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Mathematical Analysis of the Parallel Packet Switch
with a Sliding Window Scheme

Chia-Lung Liu, Chin-Chi Wu, and Woei Lin

Abstract:  This work analyzes the performance of the parallel
packet switch (PPS) with a sliding window (SW) method. The
PPS involves numerous packet switches that operate independently
and in parallel. The conventional PPS dispatch algorithm adopts
a round robin (RR) method. The class of PPS is characterized
by deployment of parallel low-speed switches whose all mem-
ory buffers run more slowly than the external line rate. In this
work, a novel SW packet switching method for PPS, called SW-
PPS, is proposed. The SW-PPS employs memory space more ef-
fectively than the existing PPS using RR algorithm. Under iden-
tical Bernoulli and bursty data traffic, the SW-PPS provided sig-
nificantly improved performance when compared to PPS with RR
method. Moreover, this investigation presents a novel mathemati-
cal analytical model to evaluate the performance of the PPS using
RR and SW method. Under various operating conditions, our pro-
posed model and analysis successfully exhibit these performance
characteristics including throughput, cell delay, and cell drop rate.

Index Terms: Bernoulli data traffic, bursty data traffic, parallel
packet switch (PPS), round robin (RR), sliding window (SW).

I. INTRODUCTION

In a conventional packet switching system, the speed of the
memory must be at least equal to the external line rates. For
examples, an output queued (OQ) switch requires buffer mem-
ories that operate at /N times the link speed [1], [2], where N
is the number of ports of the switch; in an input queued (IQ)
switch, each memory operates at the same speed as the exter-
nal line rate [1], [2]; in a combined input-and-output queued
(CIOQ) switch, the memory operates at twice the line rate [3],
[4]. Therefore, when external line rates increase from OC192
(10 Gb/s) to OC768 (40 Gb/s) or even OC3072 (160 Gb/s), tra-
ditional packet switches, whose buffers cannot process the pack-
ets at the same line rate, will not be usable.

In a high-speed network, the parallel packet switch (PPS) us-
ing a round robin (RR) method is a good choice for transferring
data [5], [6]. A PPS, which overcomes memory bandwidth limi-
tations, comprises multiple low-speed packet switches operating
independently and in parallel. Each lower speed packet switch
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operates at a fraction of the input line rate R. For instance, each
slower packet switch can operate at an internal line rate of R/ K,
where K is the number of slower speed switches. PPS with a RR
algorithm is named RR-PPS, which provides better performance
than conventional packet switch under the high-speed network
[7]. The RR-PPS is reviewed in Section II-B of this work.

The key problem in a RR-PPS is that it cannot effectively
use the memory space in low-speed switches, so it requires a
lot of memory to buffer packets [5], [7]. The total buffering re-
quirement for a RR-PPS is 2K N2 cells +K N L [5], where L is
queue size. For N = 64, K = 128, and L = 256 kbytes, the
total buffer needed in the entire RR-PPS is 2112 Mbytes (for 64
byte cells). It is expensive to implement using current SRAM
and SDRAM technology. This work describes a novel sliding
window (SW) packet switching method for PPS, called SW-
PPS. The SW concept comes from [8], [9]. This novel switch-
ing scheme overcomes the shortcomings of RR-PPS, and uses
memory space in the low-speed switches more effectively than
RR scheme. According to experimental results, even with less
available memory in low-speed switches, SW-PPS performed
well. It also maintains PPS’s advantage that all memory buffers
and internal lines run slower than the external line rate. There-
fore, SW-PPS can be implemented in the high-speed network.
Besides, the experimental results indicate that SW-PPS outper-
formed RR-PPS under identical Bernoulli and bursty data traffic.

II. BACKGROUND
A. Definitions

Some terms, used throughout this paper, are defined.

o Cell: A fixed-length packet, though not necessarily equal in
length to a 53-byte ATM cell. Although packets that arrive at
the switch may have various lengths, for the purposes of this
work, we will assume that they are segmented and processed
internally as fixed-length cells. This is common practice in
high-performance routers; variable-length packets are seg-
mented into cells as they arrive, are carried across the switch
as cells, and are reassembled back into packets before they
depart.

e External time slot: The time taken to transmit or receive a
fixed-length cell at an external link rate of R.

e Internal time slot: The time taken to transmit or receive a
fixed-length cell at an internal link rate of (R/K'), where K
is the number of low-speed switches in the PPS.

e OQ switch: A switch in which arriving packets are placed
immediately in queues at the output, where they contend
with other packets with the same output destination. The de-
parture order is first-come first-serve (FCFS). One character-
istic of an OQ switch is that the buffer memory must be able
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Fig. 1. Architecture of the PPS.

to accept (write) N new cells per time slot, where N is the
number of ports. Accordingly, the memory must operate at
N times the line rate.

e PPS restriction: An input link constraint of PPS [5], [6]. As
shown in Fig. 1, each external input of line rate R is spread
(demultiplexed) over K lines; each internal input link must
run at a minimum speed of R/ K. In other words, the exter-
nal line rate runs K times faster than the internal line rate.
If the transmission of a cell in the external line spends one
external time slot, transmission of a cell in internal line of
the PPS spends K external time slots (i.e., one internal time
slot). Hence, in Fig. 1 when a particular demultiplexer sends
a cell to a particular center-stage switch at external time slot
t, this demultiplexer sends another cell to this center-stage
switch after external time slot ¢ + K — 1 due to the internal
line rate of R/K. Consequently, for a demultiplexer at an
external time slot, not total center-stage switches conform to
the PPS restrictions.

