
1752 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 6, NOVEMBER 2012

Comparing Optical Flow Algorithms Using 6-DOF
Motion of Real-World Rigid Objects

Marco Mammarella, Giampiero Campa, Member, IEEE, Mario L. Fravolini, and Marcello R. Napolitano

Abstract—The application of optical flow algorithms to guidance
and navigation problems has gained considerable interest in recent
years. This paper summarizes the results of a comparative study on
the accuracy of nine different optical flow (OF) algorithms using
videos that are captured from an on-board camera during the
flight of an autonomous aircraft model. The comparison among the
algorithms relies on two formulas that are used both to calculate
the ideal OF generated by the motion of a rigid body in the camera
field of view and to estimate the linear and angular velocity from
the OF.

Index Terms—Computer vision, image processing, machine
vision, optical flow (OF).

I. INTRODUCTION

M ETHODS to calculate the optical flow (OF) associated
with a sequence of images have been receiving increas-

ing attention in recent years since it became clear that OF-based
algorithms have promising capabilities for applications within
a wide range of problems. In fact, OF can be used for a variety
of purposes, such as motion detection and estimation, collision
detection and avoidance, shape reconstruction, and object seg-
mentation. In particular, the use of OF-based navigation and
control solutions for autonomous vehicles [1]–[4] is becoming
appealing since a significant amount of scientific evidence indi-
cates that different kinds of insects utilize OF to perform quick
and highly accurate navigation maneuvers in complex environ-
ments [5], [6]. However, significant research issues have yet
to be addressed before wider scale applications of OF-based
guidance, and navigation control schemes can be finally imple-
mented. For example, to date most OF algorithms do not provide
the necessary accuracy, along with the computational efficiency,
necessary for real-time implementations.

Real-image sequences often present characteristics that are
intrinsically difficult to model, such as motion discontinuities,
complex 3-D surfaces, camera noise, specular highlights, shad-
ows, transparencies, atmospheric effects, and other sources of

Manuscript received November 9, 2011; revised June 7, 2012; accepted
August 29, 2012. Date of current version December 17, 2012. This paper was
recommended by Associate Editor T. Busch.

M. Mammarella is with GMV Aerospace and Defence, Space System B.U.,
Tres Cantos, Madrid 28760, Spain (e-mail: marco__mm@hotmail.com).

G. Campa is with MathWorks, Torrance, CA 90502 USA (e-mail: giampiero.
campa@gmail.com).

M. L. Fravolini is with the Department of Electronics and Informa-
tion Engineering, University of Perugia, Perugia 06123, Italy (e-mail:
mario.fravolini@diei.unipg.it).

M. R. Napolitano is with the Department of Mechanical and Aerospace
Engineering, West Virginia University, Morgantown, WV 26505 USA (email:
marcello.napolitano@mail.wvu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCC.2012.2218806

disturbances. Therefore, it is critical to be able to assess the
performance of different OF algorithms using real videos, as
opposed to sequences of synthetically generated images.

Unfortunately, a quantitative evaluation of these algorithms
in real-world settings is complicated by the fact that it is typi-
cally very difficult, and at times impossible, to establish “ground
truth” baseline values for the OF generated by the complex mo-
tion of 3-D objects in the field of view. This is mostly due to
the fact that such “ground truth” flow (hereafter also referred
as “ideal” OF) depends on the position, the orientation, as well
as the translational and rotational velocities of the objects with
respect to the camera, which are not always easily measurable.
Consequently, to date, most of the evaluation studies have re-
lied either on standard sequences—generated by progressively
translating, rotating, or distorting a real base image [7]—or on
computer-generated image sequences [8].

In [9], a robot arm was used to move a camera along a pre-
defined trajectory, which provided the ideal flow for very sim-
ple images of a scene consisting of polyhedral objects, while
the case of OF generated by multiple objects was considered
in [10]. In [11], a method to generate ground-truth motion
fields from real sequences containing polyhedral objects was
presented along with a test suite to benchmark OF algorithms.
However, this method requires the user to select the corners of
the polyhedral object for each image; therefore, the approach
is impractical for longer sequences or for sequences without
clearly defined polyhedral objects.

In [12], the ground-truth flow for real images was determined
using hidden fluorescent texture painted on a scene, along with
a computationally intensive approach to track small windows in
a sequence of UV images.

The first contribution of this paper is a simplified approach
to compute the ideal OF generated by a single rigid object
that rotates and translates along all axes with respect to the
camera (or by the camera moving and translating in a static
scene). Both these cases are particularly significant for real-
life robotic applications. To the author’s knowledge, projection-
based methods for calculating the ground-truth OF generated
from a rigid body are limited to very specific simplified cases
(e.g., translation only or rotation only), and a comprehensive
formula that addresses simultaneous rotation and translation
has rarely been considered.

The second original contribution is a static inversion formula
to estimate the camera/rigid-object relative linear and angular
velocities from the OF data. The use of stateless pseudoinversion
techniques to estimate the velocities of a rigid object (subject to
complex six degree-of-freedom (6-DOF) motion) from its OF
field is, as far as the authors can tell, unprecedented within the
classical OF literature.

1094-6977/$31.00 © 2012 IEEE

MAMMARELLA et al.: COMPARING OPTICAL FLOW ALGORITHMS USING 6-DOF MOTION 1753

The final, but arguably at least equally important, original
contribution of this study is the development of a quantitative
performance metric (based on the developed formulae) to com-
pare the accuracy of OF algorithms using images of rigid objects
subject to rotational and translational motions (or, equivalently,
images from a camera moving in a static scene). Specifically,
the performance metric is composed of two parts: The first part
is an extension of criteria first used in [9], which is based on
the deviation between the OF field provided by a given algo-
rithm and the ideal OF, calculated using the known rotational
and translational object velocities. The second part relies on the
comparison between the known (rotational and translational)
velocities of a moving object, and the estimated velocities that
are obtained using the information provided by the OF field.

