
Envisioning the Future for
Multiprocessor SoC

Jerraya: Our roundtable topic is, Why do we need

multiprocessor systems on chip (MPSoCs)? How

would you briefly define an MPSoC, and how is it

different from classic system-on-chip or ASICs design?

Wolf: A multiprocessor SoC has two aspects. One is

the multiprocessor aspect—we can debate how pro-

grammable those processors should be. The other

aspect is distinguishing a SoC that’s one chip—plus all

the other chips we need to make the system work—

but we need to distinguish that architecture from ASICs

as well as from the multicore CPUs in personal

computers these days. Multicore CPUs aren’t designed

to be systems; they’re components. One difference

with the SoC is that it’s designed to be a complete

system, often at least somewhat application specific.

Levy: We can view an MPSoC from a hardware and

a software perspective. From the hardware side,

vendors claim to build multiprocessing chips, but

what does that really mean? Does it mean taking two

cores and gluing them on a die, and somehow they

communicate with each other? Or maybe they are two

cores that perform independent of each other? Either

way, it becomes a challenge when vendors add three,

four, five, or even 100 cores. How do we write the

software to get these cores to effectively communicate

with each other, and how do we design the hardware

mechanisms to enable efficient, low-latency data

transfers?

Nakaya: My definition is simple. An MPSoC has more

than two processors on one chip.

Jerraya: Why do we need more than one processor

on a single chip?

Ramacher: It depends on the applications. For

multiple processors on the chip, I see three big areas:

One is network processors, another is cell phones with

baseband and multimedia processing, and the third

area is in automotive driver assistance systems and in-

car entertainment.

Franza: For general-purpose processor design, the key

goal has been performance. Moore’s law has charted

a tremendous growth in microprocessor performance;

however, we’re in a phase where power consumption

is limiting performance. Power efficiency and perfor-

mance/watt are now critical metrics along with

absolute performance. One approach to increase

performance efficiency is by adding multiple cores

and running them at a lower frequency and lower

voltage.

Multiprocessor SoCs are no longer an advanced

research topic for academia. Ninety percent of SoCs

designed in 130 nm include at least one CPU. Most

popular multimedia platforms are already multiproces-

sor SoCs. This roundtable brings together key players

from the semiconductor industry and from academia to

discuss the challenges and opportunities brought by

this new technology.

IEEE Design & Test thanks the roundtable partici-

pants: moderator Ahmed Amine Jerraya (CEA-Leti),

Olivier Franza (Intel), Markus Levy (The Multicore

Association and EEMBC), Masao Nakaya (Renesas

Technology), Pierre Paulin (STMicroelectronics), Ulrich

Ramacher (Infineon Technologies), Deepu Talla

(Texas Instruments), and Wayne Wolf (Princeton

University). Jerraya gratefully acknowledges the help

of Roundtables Editor Bill Joyner (Semiconductor Re-

search), who organized the event. Special thanks go to

the IEEE Computer Society for sponsoring the round-

table.

Roundtable

0740-7475/07/$25.00 G 2007 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers174

Levy: Because the automotive field is not an

application in and of itself, manufacturers are starting

to use multicore in some individual areas, such as

power train and safety electronics—and of course, in-

car entertainment systems. But where traditionally the

power train electronics had a single CPU with high-

performance peripherals around it, the processors

just don’t have enough horsepower to keep up with

the hybrid technologies and the fuel efficiency re-

quirements, so the power train is going multicore as

well.

Ramacher: At Infineon, we’re selling controllers or the

TriCore, which comes with flash and some of the

memory, but it’s not really a multiprocessor. High-end

BMWs, for instance, have approximately 95 control-

lers—the problem of embedded software on system

design is for BMW, not for us as a semiconductor

company.

Earlier when I mentioned the automotive applica-

tion, I had in mind the driver assistance systems—for

instance, imaging systems looking for track identifica-

tion and so on. That means a lot of imaging power, and

that comes not with one 5-GHz DSP but with several in

parallel. The driving force for Infineon is to meet the

applications’ performance requirement. We need to

supply reasonable power, and in the embedded

arena—for handsets, for instance—it means 300,

maybe 600, MHz, barely one gigahertz per processor.