B. RR-PPS Architecture and Algorithm

The architecture of a PPS resembles that of a Clos network
[10], as displayed in Fig. 1. The demultiplexers, center-stage
switches (slower speed switches), and multiplexers correspond
to the three stages of a Clos network. Fig. 1 shows an N x N
PPS, with each port operating at rate R. Each port is connected
to all K OQ switches (the center-stage switches are referred to
as layers). Since cells form each external input of line rate R are
spread (demultiplexed) over K links, each input link must run at
a minimum speed of R/K . Each layer of PPS consists of a sin-
gle N x N OQ or CIOQ switch with memory operating slower
than the external line rate. Since each multiplexer receives cells
from K output queues, each line to the multiplexer must oper-
ate at a minimum speed of R/ K to keep the external line busy.
All the memories of PPS run slower than the external line rate,
so the number of center-stage switches is limited. Assume that
the external line rate is R and that the number of center-stage
switches is K. If the center-stage switches are CIOQ switches,
then 2(R/K) < R and; as a result, we have K > 2. Similarly,
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/lAlgorithm for RR-PPS demultiplexer

/!

//Define the following functions:

/I receive() Receives a cell

/I classify(cell) Returns destination port
/I append(cell, sn[i])  Appends sn

/I send(cell, pn) Sends cell

/

//Define the following variables:

/A Destination port number index
/I sn]]  Sequence number
/I pn Plane number
While true do
cell = receive() /IStep 100
1 = classify(cell) /IStep 102
snli] + + //Step 104
append(cell, sn|i]) //Step 106
pn = (pn%K)+1  //Step 108
send(cell, pn) /IStep 110

end

Fig. 2. Architecture of the PPS.

at center-stage OQ switches, it is required that N(R/K) < R.
Therefore, we have K > N.

The algorithm of RR-PPS proceeds in three distinct steps
(shown in Fig. 2).

Step 1) Split every flow in the demultiplexer using a round
robin procedure: When a cell arrives at an input port, the
demultiplexer selects a low-speed switch (or “layer”) to
which it will send the cell. Using a RR scheme, cells from
a flow are distributed to the center-stage switches. Fig. 2
shows the RR algorithm within each demultiplexer. Cells
are received (step 100), classified (step 102), appended with
their sequence numbers (step 106), and then sent to the
center-stage switches (step 110). The layer number is in-
dexed by an output port of the demultiplexer (variable pn).
Each demultiplexer maintains a round robin pointer pn. By
RR method (step 108), this pointer contains a value in the
range [1, K]. When pointer pn = z, the arriving cell is sent
to layer z.

Step 3) Deliver cells in the center-stage OQ switches: Each
center-stage OQ switch receives cells from its NV input ports,
and then switches each cell to its output port according to
the destination address of the cell [1], [2]. Due to output link
congestion and internal line speed of R/K, cells are stored
in the output queues of the center-stage OQ switch until the
line to the multiplexer becomes available. When the line to
the multiplexer becomes available, the head-of-line (HOL)
cell in the output queue is delivered to the output link of the
center-stage OQ switch.

Step 3) Reorder cells in the multiplexer: The link to the mul-
tiplexer operates at a rate of R/ K. While the line to the mul-
tiplexer is free, the multiplexer selects a cell from the corre-
sponding K output queues in each center-stage OQ switch.
The goal for the multiplexer is that its buffer stores, reorders,
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Fig. 3. Architecture of the SW-PPS.

and then transmits cells in the correct order based on the
cell’s sequence number [5], [7].

The primary weakness of RR-PPS is its inefficient use of
memory, a product of RR algorithm. In step 108 in Fig. 2, RR
scheme at the demultiplexer chooses a layer to store the arriv-
ing cell by alternate method. However, it can’t send the cell
to the particular layer, whose output queue has the least cells.
This work proposes a novel SW scheme for PPS to improve its
use of memory. The rest of the paper is organized as follows.
In Section III, the SW-PPS architecture and algorithm are in-
troduced. In Section IV, a mathematical analytical model for
RR-PPS and SW-PPS is presented. In Section V, we present
the analytical results, and compare them with simulation results.
We also present some simulation results for bursty data traffic.
Finally, Section VI concludes the paper.