The application of the formulas is illustrated using a sequence
of real images, and the performance metric is used to compare
nine different OF algorithms.

The rest of this paper is organized as follows. A basic review
of the most important concepts is introduced in Section II. The
novel formulas are derived in Sections III and IV. The exper-
imental setups and the performance metrics are introduced in
Section V, and the results are shown in Sections VI and VII.

II. OPTICAL FLOW

According to Horn and Schunck [13]: “The optical flow is a
velocity field in the image that transforms one image into the
next image in a sequence. As such it is not uniquely determined;
the motion field, on the other hand, is a purely geometric con-
cept, without any ambiguity—it is the projection into the image
of three-dimensional (3-D) motion vectors.” In this paper, we
will use the general term “OF” to refer mostly to the “motion
field,” which, in general, can be calculated from a sequence of
images by relying on three fundamental assumptions.

1) Object brightness invariance: The local changes in image
intensity are caused only by the motion of a certain object
with respect to the camera.

2) Spatial coherence: The motion is uniform over a small
patch of pixels.

3) Temporal persistence: The image motion of a surface
patch changes gradually over time.

I(u, v, t) is defined as the intensity (i.e., brightness) of a pixel
that has horizontal and vertical image plane coordinates u, v, and
represents a feature which moves of δu, δv during the time δt.
This leads to the equation I(u, v, t) = I(u+δu, v+δv, t+δt). A
derivation with respect to time leads to the following brightness
conservation equation:

Iu u̇ + Iv v̇ + It = 0 (1)

where Iu and Iv are the derivatives of I along the u and v image
dimensions, calculated at the given pixel location u,v and time
t. It is the temporal derivative of the image at the same location
and time, and finally the terms u̇ and v̇ represent the “OF” at the
point u, v at time t. Note that since cameras acquire images at a
certain frame rate 1/T—where T is the time interval in seconds
between one image and the next one—the aforementioned time

derivatives are commonly calculated using a first- or second-
order discrete approximation.

In general, OF algorithms can be classified within the follow-
ing broad classes:

1) “gradient” methods;
2) “phase” methods;
3) “region-based matching” methods;
4) “feature-based” methods.

A. Gradient Methods

Generally speaking, gradient methods attempt to solve (1) to
calculate the unknowns u̇ and v̇. However, it can be noticed that
for each pixel, there is one corresponding scalar equation (with
known values of Iu and Iv and It), while there are two scalar un-
knowns u̇ and v̇, which lead to an analytically underdetermined
algebraic system. This is also known as the “aperture problem.”
The methods that belong to the “gradient” class typically tackle
this problem by including some constraints—usually based on
some form of spatial or temporal coherence—in the algebraic
system of equations to be solved. Within this effort, four algo-
rithms that belong to this category have been analyzed: “gradi-
ent” [8], “Lucas–Kanade” [14], “Horn and Shunck” [13], and
“Proesmans” [15].

The “gradient” algorithm—developed by the authors accord-
ing to the guidelines that are presented in [8], and implemented
as a MATLAB function—calculates the OF for each pixel that
belongs to a predefined grid, assuming that u̇ and v̇ are constants
within a certain spatial and temporal neighborhood of the pixel.
Therefore, an overdetermined system of equations is assembled
and solved—in the minimum square sense—for each consid-
ered pixel. Crucially, the system is solved only if its eigenvalues
are greater than a given threshold. This allows discarding image
areas, where derivatives are too close to zero or too similar to
each other—e.g., due to a lack of motion or because there are
no distinguishable features—and, at the same time, increasing
computational efficiency by avoiding unnecessary calculations.
The “Lucas–Kanade” and “Horn and Shunck” implementations
are available in recent MATLAB versions as Simulink blocks.

The “Lucas–Kanade” algorithm is similar to the “gradient”
implementation with the main difference being the assignment
of numerical weights with the goal to give different weights to
the neighborhoods as a function of their distances from the con-
sidered point. Both these algorithms lend themselves naturally
to parallel implementations [16], [17].

The “Horn and Schunck” algorithm combines (1) with a
global smoothness term λ with the goal to constrain the esti-
mated velocity. This algorithm also features an iterative proce-
dure, which is halted when the maximum number of iterations
is reached.

The “Proesmans” method is conceptually similar to the “Horn
and Schunck” method since it requires the minimization of a
global energy functional; the main difference is that it takes
into account the bias in the direction of motion due to correla-
tions in the finite difference approximation [15]. The algorithm
was originally developed in C++ at the University of Otago,
New Zealand, and it was later revised by one of the authors.

1754 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 6, NOVEMBER 2012

Specifically, all the subfunctions were included within a single
C++ file, and an interface that allowed the algorithm to be
called from MATLAB was added.

The typical advantage of this class of algorithms is their
computational speed. Their main disadvantages are that they
need to cope with the aperture problem; additionally, the cal-
culation of the spatial and temporal derivatives is usually very
prone to errors—especially in situation of relatively fast mo-
tion [16], [18]—due to the presence of noise from different
sources.

B. Phase Methods

Phase techniques are based on the idea that 2-D image veloc-
ity can be modeled as the phase behavior of a band-pass filter
output [8]. The idea of using phase information for OF calcula-
tion purposes was originally developed by Fleet and Jepson [19].
The resulting algorithm is available from the MATLAB Central
File Exchange Site [20]. As outlined in [21], the algorithm cal-
culates the OF estimation using the following three sequential
steps. First, a spatial filtering is obtained using the Gabor filter,
and the temporal phase gradient is calculated using the estima-
tion of the velocity components. Second, a component velocity
is rejected if the corresponding filter pair’s phase information is
not linear over a given time span. Third, an interpolation is used
to combine the partial velocities obtained using Gabor filters in
order to achieve the OF in the u and v directions. These methods
are known to work well for relatively slow motion [16]; how-
ever, they are not reliable when trying to estimate fast motion;
in fact, their accuracy is significantly degraded due to temporal
aliasing [18].