We need a baseband processor with 10 giga-instructions

per second at least, and that means 15 to 33 processors

on chip.

Paulin: The first driver in our applications is usually

power; the second is flexibility. It’s parallel systems—

already parallel in hardware—in which we need more

flexibility while keeping a reasonable power/perfor-

mance ratio. Moving from hardware to a general-

purpose processor at 1 GHz is too big a step. We’re

trying to find the right balance of power and flexibility.

First and foremost, we’re concerned with components

previously implemented in hardware—extremely par-

allel and extremely low power—which are moving to

more application-specific, domain-specific processors

at a low frequency with lots of parallelism. That

parallelism is in the application. We’ve been doing it

for years in hardware; now we need to do it more

flexibly through a combination of hardware accel-

erators and domain- or application-specific processors.

Wolf: Let’s also remember the importance of real time.

Unlike laptops, a lot of these SoCs must operate in real

time and meet deadlines. Sometimes that’s impossi-

ble—and, in general, less efficient—on a single pro-

cessor. One of the basics of real-time system theory is

that we cannot always use 100% of the CPU and also

guarantee that we’ll meet deadlines. If we have time-

critical tasks, we often put them on separate proces-

sors to make sure they meet their deadlines; then we

use another CPU to share the things that aren’t so time

critical. Real time is an important driver for multi-

processors, and as a side benefit, we get the power

benefits of being able to run several processors at

lower clock rates.

Jerraya: When you say ‘‘multiple processor system on

chip,’’ do you mean the same processor duplicated

several times or a different processor on the same

chip?

Nakaya: I mean that both cases are multiple processor

systems on chip. Renesas has both examples. One is

an application processor (SH-Mobile) for mobile

phones. It has heterogeneous cores. The other is

a reconfigurable processor (MTX) for audiovisual

applications. It has many of the same cores.

Talla: We’ve seen scenarios that have heterogeneous

processors on the same SoC. For example, at Texas

Instruments we have our OMAP [open multimedia

application platform] platform and the DaVinci plat-

forms where we have a general-purpose processor, like

an ARM, and we have a DSP, like a C64 or a C55. On the

other hand, some applications, such as high-density

voice, just have several DSP cores tied together.

Paulin: The applications we’re dealing with range

from the order of one GOPS [giga operations per

Jerraya:
When you say ‘‘multiple
processor system on
chip,’’ do you mean the
same processor
duplicated several times
or a different processor
on the same chip?

March–April 2007 175

second] for high-end audio to hundreds of GOPS in

the video, graphics, and imaging domain. Anything

involving more than a few GOPS means that some part

of the functions is implemented as ASIC hardware. We

cannot implement that with a set of homogeneous

RISC processors. If we’re saying power is important,

we’re talking about a couple hundred megahertz

processors, and they must be application- and/or

domain-specific.

What I see happening is what I call regular

heterogeneity, where heterogeneous systems, general-

purpose hosts, then domain-specific processors, like

DSPs, become more like VLIW processors. I agree with

Ulrich Ramacher’s presentation earlier today: that

application-specific processors and hardware, and

reconfigurable logic in the middle, will probably be

implemented not on chip, but in a system-in-package.

We’re trying to achieve as much regularity and

homogeneity as possible, but not more than we can

afford in terms of our power budget.

Franza: Wayne’s comment is interesting—that em-

bedded processor and laptop processor requirements

are completely different. In that sense, all legacy

microprocessor design companies are fairly new to the

world of MPSoC, because that wasn’t what we were

targeting. We were really targeting single-core perfor-

mance, and when we hit the power wall, we became

interested in MPSoC, so we’re pretty new in that

discipline. To answer your question, Ahmed, I would

say that, for now, microprocessors are moving to

multiple similar cores, homogeneous cores, on a chip.

The future will depend on the applications. As we

drive for increased performance and power efficiency,

the use of dedicated processors for hardware acceler-

ation may prove to be a viable solution introducing

heterogeneous processors and greater integration of

peripherals for MPSoCs.

Levy: It’s obvious that for now, the majority of

processor vendors are implementing multicore devices

using the homogeneous and SMP approach. But what

are the performance limits for a shared memory

architecture? Intel, for example, is at two cores now,

going to four, and soon to eight and perhaps higher.