III. SW-PPS ARCHITECTURE AND ALGORITHM
A. SW-PPS Architecture

Fig. 3 shows the overall architecture of the SW-PPS. The SW-
PPS is constructed by the self-routing parameter assignment cir-
cuit and PPS. The SW-PPS is divided into the following inde-
pendent stages: (1) The self-routing parameter assignment cir-
cuit; (2) the demultiplexers; (3) the slower speed center-stage
packet switches; and (4) the multiplexers. Incoming cells use the
parameter assignment circuit to navigate through the entire PPS.
In Fig. 3, the destined output port of the incoming cell, extracted
by applying header processing circuits, is indicated by d. The in-
coming cell’s destination address d is delivered to a self-routing
parameter assignment circuit. In processing incoming cells, the
assignment circuit employs the output destination d and a pa-
rameter assignment algorithm to create an additional group of
self-routing parameters (¢, d, and j). These self-routing parame-
ters (i, d, and j) are attached to arriving cells as a self-routing
tag (step 1 in Fig. 3). Incoming cells then use the attached tags to
navigate through the demultiplexers and center-stage switches.
Parameters (i, d, and j) are defined as follows: The variable 7 in
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Fig. 4. Architecture of the SW-PPS.

parameters informs the center-stage switch where the cell will
be stored; variable d indicates which memory module in the ith
center-stage switch the cell will be stored in; and variable j des-
ignates the memory location in the dth memory module where
the cell will be stored. The demultiplexer uses the parameter ¢
of the routing tag of an incoming cell to send the cell to its ith
output port which is connected to the corresponding ith layer
(step 2 in Fig. 3). Input ports of the demultiplexers connect it-
self to the parameter assignment circuit, and the output ports of
the demultiplexers connect with each center-stage switch of the
switching system. The demultiplexers retain the parameters d
and j information from the cell’s self-routing tag to center-stage
switches. The center-stage switch employs the parameter d to
send the received cell to the dth memory module, and uses the
parameter j to write the received cell in the jth memory location
of the dth memory module. During the cell WRITE cycle for a
cell arriving at the ith center-stage switch, the cell is written to
Jth memory location in a given dth memory module based on
the self-routing parameter (7, d, and j) (step 3 in Fig. 3). During
the cell READ cycle, cells in the memory are output from mem-
ory module according to the present location of the SW (step
4 in Fig. 3) and are finally delivered to respective multiplexers
(step 5 in Fig. 3).

B. Switching Operations in the SW-PPS

According to the SW-PPS switching schedule, the overall
memory space, including all cell memory locations in all of the
center-stage switches, is represented as a three-dimensional (3-
D) memory space (shown in Fig. 4). The memory locations in
the global memory space are represented by a 3-D coordinate
system (¢, d, and j), where the first coordinate ¢ represents the
ith center-stage switch; i € [1, K|, where K is the number of
center-stage switches. The second coordinate d indicates the dth
memory module; d € [1, N], where N is the number of ports of
the center-stage switch. The third coordinate j designates the
jth memory location in the memory module; j € [1, L], where
L represents the number of memory locations in each memory
module, which denotes the queue length. As shown in Fig. 4, the
ith layer is the memory space of the center-stage switch and is
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designated by switch[1], switch[2], - - -, switch[ K]. Each layer
is divided into N memory modules. Each memory module con-
sists of the L consecutive memory slots. The SW can be re-
garded as a pointer to a group of cells in the 3-D memory space
(shown in Fig. 4). The SW advances one memory location dur-
ing each internal cycle (switch cycle). The location of the SW
in the global memory space is recorded by one variable, SW.j.
For example, in Fig. 4, the SW is a pointer to the memory loca-
tion = 7 = 2. For such a state of the SW in the above example
SW.j = 2. The variable SW.j holds an integer value which
is incremented by one on the completion of SW traversal of a
given memory location. Furthermore, cells in the 3-D memory
space are sent to multiplexers according to the current location
of the SW.

The flowchart in Fig. 5 shows SW traversal across the en-
tire 3-D memory space and its relation to the switch cycle and
switching operation. The SW pointer is updated along with the
switching functions performed every switch cycle. In the flow-
chart of Fig. 5, step 300 indicates the beginning of the switch
operation. Step 302 shows the initial value of the variable SW.j
indicating initial location of the SW in the global memory space.
The onset of the switch operation is shown in step 304 and var-
ious switching functions are performed on the incoming cells
in step 306. The switching functions in step 306 include some
of the following operations: Read destination addresses from
headers of the incoming cells, update counters and tables, attach
new self-routing tags to cells, write cells to memory, read cells
from the memory, etc. After switching functions in step 306,
counters and variables are updated in step 308 to account for
changes, due to the switching. After switching and updating the
variables in steps 306 and 308, the SW is then advanced to the
next location in step 310. After step 310, the flow loops back to
step 304 to start a new switching cycle corresponding to a new
updated position of the SW pointer. With the updated location
of the SW denoted by the variable SW.j (in step 310), the new
switching functions are performed after the flow-control loops
back to step 304. In the new switch cycle in step 304, the sys-
tem again performs new switching functions in step 306. The
underlying switching function of the SW scheme at step 306
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Fig. 6. Assignment process for self-routing tag.

is that during the input phase of each switch cycle, incoming
cells are assigned memory locations within the global memory
space with the help of self-routing parameter assignment circuit
and during the output phase of each switch cycle, all the cells
belonging to the memory location pointed by the SW are sent
out. The SW, as shown in Fig. 4, cyclically scans the entire 3-D
memory space. Switching functions are performed correspond-
ing to new value of SW.j pointer during its traversal of the 3-D
global memory space.