C. Region Matching-Based Techniques

For methods that belong to the “region-based matching” class,
the OF vector [u̇, v̇] is calculated for a given pixel by finding
the displacement of a template around the pixel between two
consecutive frames. The template matching between two con-
secutive frames is usually performed by minimizing a predefined
function of the differences between the two templates. Within
this effort, the “difference” and the “correlation” methods have
been considered and implemented. The “difference” algorithm
uses the sum of the absolute differences (SAD) among templates
belonging to consecutive frames to find the best matching tem-
plates [8]. The “correlation” algorithm, instead, calculates the
correlation among templates, which is used as the metric to
select the matching. Both algorithms were developed by the
authors and implemented in MATLAB. In general, algorithms
that belong to this category are known to behave better than
algorithms that belong to the “gradient” category for fast mo-
tion situations, but at the expense of being computationally
more demanding. Specifically, their computation time increases
quadratically with the maximum allowed object displacement.

D. Feature-Matching-Based Methods

These methods calculate u̇ and v̇ by measuring the dis-
placements of certain image features—as detected by a

feature-detection algorithm and later associated by a feature-
matching algorithm—between two consecutive frames. There-
fore, they implicitly rely on the assumption that the same image
features can consistently be detected and tracked over different
image frames. However, unlike algorithms that belong to other
classes, they do not necessarily rely on the assumption that the
distance between the positions of the same features between two
consecutive image frames must be contained within predefined
limits. It should also be emphasized that the image points for
which these algorithms provide OF results not only do belong to
an evenly spaced grid, but also change their position for different
image frames.

In this effort, two different feature-based methods have been
considered: Harris [22] and scale-invariant feature transform
(SIFT) [23]. The Harris algorithm—coded in MATLAB by the
authors using the guidelines that are provided in [22]—is a cor-
ner detection algorithm allowing the extraction of the position of
specific corners with some robustness to real-world conditions
such as changes in illumination. Next, an algorithm that was pre-
viously developed and coded in C [24] was used to match the
corners detected to consecutive frames of an image sequence.

The other feature-detection algorithm is known as SIFT, and
was developed with the goal to detect and associate the same
features between different images. Specifically, features are de-
tected using a filtering approach that identifies stable points
in the scale space, and are then associated using a descriptor-
based approach [23]. Empirical experience has shown that the
precision of the OF methods belonging to this class strongly
depends on the performance of the associated matching algo-
rithm. While these algorithms also tend to be computationally
demanding, parallel implementations are also possible [25].

III. DERIVATION OF THE IDEAL OPTICAL FLOW

The comparison between the different OF algorithms is based
on the calculation of the “ideal” OF (or ideal flow) generated by
the motion of a (single) rigid object in space. Given any point
on the image plane, the ideal flow can be computed from the
position and the velocity—with respect to the camera—of the
point in the field of view that generates—by projection—the
OF.

Specifically, a “pinhole” mathematical model of the camera
[26] is assumed: [

u

v

]
=

f

xc

[
yc

zc

]
(2)

where f is the camera focal length, and u and v are—as pre-
viously described—the horizontal and vertical coordinates of a
point in the image plane resulting from the projection of the
point CP = [xc, yc , zc]T on such plane.

Note that the left superscript “C” in CP indicates that the point
is expressed with respect to a camera-fixed reference frame,
which is centered in the camera plane and has its x-axis point-
ing in the direction of view, and its y- and z-axis pointing,
respectively, in the directions of u and v of the image plane.
Assuming that CP is part of a rigid body centered in COB and
moving with respect to the camera reference frame with a linear

MAMMARELLA et al.: COMPARING OPTICAL FLOW ALGORITHMS USING 6-DOF MOTION 1755

velocity C VB/C and angular velocity CωB/C , differentiating
(2) with respect to time, and using standard kinematics relation-
ships [27] to express the derivative of CP yields

[
u̇

v̇

]
= f

⎡
⎢⎢⎣
− yc

x2
c

1
xc

0

− zc

x2
c

0
1
xc

⎤
⎥⎥⎦

×
[
CVB/C + CωB/C ⊗

(
CP − COB

)]
(3)

where u̇ and v̇ represent the ideal OF (at the image coordinates
u and v) generated by the motion of CP, and ⊗ indicates the 3-D
cross product. Of course, while (3) is valid for all points that
belong to the considered rigid body, only the points that belong
to the visible part of the body surface contribute to the OF field
on the image plane. In addition note that whenever the whole
environment moves with respect to the camera (in other words,
the camera moves in a static environment), the body reference
frame can be selected to be centered in the camera reference
frame, implying that the coordinates of COB are equal to zero.

IV. EXTRACTING VELOCITY INFORMATION

FROM THE OPTICAL FLOW

The direct relationship in (3) can be used to extract relative
velocity information from sequences of images. If the motion
happens along one axis only (rotation or translation), the prob-
lem can be simplified as follows (see [28] for an alternative
derivation and related experiments).

A. Rotational Motion Around One Axis

This section shows how the angular velocity of a known rigid
object rotating along an axis that is parallel to the camera axis can
be calculated using the OF. Specifically, for each OF vector the
point CP in (3) is a point of the object subjected to the rotational
motion, while the point CO is the center of rotation. Then, for
each OF vector, a corresponding estimated angular velocity can
be computed by setting to zero the other two components of the
vector ωB/C and the three components of the vector VB/C , and
then pseudoinverting (3). Specifically, zeroing out CVB/C and
the last two components of ωB/C in (3) yields

[
u̇

v̇

]
=f

⎡
⎢⎢⎣
− yc

x2
c

1
xc

0

− zc

x2
c

0
1
xc

⎤
⎥⎥⎦

⎡
⎢⎣

0
−

(
CωB/C

)
x

(
CP − COB

)
z(

CωB/C

)
x

(
CP − COB

)
y

⎤
⎥⎦
(4)

where (CωB/C)x is the unknown angular velocity, while
(CP−COB)y and (CP−COB)z are the second and third com-
ponents of the vector (CP−COB). Multiplying the terms on the
right-hand side of (4) yields