The standard SMP approach has performance limits

beyond four cores, but vendors are implementing

a variety of new techniques to minimize the impact

with a greater number of cores. Alternatively, vendors

can implement MPSoCs using a distributed memory

architecture, which could include homogeneous or

heterogeneous cores. While homogeneous MPSoCs

make debugging much easier, with more complex

chips, such as ST’s Nomadik and TI’s DaVinci, we

need more proprietary solutions for debugging. Even

those chips are relatively simple compared to where

things are going in the future. We don’t even know

what types of hardware accelerators will be included in

future MPSoCs, so the whole debugging issue just gets

worse.

Ramacher: The landscape of multiple processors

today is heterogeneous. For handhelds, we will see

homogeneous architectures developed for the base-

band and the multimedia part sharing one core and

having different extensions by instructions. I wouldn’t

consider these different extensions to be heteroge-

neous, because the software development and com-

piler is to a great extent shared. The handheld scenario

may be a special case, and a homogeneous platform

clearly has a lot of advantages.

Paulin: We need to distinguish heterogeneous

functionality and performance from the way we

implement it. If we have a base core from which we

can build 95% of our software tools in common and

then derive different application- or domain-specific

specializations in a clean, repeatable way with the

same tools, then we have the best of both worlds.

That is how to achieve heterogeneity with a homoge-

neous approach. That has big benefits in terms of

having the same tools and the same verification

environment. In the end, we have to build platforms

for these and ISSs [instruction-set simulators], virtual

platforms, and so forth.

Levy: One of the things the Multicore Association is

trying to do is establish a common terminology in the

industry, because everybody calls these cores different

Levy:
We don’t even know
what types of hardware
accelerators will be
included in future
MPSoCs, so the whole
debugging issue just
gets worse.

Roundtable

IEEE Design & Test of Computers176

names. Is a core processor a core or does it have to be

a completely separate hardware accelerator with its

own instruction set capability in order to be called

a core?

Ramacher: We define a core processor to be a RISC or

a VLIW processor, and we usually attach a small RISC

core to an accelerator such that we have a homoge-

neous programming environment.

Talla: I agree, there’s a lot of confusion as to what we

call a core. If it’s a simple accelerator tied to other

accelerators, or if it’s tied to an ARM or a DSP, it

probably should just be considered an accelerator. But

if we have a piece of IP that’s essentially providing

subsystem functionality—for example, if a camera

phone is doing the complete capture functionality, or

what we call the ISP [image signal processor], we

could probably classify that as a core.

Levy: The question is not necessarily, ‘‘What’s the

market for MPSoC?’’ I think we have to look at what the

applications are, and it doesn’t really matter whether

it’s an MPSoC or a Pentium processor as long as it’s

doing the job within the price, performance, and

power budget. The end user doesn’t care.

Ramacher: Someone defined a multiple processor

system on chip as simply more than two processors,

and that could mean that individual programs are

isolated, which we’ve known for 10 or more years. I

think of the new applications—multistandard radios,

for instance. The new challenge is that we can use

a number of processors in parallel, working in parallel

on a single program.

Paulin: The turning point in the industry is happening

now. We currently approach design as a bottom-up

assembly of independent subsystems to constitute

a multiprocessor SoC, but we’re not doing multipro-

cessing with a top-down approach. Moore’s law

applies to our bottom-up design of individual sub-

systems: Four chips will merge into one, so the

traditional one RISC with one DSP is now becoming

multiple RISCs with multiple DSPs for different

subsystems combining audio, video, imaging, 3D

graphics, and so on.

The key in this generational change is that we’re

now starting to design a system top-down from a set of

applications onto a multiprocessor platform, and we’re

starting to think about how those tasks interact. The

first step is to synchronize the separate tasks. In those

subsystems, we’re reaching a point where one pro-

cessor plus a coprocessor is not enough. Perhaps

we’re implementing four processors plus hardware

coprocessors, so there’s multiprocessing in the sub-

system.

The next step is where we have potentially 32

processors for four individual audio, video, imaging,

and general-purpose control subsystems working

together. Then we’ll start thinking, ‘‘I never have all

32 running at the same time, so I can start migrating

tasks from an unused subsystem,’’ especially if we

have a homogeneous implementation of subsystems

in which we use a general-purpose RISC subset. Then

we could borrow resources that aren’t using other

subsystems—loosely coupled tasks that can be

performed on an unused subsystem. At that point we

arrive at the third step, which is migrating tasks and

sharing resources across the entire subsystem.