C. Determination of Parameters (1, d, and j)

Assigning of self-routing parameters (¢, d, and j) to incom-
ing cells is computed by the parameter assignment circuit. An
additional routing tag carrying the self-routing parameters (¢, d,
and j) is attached to the incoming cell. The self-routing para-
meters help cells to self-navigate through the switching system.
Determination of self-routing parameters (¢, d, and j) by the as-
signment circuit to an incoming cell is shown by the flowchart
in Fig. 6. The symbols used therein are described as follows.

e d is the output-port destination of the cell.

e (ig and j4) are the parameters (7, and j) of the incoming cell
destined to output port d.

e Switchli].Qq is a pointer inside the dth memory module of
switchl[i] (i.e., ith center-stage switch) for cells destined to
output port d. Switchl[i].Q 4 points the memory location that
is the next position of the last cell in the queue. Furthermore,
Switch[i].Qq increased with the number of cells in the dth
memory module of switch[z].

e X is a set of arriving cells during a given external cycle.
0 < |X| < N, where N is the number of input ports.

The flowchart in Fig. 6 shows the assignment process for the
self-routing parameter (i, d, and j) to the incoming cells. Step
400 is the initial state, and X cells are input in a given external
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cycle through the IV input ports of SW-PPS. Step 402 shows re-
moval of a cell from the nonempty set of input cells. When the
incoming cell selected in step 402 is destined to output port d,
the assignment process must determine which layers conform to
the PPS restriction (step 404) for this cell, and then finds out the
minimum value of Switch[i].QQq in these layers’ dth memory
module (step 406). After it finds out the minimum Switch[i].Q 4
which is in the ith layer, the value of 7, is assigned as ¢ for the
incoming cell, i.e., ¢4 = 7. According to step 408, if the number
of cells in the dth queue of the switch[7] (:th layer) is greater
than queue size L, the cell destined to d is dropped, and the
assignment process loops back to step 402 to process another
cell. In step 410, Switchli].Qq and SW.j are compared. If
Switch[i].Qq < SW.j, then it means it is the only cell in this
memory module and it doesn’t need to wait because there are
no other cells waiting for that destination port in this memory
module. In such a case, j4 is assigned as the current location of
the SW for the incoming cell (step 412), i.e., j4 = SW.j. Con-
sequently, cells are quickly sent to multiplexers according to the
current location of the SW. In step 414, Switch[i].Q 4 is moved
to the next position of the SW.j. If Switchl[i].Q 4 > SW.j, then
it means that the queue has been building up for the cells des-
tined to output port d. For the incoming cell, j 4 is assigned to the
next position of the last cell in the queue (j4 = Switch|i].Qq)
in step 416. According to step 418, Switch[i].Q 4 is then ad-
vanced to the next position. Finally, self-routing tag is attached
to the arriving cell.

The self-routing parameter assignment circuit in Fig. 3 and
flowchart in Fig. 6 use counters and tables (shown in Fig. 7)
to help the determination process of self-routing parameters.
Fig. 7 provides one method for implementing the distributed
self-routing parameter assignment circuit of SW-PPS. For each
internal cycle, the SW.j in each processor (shown in Fig. 7)
updates independently according to the SW traversal flow dia-
gram in Fig. 5. In Fig. 7, the tables 401, 40, ---, 405 of the
processor 20,4, ¢ € [1, N], record which center-stage switches
conform to the PPS restriction for the demultiplexer ¢ (for step
404 in Fig. 6). If the demultiplexer ¢ sends a cell to switch[7]
(i.e., ¢th layer), 7 € [1, K], at time ¢, the demultiplexer ¢ sends
another cell to switch[7] after time ¢ + K — 1 (PPS restriction);
in other words, the table 40; of the processor 20, records that
the demultiplexer ¢ sends a cell to switch[¢] at time ¢ and sends
next cell to switch[¢] after time ¢ + K — 1. According to tables
of the processor 20, the parameter assignment circuit can iden-
tify which center-stage switches conform to the PPS restriction,
and does not require feedback from the internal switch layers.
Hence, the tables in the processors 20, are updated according
to the PPS restriction. The assumption is that the incoming cell,
whose header is header(s, d), comes from PPS’s input port s and
is destined to PPS’s output port d. After the header of the in-
coming cell passes through the processor 20, in the assignment
circuit, the self-routing of header(s, d) is according to d. For
example, in Fig. 7, self-routing of header(1, N) is according to
the destination address N. The tables 401, 405, - - -, 40k of the
processor 304, d € [1, N], record the value of Switch[i].Q 4. In
other words, the value of Switchl[i].Q 4 in the dth memory mod-
ule of switch[] is recorded in the table 40; of the processor 30,.
This information is used to identify step 406 in Fig. 6. Because

(1) Self routing of header(s, d) is according to d in the circuit.
(2) Self routing of header(s, d) is according to s in the circuit.
(3) SW.j updates according to the flowchart in Fig. 4.

(4) Tables record which switches conform to the PPS
restriction (for step 404 ), and are updated according to
the PPS restriction.

(5) The tables record the value of Q, (for step 406), and are
updated according to steps 410 to 418.

3) ﬂ Processor 20, ﬂ Processor 30, / ®)
[0 400 ] b e e
mader(l,N) T — w1 (1) — (2)

»  1/O circuitry F /O circuitry -
ﬂ Processor 30,
) 40,40, - [ 40,] 40, |40, |- |40,
»  1/O circuitry F 1/0 circuitry >
M Processor 20y SWj
[0 40:[ 0 [0 40:[ [
=| 1/0 circuitry F ->| /O circuitry lg >

Assuming that header(s, d) comes from sth input port of PPS, and
goes to dth output port of PPS.