[
u̇

v̇

]
=

f

xc

[
−

(
CωB/C

)
x

(
CP − COB

)
z(

CωB/C

)
x

(
CP − COB

)
y

]
. (5)

Since u̇ and v̇ are provided by the OF algorithm and are
therefore known, it is possible to solve for (CωB/C)x in two
different ways. Specifically, (5) can be solved by inverting the

first equation in (5) (in the u̇ component only) or by inverting
the second equation in (5) (in the v̇ component only). Both
approaches can be pursued; however, better results are obtained
when the two approaches are mixed together and the final value
for the angular velocity for a given OF vector is obtained by
averaging the two outcomes [28]:

(
CωB/C

)
x

=
1
2

(
v̇xc

f (CP − COB)y

− u̇xc

f (CP − COB)z

)
.

(6)
The total angular velocity is then computed by averaging the

estimated velocity over the section of the image that represents
the rotating object. Note that if the object center of rotation
is along the x-axis of the camera reference frame, then both
components of COB along the x- and y-dimensions are zero;
therefore, using (3) and (6) reduces to

(
CωB/C

)
x

=
1
2

(
v̇

u
− u̇

v

)
(7)

which allows calculating the object angular velocity from the
images, without knowing either f or CP. Formulas similar to (6)
can be derived for the rotational motion around the other two
axes.

B. Translational Motion Along One Axis

An estimate of the velocity of a rigid object translating in the
field of view along a single axis can be easily calculated from the
OF. Specifically, for each OF vector, a corresponding estimated
velocity can be calculated by setting to zero both ωB/C and
the other two components of VB/C in (3) and pseudoinverting
the formula. For example, if the object is translating along the
x-axis,

(
CVB/C

)
x

= −x2
c

f

[
yc

zc

]† [
u̇

v̇

]
(8)

where the symbol “†” indicates the pseudoinverse operation.
Clearly, a more accurate estimation of the object velocity can be
calculated by averaging the estimated velocities over the portion
of the image that represents the translating object.

C. Translational Motion Along Two Axes

Even the velocity of an object that translates along two axes
can be estimated using OF. Specifically, for each OF vector,
a corresponding velocity can be calculated by setting to zero
both ωB/C and the component of VB/C in (3) that does not
have to be considered, and inverting the formula. For example,
zeroing out C ωB/C and the first component of C VB/C leads to
the estimation of the velocity in the components y and z:

[(
CVB/C

)
y(

CVB/C

)
z

]
=

1
f

[
xc 0
0 xc

] [
u̇

v̇

]
. (9)

For each axis, the total velocity can be calculated by aver-
aging the estimated velocities over the portion of the image
representing the moving object.

1756 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 6, NOVEMBER 2012

D. Six Degree-of-Freedom Motion

In the following section, the problem of recovering the rel-
ative 6-DOF motion of the camera with respect to a static en-
vironment will be considered. This problem is also related to
the more general “structure from motion” problem [29]–[31],
which consists of estimating a sequence of relative positions
and orientations from the motion of several points in the image.
In particular, we focus on the possibility to recover from the OF
the relative position and attitude of a camera moving over a pla-
nar terrain; this scenario is of particularly relevance for real-life
aerial robotics applications.

Unlike the previous three simplified cases, for a general 6-
DOF motion the velocities cannot be expressed directly—that is
by directly inverting (3)—as a function of the instantaneous OF
field in a single point in the image plane, because the problem
is underdetermined (two known variables, namely the elements
of the OF vector, and six unknowns, namely the elements of the
rotational and translational velocity vectors). In other words,
there is no additional a priori information about the structure
of the motion (e.g., motion constrained along a certain known
axis) that could be used to compensate for the information lost
during the projection.

However, the overall information of all the OF vectors in the
image plane can still be used to estimate both the translational
and rotational velocities of the camera. Specifically, rearranging
(3) by collecting the velocity terms in a 6 × 1 vector yields

[
u̇

v̇

]
= M(f, CP, COB)

[CVB/C

CωB/C

]
(10)

with M(f , C P , C OB) being the following 2 × 6 matrix:

M(f, CP, COB) =
f

xc

⎡
⎢⎣
− yc

xc
1 0 zo − zc

− zc

xc
0 1 yc − yo

· · ·

. . .

yc(zo − zc)
xc

yc(yc − yo)
xc

+ xc − xo

zc(zo − zc)
xc

+ xo − xc
zc(yc − yo)

xc

⎤
⎥⎥⎦

(11)

where the rotation center of the object is expressed as
C OB = [xo ,yo ,zo ,1]T , and the coordinates of a point C P =
[xc, yc , zc ,1]T are calculated as a function of the coordinates (u
and v) of its projection on the image plane (among other known
variables) as shown in AppendixA.1. Collecting—in a column-
wise fashion—the OF vectors [u̇i v̇i]T for each point (1...N) in
the image plane for which the OF is available, along with their
corresponding matrices M(f ,C P,C OB), yields

⎡
⎢⎢⎢⎢⎢⎢⎣

u̇1

v̇1

...

u̇N

u̇N

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎣

M(f, CP1 ,
COB)

...

M(f, CPN , COB)

⎤
⎥⎦

[CVB/C

CωB/C

]
. (12)

The pseudoinversion of (12) leads to

[
CVB/C

CωB/C

]
=

⎡
⎢⎣

M(f, CP1 ,
COB)

...

M(f, CPN , COB)

⎤
⎥⎦
†

⎡
⎢⎢⎢⎢⎢⎢⎣

u̇1

v̇1

...

u̇N

v̇N

⎤
⎥⎥⎥⎥⎥⎥⎦

(13)

which, assuming N ≥ 3, yields an estimate of the translational
and rotational velocities of the object at a certain time instant.
For each OF image information, the velocities can then be com-
puted according to (13).