Those are the three steps: (1) achieve a bottom-up

design of loosely coupled subsystems that are not

designed to work together but are glued together; (2)

design subsystems that communicate efficiently and

are planned that way; and finally, (3) implement

resource sharing across subsystems for load balancing

at the top level.

Wolf: Pierre is right about the turning point. Remember

that during much of the 1980s and 1990s the reason for

VLSI was cost reduction. We took things that were on

a board and put them on a chip. We’ve certainly seen

systems on chip that represent cost reduction but where

we also achieve benefits in power—they’re really not

MPSoC. But now we’re starting to see true multi-

processors with multiple parallel threads of execution,

and that also means a different design methodology

from the applications. It’s much more software driven,

Ramacher:
The new challenge is that
we can use a number of
processors in parallel,
working in parallel on
a single program.

March–April 2007 177

so the hardware architects have to work more closely

with the software people to understand what the

software will do. That’s a big change.

Ramacher: We have two changes: one is related to

hardware people needing to program this program-

mable processor, and another change concerns the

software people. They used to have a single-processor

architecture; now they have a many-processor archi-

tecture.

Wolf: More readers of IEEE Design & Test are

hardware designers than software designers, but

clearly both hardware and software people need a lot

of adaptation to work in an MPSoC world.

Paulin: With respect to challenges, parallel MPSoC

platforms are the least challenging. A harder challenge

is to write parallel applications—that’s the whole

education of an entire software community in de-

scribing, validating, and specifying parallel systems.

The hardest task is mapping those parallel applica-

tions on that platform. In the industry, we’ve got it

completely backward. We’re focusing first on the

platforms, second on the expression of parallelism,

and third on the mapping. The mapping technology

will take 10 years to develop, the platform innovation

cycles typically a couple of years, so we need to turn

this around.

We can prototype an MPSoC platform in one year so

that it’s ready in three years. We basically already

know what we can do in platform mapping technol-

ogy. Anything more sophisticated will take 10 years—

software mapping technologies are more complicated

than innovative platforms, so we need to educate

platform designers about what software mapping

technologies we think we can build in the next three

years. Then we can limit the scope of what architec-

tures we should build in that same three-year period.

That is key: to achieve synergy in the three areas of

applications, tools, and platforms.

Wolf: Another problem related to mapping is that we

keep talking about software people, but in fact, much

of the software is from things like multimedia and

communications, which isn’t written by software

people. It’s written by signal processing and commu-

nications people who have little or no formal

background in computer science. In fact, if you look

at the reference implementations that come out of

standards committees, they are typically highly

sequentialized in ways that are difficult to unravel. It

would be great if the code that was handed to MPSoC

designers by application designers had nice clean

expressions of parallelism. Unfortunately, many of

these programs aren’t written with any notion of

parallelism in mind—in fact, some have been

sequentialized in ways that are very hard to unravel.

We have to undo all the problems with the software

and then figure out how to design the platform.

Nakaya: My background is hardware design, so I am

not familiar with software design. My question is: in the

hardware design, there are synthesis tools for each

design step. So, design productivity of hardware

increases dramatically, but I am not sure there are

good synthesis tools for software design. Are there any

good synthesis tools for software development?

Wolf: If you’re talking about something like C, we

have good compilers, but if you’re talking about

a concurrent application like a digital camera or a cell

phone where many things run at once, we don’t have

good enough tools where someone can write a high-

level parallel description, push a button, and get

a good software implementation.

Jerraya: My impression is that we are leaving the

structured world where we had a company design the

processor, a company design the system, another

company design the operating system, and then

a customer would write programs. What is the case

for MPSoC?

Talla: Semiconductor companies cannot afford to just

sell MPSoCs and expect other partners or vendors to

pick up the rest of the components like software and

Wolf:
We have to undo all the
problems with the
software and then figure
out how to design the
platform.

