-Ornaments
    /HoeflerText-Regular
    /HYbdaL
    /HYbdaM
    /HYbsrB
    /HYcysM
    /HYdnkB
    /HYdnkM
    /HYgprM
    /HYgsrB
    /HYgtrE
    /HYhaeseo
    /HyhwpEQ
    /HYkanB
    /HYkanM
    /HYmjrE
    /HYmprL
    /HYnamB
    /HYnamL
    /HYnamM
    /HYporM
    /HYsanB
    /HYsnrL
    /HYsupB
    /HYsupM
    /HYtbrB
    /HYwulB
    /HYwulM
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /JoannaMT
    /JoannaMT-Bold
    /JoannaMT-BoldItalic
    /JoannaMT-Italic
    /Jokerman-Regular
    /JuiceITC-Regular
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothic
    /LetterGothic-Bold
    /LetterGothic-BoldSlanted
    /LetterGothic-Italic
    /LetterGothic-Slanted
    /LubalinGraph-Book
    /LubalinGraph-BookOblique
    /LubalinGraph-Demi
    /LubalinGraph-DemiOblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /MagicR-HM
    /Magneto-Bold
    /MaiandraGD-Regular
    /MalgunGothicBold
    /MalgunGothicRegular
    /Mangal-Regular
    /Marigold
    /Math1
    /Math1-Bold
    /Math1Mono
    /Math1Mono-Bold
    /Math2
    /Math2-Bold
    /Math2Mono
    /Math2Mono-Bold
    /Math3
    /Math3Bold
    /Math3Mono
    /Math3Mono-Bold
    /Math4
    /Math4-Bold
    /Math4Mono
    /Math4Mono-Bold
    /Math5
    /Math5Bold
    /Math5Mono
    /Math5MonoBold
    /Mathematica1
    /Mathematica1-Bold
    /Mathematica1Mono
    /Mathematica1Mono-Bold
    /Mathematica2
    /Mathematica2-Bold
    /Mathematica2Mono
    /Mathematica2Mono-Bold
    /Mathematica3
    /Mathematica3-Bold
    /Mathematica3Mono
    /Mathematica3Mono-Bold
    /Mathematica4
    /Mathematica4-Bold
    /Mathematica4Mono
    /Mathematica4Mono-Bold
    /Mathematica5
    /Mathematica5-Bold
    /Mathematica5Mono
    /Mathematica5Mono-Bold
    /Mathematica6
    /Mathematica6Bold
    /Mathematica6Mono
    /Mathematica6MonoBold
    /Mathematica7
    /Mathematica7Bold
    /Mathematica7Mono
    /Mathematica7MonoBold
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /MingLiU
    /Mistral
    /Modern-Regular
    /MoeumTR-HM
    /Monaco
    /MonaLisa-Recut
    /MonotypeCorsiva
    /MS-Gothic
    /MS-Mincho
    /MSOutlook
    /MS-PGothic
    /MS-PMincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MS-UIGothic
    /MT-Extra
    /MT-Symbol
    /MVBoli
    /NanumGothicCoding
    /NanumGothicCoding-Bold
    /NewCenturySchlbk-Bold
    /NewCenturySchlbk-BoldItalic
    /NewCenturySchlbk-Italic
    /NewCenturySchlbk-Roman
    /NewGulim
    /NewYork
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NSimSun
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /Optima
    /Optima-Bold
    /Optima-BoldItalic
    /Optima-Italic
    /Oxford
    /PalaceScriptMT
    /Palatino-Bold
    /Palatino-BoldItalic
    /Palatino-Italic
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Palatino-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Pristina-Regular
    /PyunjiR-HM
    /Raavi
    /RageItalic
    /Ravie
    /ReboBold
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /SegoeUI
    /SegoeUI-Bold
    /SegoeUI-BoldItalic
    /SegoeUI-Italic
    /ShowcardGothic-Reg
    /Shruti
    /SimHei
    /SimSun
    /SimSun-PUA
    /SnapITC-Regular
    /StempelGaramond-Bold
    /StempelGaramond-BoldItalic
    /StempelGaramond-Italic
    /StempelGaramond-Roman
    /Stencil
    /Sylfaen
    /Symath
    /Symbol
    /SymbolMT
    /Taffy
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Univers
    /Univers-Bold
    /Univers-BoldExt
    /Univers-BoldExtObl
    /Univers-BoldItalic
    /Univers-BoldOblique
    /Univers-Condensed
    /Univers-CondensedBold
    /Univers-Condensed-Bold
    /Univers-Condensed-BoldItalic
    /Univers-CondensedBoldOblique
    /Univers-Condensed-Medium
    /Univers-Condensed-MediumItalic
    /Univers-CondensedOblique
    /Univers-Extended
    /Univers-ExtendedObl
    /Univers-Light
    /Univers-LightOblique
    /Univers-Medium
    /Univers-MediumItalic
    /Univers-Oblique
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /YetR-HM
    /ZapfChancery-MediumItalic
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