V. PERFORMANCE METRICS

Various methods to compare OF algorithms have been pro-
posed [5], [8]. In this study, a novel comparison method is
introduced that relies on both the possibility to calculate the
ideal OF, given an object rotational and translational velocity
(which is essentially done by applying (3)) and the capability to
calculate an object’s translational and rotational velocity from
the OF vectors [which is done by applying (13), that is in a sense
the inverse of (3)].

Knowing the camera focal length and the altitude above the
ground, the coordinates of the point C P related to each given
pixel [u, v] can be calculated as shown in ppendix A [specifically
using (16)], and successively used within (3)—along with the
known translational and rotational velocity of the camera with
respect to the terrain—to calculate the “ideal” OF at each point
[u, v]. Note that, as described in Appendix A, formula (16) also
provides a way to detect (and discard) any point on the image
that does not correspond to a physical point that belongs to the
terrain (e.g., a point in the sky).

Expressing in polar coordinates both the ideal and the detected
OF vectors allows for the calculation of the errors in magnitude
and angle for each detected OF vector.

Specifically, the mean (over the whole duration of the flight)
of the absolute values of the magnitude and angular errors,
expressed in pixels and radians, will be indicated, respectively,
with the symbols μm and μa .

A second set of average errors can be calculated from (13).
Specifically, selecting the OF components for all image points
corresponding to terrain points and using (13) it is possible to
estimate the translational and rotational velocity vectors of the
terrain with respect to the camera for the particular time instant
at which the image is taken.

These estimated velocity vectors can be compared with the
known translational and rotational velocities that are available
from the simulation and/or IMU/GPS data, therefore yielding
two error vectors for each acquired image. Averaging the norms
of these two error vectors over all images acquired during the
simulation (or during the flight, for the second experiment)
yields the velocity errors μv and μω .

The final performance criterion uses the four previously de-
scribed parameters (each divided by the range of the quantity it
represents) to express the overall error of the OF calculated by
a given algorithm.

MAMMARELLA et al.: COMPARING OPTICAL FLOW ALGORITHMS USING 6-DOF MOTION 1757

Fig. 1. Pinhole model.

The first two components of J rely on direct measurements
of the OF components; therefore, the quality of the produced
OF is evaluated by direct comparison with the “true” OF. The
second two components rely on inverse measurements of the
OF; therefore, the quality of the produced OF is evaluated ac-
cording to the accuracy of the corresponding linear and angular
velocities, with respect to the “true” (or measured) linear and
angular velocities. It is important to notice that the second part
of the formula also implicitly evaluates the performance of an
algorithm in terms of the density of the produced OF field, which
is very important for some applications

J =
μa

π
+

μm

max (mid)
+

μv

max ‖V ‖ +
μω

max ‖ω‖ (14)

where max(mid) is the maximum magnitude of the ideal OF
generated during the flight, and max‖V ‖ and max‖ω‖ repre-
sent, respectively, the maximum norms of the translational and
rotational velocities reached during the flight.

The final performance metric to judge the quality of the OF
produced by an algorithm is, therefore, J where low values of
this metric correspond to good performance. Note that, for OF
applications that are not related to reconstructing object motion,
the proposed performance metrics could be easily modified so
that its last two terms are discarded; conversely, for applications
in which motion reconstruction is critical, the first two terms of
the performance metric could be discarded.

VI. FLIGHT EXPERIMENT AND RESULTS

In this experiment, the algorithms were applied on a sequence
of images from a video recorded during one of the flight tests
performed for the WVU YF-22 Autonomous Formation Flight
Program [32]. Fig. 2 shows a typical image from this video. The
reader is referred to [28] for a preliminary comparison using
only-translational or only-rotational motion. The parameter set-
tings for the various algorithms are described in Appendix A.2.

Fig. 2. Image from the flight video.

The aircraft was equipped with an Inertial Measurement Unit
(Crossbow IMU VG400), which allowed the acquisition of the
accelerations along the x-, y-, and z-directions and the angu-
lar rates p, q, and r. The vertical gyro (Goodrich-VG34) pro-
vided measurements for the aircraft Euler’s angles, and the
GPS (Novatel-OEM4) provided the translational position and
velocity measurements x, y, z, Vx, Vy , Vz with respect to the
earth reference frame. Since the data from the IMU and the GPS
were used as ground truth, the accuracy and the performance
of these sensors are important. The IMU Crossbow VG400 op-
erates at 50 Hz and has a range of ±200 ◦/s with 0.05 ◦/s
resolution for the rate sensors and ±10 g with 1.25 mg reso-
lution for the accelerometers. The accuracy—gauged in terms
of random walk (RW)—is 1.7 ◦/

√
h and 0.5 (m/s)/

√
h for the

angular rates and the accelerations, respectively. The Novatel-
OEM4 GPS unit operates at 20 Hz with accuracy in terms of
circular error probability (CEP) of 1.8 m. Finally, the sensors in
the nose probe provided measurements for the α, β angles, while
absolute and differential pressure sensors were used to measure
H and V [32].

1758 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 6, NOVEMBER 2012

TABLE I
STATISTICS FOR THE FLIGHT EXPERIMENT

Fig. 3. SIFT—estimated translational and rotational velocities.

Fig. 4. Behavior of the different OF algorithms.

MAMMARELLA et al.: COMPARING OPTICAL FLOW ALGORITHMS USING 6-DOF MOTION 1759

The camera was placed at exactly 1 m in front of the aircraft
center of gravity, with orientation with respect to the aircraft
body frame that consists of yaw and pitch angles of –45◦ and
–14.5◦, respectively.

To perform the OF experiment, a 25-s 320 × 240 video—
acquired at the rate of 10 frames/s—was extracted from an
original 607-s video.