Roundtable

IEEE Design & Test of Computers178

reference designs. Today, most semiconductor com-

panies need to become systems companies. That’s

what many companies are becoming, in fact, and the

customer basically expects us to deliver, not only the

MPSoC and the documentation, but also the basic

software, tools, hardware, and sometimes a complete

turnkey reference design. That lets customers run to

production quickly and not spend resources on

developing mundane tasks. For example, if you’re

developing a video camera, there’s little reason for the

end customer to be developing the MPEG-4 or the

H.264 codec. The customer now expects the semi-

conductor vendor to develop the codec.

Paulin: System houses are definitely expecting more,

and expecting more of a turnkey solution, from the

semiconductor companies. At the same time, they’re

asking for more openness into multimedia subsystems.

They need a basic package, which is 90% of what they

want to sell to the marketplace, but increasingly they

also want to access those optimized multimedia

subsystems to program their own image quality

improvement, noise filtering, and whatever else they

think is the specific value they bring to the market. So

we have a conflict of delivering more while keeping

the system open so system houses can add their 10%

additional functionality in terms of complexity, which

for them might be a significant market differentiator.

Talla: That’s exactly what we are trying to address with

the DaVinci platform. It’s an open platform, fully

programmable. Customers can choose what value

they want to add at a higher level of abstraction or go

deep into the software stack to change any of the core

routines.

Levy: The more complex the SoC becomes, the fewer

components we want the customer to access. If we

have a SoC with a hundred cores, and customers want

to add value for a multimedia application, then that’s

the part we’ll open to them through some sort of API.

For example, take the case of the PowerQUICC

architecture from Freescale. This is a multicore device

containing a PowerPC core and a special RISC core for

accelerating various networking functions. Freescale

kept the latter core basically hidden for many years; it

was only accessible by using their library calls. In other

words, the PowerPC core was completely open, and

they provided the APIs for customers to access the

code inside the RISC accelerator.

Ramacher: The more complex APIs get for SoCs, the

more has to be developed by the semiconductor

house producing that SoC. How can you design an API

and the architecture of an MPSoC without having all

the application code?

Nakaya: At Renesas, we are not expanding our

business alone. As a semiconductor vendor, we have

relationships with our customers—mobile-phone ma-

kers like Fujitsu, Mitsubishi, and infrastructure vendors

like NTT DoCoMo. We can establish a joint de-

velopment with infrastructure vendors and with

mobile-phone/cellular-phone makers. Consequently,

we need to consider the value chain to increase total

values. If we focus only on direct customers, we will be

in a tough situation in the future. Our development

cost has continually increased, but our price has not

equally increased.

Franza: Multiprocessing systems with multiple CPU

chips have been available for many years. Operating

systems and software programs have evolved to

leverage this parallelism. When multithreading was

introduced, it let multiple programs simultaneously

run on a single die. Windows and Linux operating

systems can handle multitasking. Looking forward, the

evolution of multiprocessing capabilities on a single

chip will continue with multiple cores and also

virtualization, which is another way to increase that

capability.

A general-purpose processor is different from an

embedded processor: it runs hundreds of thousands of

different applications—it therefore cannot be opti-

mized for one specific application to the detriment of

others. However, programs running under operating

system control can provide information to the cores to

manage power performance and can exploit the

multiprocessing capabilities such processors offer.

Franza:
Looking forward, the
evolution of multipro-
cessing capabilities on
a single chip will continue
with multiple cores and
also virtualization, which
is another way to increase
that capability.

March–April 2007 179

Levy: You’re coming at it from the desktop and the

server side, but Intel’s also begun a big push into the

embedded world with its dual-core architecture. In

addition to providing lots of ready-made applications

or libraries to support that, you also have to maintain

an open architecture for people to program.

Franza: That’s true; one of the advantages is that the

X86 architecture is a very mature and robust architec-

ture and has a huge existing code base. It’s been

around for a long time, so developers know it well and

can achieve high levels of performance.

Jerraya: How difficult is it to design this MPSoC?

Levy: We’d have to look at it from the EDA perspective

as well as understand the different functions that need

to be integrated. To synchronize all of the activities,

access memory, and deal with all the high-level issues

is a significant challenge.

Franza: Another view is that, by putting multiple,

simpler cores on chip, those simple cores supposedly

would be easier to design or at least not as hard as

a single multiple-way multithreading core. Designing

each element of the MPSoC should be easier and more

manageable—because they’re smaller and require

less complexity. Assembling everything on the chip,

however, requires extra effort.