SWj | Processor 20,

Processor 30y

Fig. 7. Assignment process for self-routing tag.

Switchl[i].Qq value in the table 40; of the processors 304 is up-
dated according to steps 410 to 418, the tables in the processors
304 also do not require feedback from the center-stage switches.
After the cell header passes through the processor 304 in the
assignment circuit, it must return to its original source address.
Hence, the self-routing of header(s, d) is according to s. For in-
stance, self-routing of header(1, N) is according to 1 in Fig. 7,
after header(1, V') passes through the processor 30 5. When cell
headers arrive at the output ports of the parameter assignment
circuit, they have become to the self-routing parameters (i, d,
and 7) by a parameter assignment algorithm (Fig. 6), and then
are attached to cells as a self-routing tag. Afterward, the cells
with their self-routing tag are forwarded to respective demulti-
plexers.

The SW scheme, which has O(N) complexity (due to steps
404 and 406 in Fig. 6) and does not need feedback from the
center-stage switches, is not too complex to be practically im-
plemented. The memory size of the self-routing parameter as-
signment circuit is 2K N tables, which may be sufficiently small
to allow the memory to be placed on chip. For instance, if IV is
256 ports, table is 256 bytes, K is 10 layers, and center-stage
switches are CIOQ switches, then the memory size in the as-
signment circuit is 1.25 Mbytes. This can be placed on a chip
using today’s SRAM technology. Moreover, a small queuing de-
lay in the parameter assignment circuit can be neglected. Addi-
tionally, the SW-PPS employs a self-routing parameter 7 for each
incoming cell to be self-routed through demultiplexers (step 2 in
Fig. 3), so it doesn’t need buffer in the demultiplexers.

Although the idea of SW-PPS comes from SW-switch [8],
SW-PPS and SW-switch are of completely different architec-
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tures, algorithms, and contributions. The SW-switch is a class
of share memory switch architecture with plural memory mod-
ules, but the SW-PPS in this investigation is a novel kind of
PPS [5], [6] architecture whose all center-stage switches operate
lower than network speed. Hence, the center-stage of SW-switch
is plural memory modules, and that of SW-PPS is a group of
low-speed switches. The algorithm of SW-switch fits the multi-
ple memory modules that are physically one layer but logically
multiple layers. However, SW-PPS algorithm is employed on
the PPS architecture, physically multiple layers and logically
multiple layers, and SW-PPS scheme must consider the PPS re-
striction to dispatch cells. The SW-switch features high scala-
bility when compared with other shared-memory switches. Our
work shows that SW-PPS uses memory space more effectively
than RR-PPS, while retaining RR-PPS’s merit that internal line
speed can be lower than external line speed.

D. Illustration of the SW-PPS

Fig. 8 presents a stream of cells that arrive at the demultiplex-
ers of 2x 2 SW-PPS. W and X represent the two demultiplexers
of the switch. Y and Z represent the two multiplexers. Each
incoming cell is referred to by its destination address. For in-
stance, the cell that arrives in the second external cycle on the
demultiplexer W is destined to output port “Y”". For illustration,
Fig. 8 depicts a configuration of the 2 x 2 switch, for which
the queue length L = 5 cells and the number of center-stage
switches deployed, K = 3. Based on the parameter settings,
N = 2, the required minimum number of center-stage switches
K = 3 (Section II-B). The incoming streams of cells in six ex-
ternal cycles are WW; and X;; ¢ € [1, 6]. For illustration, cell Wy
in Fig. 8 comes from demultiplexer W in external time slot 1 and
is destined to multiplexer Y. For two internal cycles (six exter-
nal cycles), Table 1 presents the variation of Switch[i].Q 4 and
SW.j with time in the example in Fig. 8. Table 2 presents a de-
tailed time chart, which shows that cells arrive at the multiplex-
ers in different internal cycles along with the traversal of SW.
In the multiplexers, cells are stored, reordered, and then trans-
mitted in the correct order [5], [7]. Fig. 8 also displays the oc-
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Table 1. Variation of symbols

Internal time slot 0 1 2

Externaltimeslot 0 |1 2 3|4 5 6
Switch[1].Qy = 1|2 2 2|2 2 3
Switch[1].Qz= 1112 2 2|3 3 3
Switch]2].Qy = 1|1 2 3|3 3 3
Switch]2]Qz= 1|1 1 1|1 3 3
Switch[3|.Qy = 1|1 2 3|3 3 4
Switch[3].Qz= 1|1 1 1|1 3 3
SW.j = 0 1 2