Applying basic trigonometry to the pinhole model leads to

Sv

2
= f tan

(
Φv

2

)
(15)

where Φv is the vertical field of view, and Sv is the vertical size
(length) of the image sensor (e.g., the charge-coupled device).
Using the vertical length of a pixel on the image sensor as an
(arbitrary) unit of length, it can be stated that Sv = 240 pixels.
A focal length value of f = 847.5 pixels can then be calculated
from (15). As can be seen for example from (3), this implies
that the OF is measured in units of pixel/sec. A multiplication
by T = 0.1 s can then be used to express the OF in units of
pixel/frame.

The nine OF algorithms were continuously executed for each
couple of consecutive images. The ideal OF was computed us-
ing the method described in previous sections, relying on the
(translational and rotational) position and velocity data acquired
during the flight session. The maximum translational velocity
reached in the used flight section was 39.04 m/s, and the max-
imum angular velocity was 0.549 rad/s. The ideal OF vectors
had a mean value of 12.32 pixel/frame, while the largest OF
vector had a magnitude of 48.25 pixel/frame.

Table I shows the results, in terms of the previously defined
performance metric, for this experiment. Furthermore, the per-
formance of a fictitious “ZERO” algorithm, which always pro-
duces an OF having both angle and magnitude equal to zero, is
also reported purely as a benchmark.

Fig. 3 show the comparison between the real (as measured by
the sensors) translational and rotational velocities, and the trans-
lational and rotational velocities estimated using the OF field
provided by the SIFT algorithm. The estimated velocities—and
especially the angular velocities—exhibit a desirable correlation
with the velocities measured by the GPS.

This fact suggests the possibility to use the proposed tech-
nique to aid velocity estimation in applications, where a camera
and some processing power are available.

Finally, Fig. 4 shows the OF fields resulting from each algo-
rithm corresponding to the image in Fig. 2. The last image of
Fig. 4 shows the ideal OF computed using (3). Note that the
assumption that all the features correspond to points that have
the same altitude has been used in calculating the ideal OF.

The algorithms that provide the best performance are SIFT,
correlation, and difference. The particularly bad performance
of the gradient, phase, Lucas–Kanade, and Horn and Shunck
methods originates from the high relative velocity between cam-
era and terrain, especially during aircraft turns. On the other
hand, patch-based methods and feature-based methods seem
more flexible in detecting large intraframe displacements and
for this reason tended to exhibit better performance.

VII. CONCLUSION

This paper has described the results of a comparative anal-
ysis, performed using a novel performance metric, of nine OF
algorithms that belong to different classes. A novel method to
compute the ground-truth flow and a method to extract the lin-
ear and angular velocities from the OF were presented. The
algorithms were implemented and tested using real images that
represent a complex rigid 6-DOF motion in 3-D. The analysis
indicates that the correlation and SIFT feature-detection algo-
rithms provide overall the best performance, using the perfor-
mance metric based on the presented formulas. This is in part
due to the fact that these methods are better equipped to handle
both the large and small displacements that may be present in
complex 3-D motion. In addition to defining performance met-
rics for OF algorithms, the presented formulas could also find
use for navigation purposes, since results indicate that an ac-
ceptable estimation of the angular velocity was produced from
the OF field alone.

APPENDIX

The first section of this appendix explains the technique used
to calculate the coordinates, in camera frame, of any given ter-
rain point, while the second section gives a brief overview of the
different parameters that need to be set, and their chosen values,
for the nine OF algorithms.

A. Calculating the Coordinates of a Terrain Point
in Camera Frame

Using (3) to relate the relative terrain motion to its correspond-
ing OF requires the calculation of the coordinates of each terrain
point P in the camera reference frame, that is CP. Assuming that
the terrain is flat and has a known constant altitude z∗e (equal
to 100 m in the examples), the homogeneous coordinates [27]
of the point P with respect to the earth reference frame are E P
= [xe, ye , z

∗
e , 1]T . The homogeneous coordinates of P in cam-

era reference frame are given by C P = C TE (ψ, θ, ϕ,E OC)E P,
where C TE (ψ, θ, ϕ,E OC) = E TC (ψ, θ, ϕ,E OC)−1 is the 4 ×
4 matrix that transforms earth-frame coordinates into camera-
frame coordinates. This transformation matrix is a function
of the Euler angles ψ, θ, and ϕ (expressing the orientation of
the camera reference frame with respect to the earth reference
frame), and of the vector E OC = [cx, cy, cz, 1]T (expressing the
position of the origin of the camera reference frame with respect
to the earth reference frame).

The coordinates xe and ye can then be determined by set-
ting the projection on the image plane of the point C P =
C TE (ψ, θ, ϕ,E OC)E P, equal to the image point coordinates
[u, v], from which the considered OF vector originates. The
MATLAB Symbolic Math Toolbox [33] was used to obtain
a formula yielding the earth frame coordinates xe and ye of
a generic terrain point E P, as a function of the image plane
coordinates u, v, as well as ψ, θ, and ϕ, and E OC . Once the co-
ordinates xe and ye were found as functions of the variables f, u,
v, ψ, θ, ϕ, E OC , the point C P was calculated using the formula

1760 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 6, NOVEMBER 2012

CP = C TE (ψ, θ, ϕ,E OC)E P(f,u,v, ψ, θ, ϕ,E OC), resulting in⎡
⎢⎣

xc

yc

zc

⎤
⎥⎦ =

np

cos(θ)2dp

⎡
⎢⎣

f

u

v

⎤
⎥⎦ (16)

with

np = u(cz − z∗e) cos(θ) sin(ϕ) + v(cz − z∗e) cos(θ) cos(ϕ)

+ f(cz − z∗e) sin(θ) (17)

and

dp = u2(cos(ϕ)2 − 1) − 2uv sin(ϕ) cos(ϕ)

− v2 cos(ϕ)2 + f 2 tan(θ)2 . (18)

Note that points of the image that do not correspond to points
on the terrain (for example points representing the sky, above
the horizon line) provide a negative x coordinate in the camera
frame, and therefore they can be automatically discarded when
calculating the ideal OF. As a consequence, this also allows
discarding the OF generated by any algorithm for points that do
not belong to the terrain.