Once everything starts to get multiplied—cores,

power domains, clock domains, I/O ports, and so on—

a multitude of new problems arise and actually

increase the design’s overall complexity. For example,

to name only a few, timing verification, validation, test,

and debug of multiple (possibly heterogeneous)

domains is a challenging and somewhat new activity

required for high-quality MPSoC design.

Talla: Yes, MPSoC design is getting fairly complicated

and continues to do so, given that the performance of

applications is growing and the number of applica-

tions where we need to run simultaneous threads is

accruing, coupled with the fact that we’re integrating

more components—more analog—onto the latest

digital processor. On the other hand, we do have

some tools we can take advantage of. For one thing,

platforming helps a lot so that we don’t have to redo

the SoC from scratch for each generation or for each

application. Seventy to eighty percent of the SoC does

not have to be regenerated. Most components can be

reused. Also, having experienced designers on board

is another way to attack the complexity.

Paulin: We have to distinguish between designing

useful MPSoCs and delivering useful applications on

an MPSoC. The former is clearly a tough engineering

task. Examples like the cell are impressive, but

although there are hundreds of different design teams

able to build these platforms, only a couple offer tools

to program them efficiently.

Levy: Don’t forget that companies like Freescale,

IBM, and Intel are still building multicore processors

running at 2 to 3 GHz, which is a lot different than an

embedded multicore processor running at 300 MHz.

Ramacher: We have seen new qualities in design. In

the past 10 years, we mostly dealt with multiple

processors on chip that were working on their

individual program and not communicating with

other, isolated processors. These systems contained

often coprocessors or accelerators. During that time,

we looked at the algorithms and developed an idea of

what the hardware macros for the accelerators or

coprocessors should look like. Now, with multiple

processors for applications that must cooperate in

parallel, there’s no way to continue to do it in the same

fashion. Hardware-wise, building a scalable architec-

ture with multiple processors is not the problem; it’s

the mapping: partitioning the code, scheduling the

threads, synchronizing data.

Nakaya: Accordingly, as the integration level of MPSoCs

becomes higher, it takes a long time to do verification,

validation, and testing, in addition to debugging.

Therefore, it is more difficult to meet the time to market

requirement. These are big issues that present an

economical problem with future MPSoC design.

Paulin:
We have to distinguish
between designing
useful MPSoCs and
delivering useful
applications on an
MPSoC.

Roundtable

IEEE Design & Test of Computers180

Jerraya: If we have 100 companies making MPSoCs

and only a few providing the environments to program

them, will this technology be a differentiator in the

future for semiconductor companies?

Ramacher: I don’t see 100 companies—at least, not

surviving. Because the application areas are all in the

consumer arena, that means mass-produced products,

not niche markets. We have about one billion

handsets, and six or seven semiconductor houses

coming up with platforms—in the future I think only

a few semiconductor houses will develop these

consumer applications—including fabless semicon-

ductor companies—and I don’t see many tool

developers.

Wolf: The question of programmability gets back to

this question of what constitutes a salable chip. If

customers expect the semiconductor house to deliver

the video codec or the communications software with

the chip, then customers aren’t going to be writing that

code, and the semiconductor house can use whatever

methods and however many people it chooses to

develop the software.

Tools are certainly a good idea, but as Ulrich

Ramacher points out, that may not provide a market

for third parties who sell those tools. If we’re talking

about applications, clearly customers want to add

software to differentiate their products, but what sort of

software will that be? Highly paralleled software, or

will it be Pac-Man running on the host processor? I

suspect that, in many products, much of the pro-

gramming done by the systems house and not by the

semiconductor house will be the less parallel variety

and where more standard programming environments

will be enough.

Jerraya: We know about some successes for the

MPSoC platform. The TI OMAP has already earned

Texas Instruments about one billion dollars, which

already covers the cost of the platform’s development.

Any other success stories?

Paulin: STMicroelectronics’ set-top box platform. ST is

the market leader in that segment and has been for

many years. The set-top box started as an analog

platform and moved to digital with a single processor,

an ST20 old-fashioned RISC processor, and moved up

to the latest generation of dual, high-definition, set-top

box HDTV decoders, which have 10 to 20 processors.