Table 2. Time chart for output of cells

Internal time slot 2 3 4
Output Y WiWeXs X XsW3 W
Output Z X4 WiWs5 X5
SW.j = 2 3 4

cupancy of the 3-D memory space after two internal time slots.
The SW counter in the second internal cycle demonstrates that
it is currently processing the cells that belong to the SW.j = 2.
The circled cells represent earlier occupancy of the cells in the
global memory space before being output in earlier cycles. In
the example in Fig. 8, the parameter assignment circuit con-
trols the growth of the number of cells in the queue (step 408
in Fig. 6). When the number of cells in the queue exceeds queue
length (in this example, queue length L = 5 cells), all other in-
coming cells, destined to the congested output port, are dropped.
In Fig. 8, W3 must conform to the restriction of PPS (for demul-
tiplexer W, switch[1] and switch|[2] has been used in external
time slot 1 and 2) and only the switch[3] is adopted. For the
same reason, Wy selects only the switch[1]. When the demulti-
plexer X sends X to switch[3] at external time ¢ = 2, demul-
tiplexer X sends another cell to switch[3] after external time
t+ K —1 = 4 (PPS restriction). Therefore, X 5 has two choices,
switch[1] and switch[3]. X5 chooses the switch[3], because
Switch[3].Qz = 1 is smaller than Switch[1].Qz = 3 (step
406 in Fig. 6). Similarly, X¢ also has two choices, switch[l]
and switch[2], and chooses switch[1]. In Table 1, because of
(Switch[2].Qy = 1) < (SW.j = 1) in external time slot 1
(step 410 in Fig. 6), Switch[2].Qy equals two in external time
slot 2 (Switch[2]).Qy = (SW.j mod L)+1 = (1 mod 5)+1 =
2, step 414 in Fig. 6). Because of (Switch[2].Qy = 2) >
(SW.j = 1) in external time slot 2 (step 410 in Fig. 6),
Switch[2].Qy is three in external time slot 3 (Switch[2].Qy =
(Switch]2].Qy mod L)+ 1 = (2 mod 5) + 1 = 3, step 418 in
Fig. 6).

IV. ANALYSIS OF RR-PPS AND SW-PPS

This section presents an analytical performance model for
PPS using RR and SW scheme under uniform traffic. This work
is an approximation of the performance analysis of PPS. The
PPS is further simplified to an output queue represented by a
Markov chain [11], [12]. Finally, three equations are derived for
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SW PPS throughput K

Fig. 9. Relationships among probabilities for RR-PPS and SW-PPS.

performance measures. The following assumptions are made:
e C(ells arrive according to a Bernoulli process, and the size of
the cell is fixed.
Packet destinations are uniformly distributed.
Center-stage switches are OQ switches, and each queue
length has a finite capacity.
For clarity, the following is a list of notations used in the devel-
opment of the performance model and its subsequent analysis.
Fig. 9 is given to illustrate the relations among these notations.
N: Number of ports of the PPS
K: Number of center-stage switches
p: Input load
p': Internal load of the PPS
L: Size of buffer(queue length)
P;(t): Probability that j cells are stored in a buffer at internal
cycle t
o Py,p(t): Probability that a buffer overflows at internal cycle
t
g;: Probability that ¢ cells arrive at the same output buffer
r: Probability that a cell in a buffer successfully moves to
the multiplexer
e 7: Probability that a cell in a buffer unsuccessfully moves to
the multiplexer (r = 1 —r)

A. Analysis for the RR-PPS

Because there is no HOL blocking problem in center-stage
0OQ switches [1], [2], a HOL cell in a buffer can successfully

(ge15tgriast g+
(8ra2i+8uss . F 2N

(grrgrart...rgn)(r)

(gr+1tgrat.. gn)(r)
Hgrertgraat... Tgn)(r)

Hgriatgrast... Tgn)(r)
g(r)+gr(r)

—
=N

gitgrt.Fgn) ()t
go(M)tgi(r) (gatgst...tgn)(r)

got&i(r) go(r)te(r) go(r)te(r)

Fig. 10. State transition diagram for output buffer of depth L when N >
L+ 1.

QL1 T FEM(EIHgGLeay +.tgN)(r) (i N>=L+2-j)

(g1 +..Fgn(+
(g2t Fgn)(r)
aran N

gotgi(r) go(Mtgi(r) (") tgi(r) go(ryte(r)

Fig. 11. State transition diagram for output buffer of depth L when N <
L+ 1.

move to the multiplexer. Therefore, we must assume the prob-
ability » = 1. Due to the RR-PPS input load = p, the internal
load (p') is p/ K in an external cycle and equals p in an internal
cycle. Hence, when the internal load (p’) = p in an internal
cycle, we can obtain g; and following equations.

gi= () p/N) (1 =p/N)¥=1, 0<i<N. (D

In the equation above, the probability that the arriving cell
chooses one from N buffers is p/N, and g, is the probability
that a total of ¢ cells arrive at the same output buffer (shown in
Fig. 9).

Now we develop the state transition diagram of the Markov
chain. We divide the Markov chain model into two cases, N >
L+ 1and N < L + 1, as illustrated in Figs. 10 and 11. In
this model, the PPS of size N is further simplified to an output
queue whose length equals L. If N > L 4 1, it is possible that
the output queue overflows at internal cycle ¢ even if there are
no cells in the queue at internal cycle ¢ — 1. In other words, Py
can go straight to Py, in Fig. 10. The reason is that when N
cells from N demultiplexers arrive at the output queue in which
there are no other cells, only L cells can successfully store in
the buffer and only one cell departing from the queue moves to
the multiplexer simultaneously. Other incoming cells, destined
to this queue, are dropped. If N < L + 1, the above situation
won’t overflow, and Py can’t go straight to Py,op, as shown in
Fig. 11.