In general, (16) can also be valuable in determining the po-
sition of an interesting object on the ground from the image
captured by the on-board camera.

B. Parameter Settings for the OF Algorithms

This section will briefly describe the various parameters used
by the different algorithms, along with their selected values.
The reader is referred to the previously mentioned references
for a more detailed explanation of the inner workings of such
algorithms.

1) Gradient: In this algorithm, three parameters need to be
selected: “step,” “neighborhood,” and “threshold.” The
“step” parameter sets the distance in pixels between each
OF vector in the output OF matrix; this parameter was set
to 5 pixels. The “neighborhood” parameter sets the half-
size of the window used for solving the aperture problem;
this parameter was set to 8 pixels. The “threshold” param-
eter sets the minimum eigenvalue acceptable to compute
the OF, as explained in Section II-A; this parameter was
set to 5000.

2) Lucas–Kanade: In this algorithm, two parameters need
to be set: “temporal gradient filter” and “threshold.” The
“temporal gradient filter” characterizes how the temporal
gradient is computed; this parameter was set for a “differ-
ence filter”, that is, [−1 1]. The “threshold” represents the
minimum eigenvalue acceptable to compute the OF; this
parameter was set to 0.01 in the Simulink block.

3) Horn and Schunck: This algorithm requires setting two
parameters: “smoothness factor” and “stopping criteria.”
The “smoothness factor” is a positive constant that has to
be large if the motion between two consecutive frames is
large; this parameter was set to 10. The “stopping criteria”
is the maximum number of iterations for the method, and
it was set to 10.

4) Phase: This algorithm requires three parameters to be set:
the “number of OF vectors in the u (horizontal) direction,”
the “linearity threshold,” and the “minimum value of valid
component velocities.” The “number of OF vectors in the
horizontal direction” was set to 25. The “linearity thresh-
old” is a limit on the error between the phase estimated
by using the filter and the actual phase of the OF; this
parameter was set to 0.01 radians. The “minimum value
of valid component velocities” allows discarding points
in which the filter output is located in a phase singularity
neighborhood; this parameter was set to 7.

5) Correlation: In this algorithm, three parameters need to
be set: “step,” “window,” and “template.” The “step” pa-
rameter sets the distance in pixel between each OF vector
in the output OF matrix, and it was set to 5 pixels. The
“window” parameter sets the size of the (square) window
used to search for the closest correlation value, and it was
set to 30 pixels. The “template” parameter sets the width
of the image portion on which the correlation has to be
computed; this parameter was set to 20 pixels.

6) Difference: This algorithm also has three parameters that
need to be set, which are very similar to the ones used
for the correlation algorithm: “step,” “window,” and “tem-
plate.” The “step” parameter sets the distance in pixel be-
tween each OF vector in the output OF matrix, and it was
set to 5 pixels. The “window” parameter sets the half-size
of the (square) window used to search for the closest SAD
value; this parameter was set to 15 pixels. The “template”
parameter sets the width of the image portion on which
the SAD has to be computed; and it was set to 5 pixels.

7) Harris: This algorithm requires five parameters: “sigma,”
“threshold,” “size,” “maximum number of OF vectors,”
and “window.” The “sigma” parameter is the standard
deviation of the Gaussian filter applied to the image be-
fore the corner detection; this parameter was set to 5. The
“threshold” is the minimum considered value for the max-
ima of the Harris coefficient; this parameter was set to 50.
The “size” is the dimension of the gray-scale dilation; this
parameter was set to 1. The “maximum number of OF
vectors” limits the number of vectors of the resulting OF
matrix; this parameter was set to 300. Finally, “window”
sets the maximum distance in pixels that can be used by
the point-matching algorithm to search for the position of
the matching corner in the previous image; this parameter
was set to 100 pixels.

8) SIFT: In this algorithm, three parameters need to be set:
the “descriptor distance,” the “maximum number of OF
vectors,” and the “window.” The first parameter sets the
maximum distance ratio between two SIFT descriptors for
being considered the same feature; and it was set to 0.4.
The second parameter limits the number of vectors of the
OF; and it was set to 300. The “window” parameter is
completely equivalent to the one for the Harris algorithm,
and it was set to 100 pixels.

It is important to highlight that in the selection of the pa-
rameters for the aforementioned algorithms, the designer has to
face fundamental tradeoffs between camera frame rate, allowed

MAMMARELLA et al.: COMPARING OPTICAL FLOW ALGORITHMS USING 6-DOF MOTION 1761

velocity of the objects in the scene, and computational require-
ments. The selection of the parameters for region-matching tech-
niques such as difference and correlation is where these tradeoffs
become clearly evident.

In our study, a preliminary analysis of the two flights was
made, and the mean and standard deviation values of the ideal
OF vectors (over the whole flight) were established. These val-
ues were then used to select an appropriate value for the “win-
dow” parameter for the correlation and difference algorithms.
A smaller value of this parameter would have resulted in an
unacceptable loss in accuracy, while a larger value would have
resulted in unnecessarily longer computation times.

For both feature-matching methods, the maximum allowed
feature distance was set to be 100 pixels (this value was es-
sentially chosen as a protective measure against mismatch-
ing). Finally, while a detailed parameter tuning of the gradient
and phase methods was attempted, their performance in esti-
mating larger OF vectors remained somewhat poorer than the
performance of the other algorithms. As previously pointed out,
this was not surprising since these methods are essentially local
in nature.

REFERENCES

[1] G. Barrows and C. Neely, “Mixed-mode VLSI optic flow sensors for in-
flight control of a micro air vehicle,” Proc. SPIE, vol. 4109, pp. 52–63,
2000.

[2] K. Souhila and A. Karim, “Optical Flow based robot obstacle avoidance,”
Int. J. Adv. Robot. Syst., vol. 4, no. 1, pp. 13–16, 2007.