Franza: Strictly speaking, it’s hard to claim a traditional

microprocessor is an MPSoC, but as more and more

functionality is integrated onto the CPU to gain lower

power and form factor benefits, the microprocessor

will become a major MPSoC player.

Nakaya: Renesas has developed a platform—the

name is EXREAL. We developed it in collaboration

with our customers, cellular phone vendors, and

infrastructure vendors. We expanded this platform

beyond mobile for automotive and audiovisual

applications. The EXREAL is configured using a new,

interconnected scheme to handle a variety of hard-

ware, software, and evaluation/validation design tasks,

such as scalable on-chip bus, multilayer API, and

performance and power evaluation.

Jerraya: Everyone needs MPSoC, then; so what’s the

next step?

Wolf: The question for the MPSoC evolution is, Will

architectures become less regular or more regular as

the chip size and number of processors grow?

Arguments can go both ways. Heterogeneous archi-

tectures often give lower energy consumption, which

is important, but more regular processors are easier to

program; also, because we can load balance, we can

play system-level power management tricks that we

can’t do with a highly heterogeneous architecture.

Paulin: Factors favoring platform homogeneity in-

clude design for manufacturability. With mask set

costs continuing to rise, if we can build a regular

system that’s overdesigned for classic applications but

has a high-end performance for a niche market and we

build it that way, then we get 50% yield, for example.

Nakaya:
Accordingly, as the
integration level of
MPSoCs becomes
higher, it takes a long
time to do verification,
validation, and testing,
in addition to
debugging.

March–April 2007 181

But on that 50% yield, we might have one third of the

system that’s completely functional. If it’s regular, we

can test the functional parts, disconnect the non-

functional ones, and offer a much cheaper product

with a simpler package. Besides yield management

and cost management, long-term reliability and fault

tolerance also favor homogeneity. If we overdesign—

building 12 processors when we need 10, say—we’ll

still have a fully functional, 10-processor system at all

times; and in the telecom space, for example, that’s

important. Power and cost are strong factors in our

design decisions now, but as we go to 45 nanometers

and beyond, other forces will come into play.

Ramacher: For me, the most important question is

how many different platforms we will see in the future,

and how many will survive. Will set-top boxes have

a different platform than the handsets? There are good

reasons for expecting spin-offs from the handhelds,

because of their advantage in economy of scale. Also,

we see the same set of applications on the various

terminals. Hence, we can expect convergence of the

architectures for the set-top boxes, home router

systems, and the Customer Premises Equipment.

Wolf: So you’re suggesting that the set-top box of the

future for cable TV could actually have a cell phone

processor inside?

Ramacher: Definitely. Not only is it the set-top boxes,

but think of the automotive applications, too. Current-

ly, we have entertainment or imaging applications im-

plemented in cars, which could be supported by a

good multimedia processor developed for handhelds.

Talla: It’s one thing to use some of the IP and the

infrastructure and another to reuse the whole SoC. I

don’t think we will see anytime soon where the whole

SoC in a cell phone can be used for a set-top box,

given that the set-top box SoC performance require-

ments will be significantly more than what the cell

phone is capable of doing. Today we are talking about

HD, dual HD, quad HD set-top boxes. For cell phones,

it will probably be another two or three years before

we record and play back single-channel HD.

Paulin: There are strong forces in the applica-

tion space that are driving convergence between

STMicroelectronics’ application divisions. ST is di-

versified in both the mobile and set-top box spaces,

and we’re seeing more discussion and effort to

homogenize the platform components as a first step.

Ultimately, the platform programming models, sharing

different IP, essentially become one virtual platform

with a lot of available plug-and-play software and

hardware IP. Both mobile and set-top box spaces share

the same competences in image processing, video

processing, audio, and networking. Homogenizing the

platform components reduces the number of total

platform variants, which becomes a key competence.

Levy: Is it conceivable that a future generation

general-purpose processor could consist of many

different heterogeneous cores, where you supply every

chip with every type of peripheral and accelerator on

it, whether you use it or not, because soon transistors

will be basically free? Is that a relatively conceivable

model?