In the diagram in Fig. 10 (N > L + 1), the buffer has L + 2
states, each corresponding to a specific number of cells in the
buffer. The rates of cell flows are used in deriving the following
equilibrium probabilities. If N > L + 1, we derived following
equations.
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Py(t+1) = Po(t)(go + g17) + P1(t)gor )
J Jj+1
Pi(t4+1) = > Pu()gj-nT+ Y Pu(t)gjr1-nr 1 <j< L—1
n=0 n=0
3)
L L
Py, (t + 1) = Z ‘Pn(t)gLfnf+ Z Pn(t)gLJrlfnT + Pdrap(t)
n=1 n=0
4)
L N

Pu(t)git+Y > Pa(t)gir

n=01i=L+2—n
)

In Fig. 11, we now present a state-transition diagram for output
buffer of depth L when N < L + 1. For simplicity, in the
figure we show only transitions into a reference state j and a
few relevant states. If N < L + 1, the following equations are
obtained.

Po(t+1) = Py(t)(g0 + g17) + Pi(t)gor (0)

Pdrop(t+1) = Z Z

n=0i=L+1—n

J

Pi(t+1) = 3 Pat)gs

n=0 it (7)
+ Pn(t)gj-i-l—nr; 1<j<N-1
n=0
j —
P](t+1): ZNPn(t)gj,nT
T ®)
+ Z Pn(t)ngrlfnT.v N S]S L-1
n=j—N+1
L
PLt+1)= > Pa(t)gr—nT
+ Z Pn(t)gL+1—nr + Pdrop(t)
n=L—-N+1
L N
Popop(t+1) = 3 >, Put)gir
n=L—N+1i=L+1—n (10)
L

N
+ Z Z P, (t)gi'r-
n=L—N+2i=L+2—n

B. Analysis for the SW-PPS

Because SW scheme will choose one switch whose @4 is
minimum (shown in steps 404 and 406 in the Fig. 6), we ob-
tained internal load (p’) of the SW-PPS and g;.

, 1K(1—p)+1
pzp/( 1 )

For the above equation, an arriving cell will pick one of the
switches that conform to the PPS restriction, and () 4 of the se-
lected switch is the minimum. K (1 — p) + 1 is the number of
switches that conform to the PPS restriction. When the exter-
nal load (p) increased, the number of switch conforming to the
restriction of PPS decreased. For example, when K = 10 and
p = 0.8, the average number of switches complying with the

)
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restriction is three. Therefore, the arriving cell can select the
minimum @ 4 from these three switches.
gi= ()P /N) A= p /NN, 0<i<N. (12
In (12), the possibility of selecting one from N output queues
is p//N for the coming cell, and g; is the probability that a to-
tal of ¢ cells come to the identical output queue (see Fig. 9).
The part of the Py, P;, Pr, and Py,.,, for SW-PPS is the same
as (2) to (10), and » = 1 (due to the HOL blocking problem
free). The Markov chain for the SW-PPS is similar to that of
RR-PPS. However, the difference is that SW-PPS uses the (12)
but RR-PPS adopts the (1) to derive g;. Now that all the steady-
state probabilities are available, the three primary performance
measures are given as follows:
Drop_Rate(p,t, N, K, L) = Pirop(t). (13)
Because a cell arriving at the switch either passes through or
drops out of the system, the throughput and internal cell delay
of a PPS buffer are obtained as follows:

Throughput(p,t, N, K, L) = (Input_Load)—(Drop_Rate)

= pP— Pdrap(t) (14)
Internal_Delay(p,t, N, K, L)
L .
_ [Zi=1 i Parop(t)] + LParop(t) . 5)

1 — Po(t)

V. COMPARISON AND SIMULATION
A. Comparison of Analytical Results and Simulation Results

A time-progression method is used to calculate the analyti-
cal results for RR-PPS and SW-PPS. This approach works with
(1) to (15) as follows. First, initial values are entered into the
performance probability equations: Py(0) = 1 and P;(0) =
Pr(0) = Parop(0) = 0. The values of the following proba-
bilities in the next time step are then calculated: Py(1), P;(1),
Pp(1), and Pyrop(1). The computation continues until Py (t),
P;(t), Pr(t), and Pgyop(t) reach steady-state values, which are
then substituted into the closed forms of the three performance
measures and the numerical results are computed.

The measures of interest used to evaluate performance are
mean throughput, cell loss ratio, and average internal cell delay.
Suppose a 64 x 64 PPS. And suppose the number of center-stage
0Q switches (K') = 128 and 64, and the queue size (L) = 16 and
4 cells. At each input port, cells are generated by a Bernoulli
process with the same rate [9], [11]. Figs. 12—17 show the math-
ematical analysis and simulation results for SW (K, L, z) and
RR (K, L,x). The parameter x = S represents the simulation
result (dotted curves in Figs. 12-17), and x = () represents the
result of queuing analysis. We can find that analytical results are
similar to the simulated results. Hence, the experimental results
indicate accuracy of the analytical results. Our proposed model
and analysis successfully exhibit these performance characteris-
tics. In (11), (K (1 — p) + 1) has to be an integer value. Hence,
input load (p) of the analysis model must plug one but that of
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the simulation can plug 0.99, when traffic load is 0.99. Conse-
quently, the SW-PPS result of the simulation and the analysis
are little different when traffic load is 0.99 in Figs. 12—17.