Paulin: Leakage problems exist and will get worse

with scaling. I don’t see that we can just say ‘‘transistors

are free.’’ They’re free perhaps from an area perspec-

tive only, but not from the power perspective, which is

now dominating MPSoC design and development.

Talla: I don’t see such a model happening in the next

five to ten years. Transistors are getting cheaper, but

they’re not free. Today, we talk about selling cell

phones in Brazil, Russia, India, and China for $20—

that’s a basic GSM [Global System for Mobile

Communications] phone with no fancy features.

What’s to say in the next three to four years that we

might not sell the high-end phones for $20? Suddenly

we cannot expect in the next 5 to 10 years to throw in

the whole kitchen sink and meet the price points that

we need to reach.

Nakaya: I believe the problem will be design cost. The

value of LSI products per wafer (8-inch equivalent)

Talla:
For cell phones, it will
probably be another
two or three years
before we record and
play back single-
channel HD.

Roundtable

IEEE Design & Test of Computers182

stays unchanged, and the production cost per wafer

also remains unchanged for these past 15 years,

although advanced process technologies have been

introduced and the numbers of integrated transistors

have been increased. Therefore, profits per wafer will

decrease as the design cost increases. In order to keep

profitable, we have to change the situation.

Jerraya: Any final comment about MPSoCs, and what

will be the next step after MPSoCs?

Talla: MPSoC integration is going to continue for at

least two to three processor generations. It’s getting

more challenging, given the amount of analog in-

tegration needed.

Paulin: Regularity is becoming increasingly strong,

which I call ‘‘regular heterogeneity,’’ where we have

a regular approach to building heterogeneous sub-

systems. A good way to achieve that is Ulrich’s proposal:

a set of VLIW general-purpose processors with applica-

tion-specific accelerators attached to them. In the next

five years, there will be an impetus to build more easy-

to-program MPSoCs. Getting the product to market will

always dominate, and that will force us to be more

efficient on the mapping side. What’s next? Multipro-

cessor systems in packages, when we figure out how to

combine a DRAM, a flash, an FPGA, and an MPSoC with

some to-be-designed feed-through mechanism, it will

connect the pins and some grid, whether it’s drill-

through vias or some other mechanism.

Franza: Intel has introduced a full line of dual-core

products, expanding beyond dual cores and moving

toward the world of many-core MPSoC. Intel’s research

teams have shown research projects with tens of cores

integrated on a chip. This is in line with the industry

performance trend.

Integration is another important benefit of MPSoC

because it lets us give more performance in as small

a form factor as possible, so integration of more

capacities onto the chip is where the industry is

moving. What’s next after that? Carbon nanotubes,

quantum computing, and all these exotic techniques

are far away, but they will eventually become mature

and probably come into the mainstream.

Levy: The current MPSoC has probably another

10 years before people maximize its efficiency. From

my perspective in running the Multicore Association,

new companies are continually asking questions

about this technology, and most are software compa-

nies. A lot of the software companies have become

fabless semiconductor companies to support their

software. This trend will continue for quite some time

before we’ve reached its capacity.

Wolf: Rest assured, there are lots of applications

where we need more processing power than current

MPSoCs can provide. Robust speech recognition takes

huge amounts of computing power. Even relatively

simple vision tasks take huge amounts of computing

power, and, of course, people want to do these on

mobile platforms with zero power consumption. So,

we have lots of challenges ahead.

About the participants

Ahmed Amine Jerraya, our moderator, is research

director at CEA-Leti in France.

Olivier Franza is a senior staff engineer in the Digital

Enterprise Group at Intel in Hudson, Massachusetts.

Markus Levy is president of the Multicore Association

and EEMBC, with headquarters in El Dorado Hills, California.

Masao Nakaya is executive general manager of the

LSI Product Technology Unit at Renesas Technology in

Japan.

Pierre Paulin is the director of SoC platform automa-

tion, Advanced System Technology Group at STMicroelec-

tronics in Ontario, Canada.

Ulrich Ramacher is senior director of the Innovation

Department in the Communication Business Group at

Infineon Technologies in Munich, Germany.

Deepu Talla is a system architect of the Imaging &

Audio Group at Texas Instruments, in Dallas, Texas.

Wayne Wolf is a professor in the Department of

Electrical Engineering at Princeton University in Princeton,

New Jersey.

March–April 2007 183