Figs. 12-17 compare the performance for SW (K, L, S) and
RR (K,L,S). When L = 16 cells, the SW-PPS provides
slightly higher throughput (Fig. 12). It has a lower cell delay
and cell drop rate than the RR-PPS (Figs. 13 and 14). Under
the same conditions with queue size (L) = 4 cells, Figs. 15—
17 compare the performance of SW (K, L, S) with that of RR
(K, L,S). The RR-PPS’s throughput falls to 88%, but the SW-
PPS’s throughput remains at around 99% (Fig. 15). In Figs. 16
and 17, when the queue size decreases, SW-PPS still outper-
forms RR-PPS. This reveals that even when less memory is
available, SW-PPS performs well; in other words, SW-PPS em-
ploys memory more effectively than RR-PPS. The SW scheme
selects one of the switches that conform to the PPS restric-
tion, and Q4 of the selected switch is the minimum. More-
over, Switch[i].Q 4 increased with the number of cells in the dth
memory module of the ith switch. In other words, to store arriv-
ing cells, SW scheme will choose the particular memory mod-

Fig. 15. Comparison of throughput (L = 4).

ule having the minimum number of cells. Therefore, SW-PPS
employs memory more effectively than RR-PPS, and supplies
better cell drop rate, cell delay, and throughput. In the simula-
tion results, a small queuing delay in the parameter assignment
circuit is neglected, because in Section III-C, we explain that the
complexity the SW scheme is O(/N), and the memory size of the
assignment circuit can be sufficiently small to allow the memory
to be placed on chip using today’s SRAM technology.

B. Simulation Result for Bursty Traffic Model

A bursty traffic [7], [8], [11] is produced employing a two
state ON-OFF model to investigate performance of the PPS ar-
chitecture. The bursty traffic model was generated using a two-
state ON-OFF model in which an arrival process to an input port
alternates between ON (active) and OFF (idle) periods (Fig. 18).
During the ON period, cells arrive at an input port continuously
in consecutive cell time slots, and no cells are generated dur-
ing the OFF period. In other words, cells arrive in consecutive
slots in the ON period and no cells arrive in the OFF period. If
an input is in the OFF state, it will switch to the ON state with
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Fig. 18. Two-state on-off model.

probability 3, while it will stay in the same state with probabil-
ity 1 — (. If an input is in the ON state, it will switch to the OFF
state with probability «, while it will stay in the same state with
probability 1 — . Hence, 1 — v = Pr [itis in ON state at ¢ + 1 |
itisin ON state at t], 1 — 3 = Pr [itis in OFF state at ¢ + 1 | it is
in OFF state at t]. The average burst length (ABL), average idle
length (A7 L), and average load (AL) are derived as follows.

ABL = Y Ka(l—a)*'=1/a (16)
K=1
AIL = Y Kpa-pft=1/8 (17)

=
Il

1

Fig. 20. Comparison of cell delay (L = 16).

ABL 3

AL:ABL+AIL:a+ﬁ'

(18)

In this section, we employ the bursty traffic model and as-
sume that ABL = 16 and 4 cells. Suppose a 64 x 64 PPS and
that the number of center-stage OQ switches was K = 128 and
64 with queue length (L) = 16 and 4. The input load p varies
from 0.1 to 0.99. Figs. 19-24 compare the performance of SW
(K, L, ABL) with that of RR (K, L, ABL). SW-PPS provided
a higher throughput than RR-PPS (Fig. 19) while L = 16 cells.
The cell delay and cell drop rate for SW-PPS are apparently
lower than those of RR-PPS (Figs. 20 and 21). When queue
size is L = 4 cells, Figs. 22-24 show the comparison of the per-
formance of SW (K, L, ABL) and RR (K, L, ABL). It is ob-
served that SW-PPS still provided a higher throughput (of about
98%, Fig. 22) than RR-PPS (about 87%, Fig. 22) under bursty
traffic. In Figs. 23 and 24, under the queue size= 4, the internal
cell delay and cell drop rate for SW-PPS are obviously lower
than those of RR-PPS. Therefore, even under the bursty traf-
fic, the SW-PPS outperforms regardless of reduction in memory
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Fig. 22. Comparison of throughput (L = 4).

size; the experimental results show that the SW-PPS offers bet-
ter memory space efficiency.

VI. CONCLUSION

Higher line rates may soon exceed the speed of commercially
available memories. It becomes difficult to buffer packets as fast
as they arrive when using traditional packet switches. Accord-
ingly, this investigation proposes a new SW packet switching
scheme for the PPS, called the SW-PPS. It has the RR-PPSs
advantages that all memory buffers and internal line rate run
slower than the external line rate. However, it uses memory more
effectively. Clearly, even if the memory space is reduced, the
SW-PPS still performs well. Moreover, in the SW-PPS each in-
coming cell has a self-routing tag, enabling it to be self-routed
through the switching system. The SW-PPS provides a higher
throughput, lower cell delay, and lower cell drop rate than the
RR-PPS under identical Bernoulli traffic and bursty traffic. An-
other significant contribution of this work is that we propose a
new analytical model for evaluating RR-PPS and SW-PPS. The

Fig. 24. Comparison of cell drop rate (L = 4).

proposed analytical model is a general one in the sense that it
assumes arbitrary switch size, buffer size, and number of center-
stage switches.
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