[3] E. C. Cho, G. Seetharaman, R. J. Holyer, and M. Lybanon, “Velocity
vectors for features of sequential oceanographic images,” IEEE Trans.
Geosci. Remote Sens. E, vol. 36, no. 3, pp. 985–998, 1998.

[4] K. Kanatani and K. Watanabe, “Reconstruction of 3-D road geometry
from images for autonomous land vehicles,” IEEE Trans. Robot. Autom.,
vol. 6, no. 1, pp. 127–132, 1990.

[5] F. F. Khalil and P. Payeur, “Optical flow techniques in biomimetic UAV
Vision,” in Proc. IEEE Int. Workshop Robot. Sensors Environ., 2005,
pp. 14–19.

[6] G. Zen and E. Ricci, “Earth mover’s prototypes: A convex learning ap-
proach for discovering activity patterns in dynamic scenes,” in Proc. Com-
puter Vis. Pattern Recognit., Colorado Springs, CO, Jun. 21–23, 2011.

[7] B. Galvin, B. McCane, K. Novins, D. Mason, and S. Mills, “Recovering
motion fields: An evaluation of eight optical flow algorithms,” in Proc.
9th Brit. Mach. Vis. Conf., 1998, pp. 195–204.

[8] J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical
flow techniques,” Int. J. Comput. Vis., vol. 12, pp. 43–77, 1994.

[9] M. Otte and H. H. Nagel, “Estimation of optical flow based on higher-
order spatiotemporal derivatives in interlaced and non-interlaced image
sequences,” Artif. Intell., vol. 78, pp. 5–43, 1995.

[10] G. Adiv, “Inherent ambiguities in recovering 3-D motion and structure
from a noisy flow field,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11,
no. 5, pp. 477–489, 1989.

[11] B. McCane, K. Novins, D. Crannitch, and B. Galvin, “On benchmarking
optical flow,” Comput. Vis. Image Underst., vol. 84, no. 1, pp. 126–143,
2001.

[12] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski,
“A database and evaluation methodology for optical flow,” in Proc. 11th
Int. Conf. Comput. Vis., Oct. 14–21, 2007, pp. 1–8.

[13] B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artif. Intell.,
vol. 17, pp. 185–204, 1981.

[14] B. Lucas and T. Kanade, “An iterative image restoration technique with an
application to stereo vision,” in Proc. DARPA Image Underst. Workshop,
1981, pp. 121–130.

[15] M. Proesman, L. Van Gool, E. Pauwels, and A. Oosterlinck, “Determina-
tion of optical flow and its discontinuities using non-linear diffusion,” in
Proc. 3rd Eur. Conf. Computer Vis., 1994, vol. 2, pp. 295–304.

[16] J. Dı́az, E. Ros, R. Agı́s, and J. L. Bernier, “Superpipelined high-
performance optical-flow computation architecture,” Comput. Vis. Image
Underst., vol. 112, no. 3, pp. 262–273, Dec. 2008.

[17] M. Durkovic, M. Zwick, F. Obermeier, and K. Diepold, “Performance of
optical flow techniques on graphics hardware,” in Proc. IEEE Int. Conf.
Multimedia Expo, 2006, pp. 241–244.

[18] S. Lim, J. G. Apostolopoulos, and A. E. Gamal, “Optical flow estima-
tion using temporally over-sampled video,” IEEE Trans. Image Process.,
vol. 14, no. 8, pp. 1074–1087, Aug. 2005.

[19] D. J. Fleet and A. D. Jepson, “Computation of component image velocity
from local phase information,” Int. J. Comput. Vis, vol. 5, pp. 77–104,
1990.

[20] T. Gautama (2002). “Phase-based optical flow,” MATLAB Central. [On-
line]. Available: http://www.mathworks.com/matlabcentral/fileexchange/
2422

[21] T. Gautama and M. M. Van Hulle, “A phase-based approach to the estima-
tion of the optical,” IEEE Trans. Neural Netw., vol. 13, no. 5, pp. 1127–
1136, 2002.

[22] C. Harris and M. Stephens, “A combined corner and edge detector,” in
Proc. 4th Alvey Vis. Conf., 1988, pp. 147–151.

[23] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proc. Int. Conf. Computer Vision, 1999, pp. 1150–1157.

[24] M. Mammarella, G. Campa, M. R. Napolitano, and M. L. Fravolini, “Com-
parison of point matching algorithms for the UAV aerial refueling prob-
lem,” Mach. Vis. Appl., vol. 21, no. 3, pp. 241–251, Apr. 2010.

[25] H. Feng, E. Li, Y. Chen, and Y. Zhang, “Parallelization and characteriza-
tion of SIFT on multi-core systems,” in Proc. IEEE Int. Symp. Workload
Charact., Seattle, WA, 2008, pp. 14–23.

[26] S. Hutchinson, G. Hager, and P. Corke, “A tutorial on visual servo control,”
IEEE Trans. Robot. Autom., vol. 12, no. 5, pp. 651–670, Oct. 1996.

[27] L. Sciavicco and B. Siciliano, Modeling and Control of Robot Manipula-
tors. New York, NY: McGraw-Hill, 1996.

[28] M. Mammarella, G. Campa, M. L. Fravolini, Y. Gu, B. Seanor, and
M. R. Napolitano, “A comparison of optical flow algorithms for real time
aircraft guidance and navigation,” in Proc. AIAA Guid., Navig. Control
Conf. Exhibit, Honolulu, HI, Aug. 2008, pp. 18–21.

[29] A. Chiuso, P. Favaro, H. Jin, and S. Soatto, “Structure from motion causally
integrated over time,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,
no. 4, pp. 523–535, Apr. 2002.

[30] G. Seetharaman, “Estimation of 3D motion and orientation of rigid ob-
jects from an image sequence: A region correspondence approach,” Ph.D.
dissertation, Univ. Miami, Coral Gables, Miami, FL, Aug. 1988.

[31] K. Kanatani, “Computational projective geometry,” CVGIP: Image Un-
derst., vol. 54, no. 3, pp. 333–348, Nov. 1991.

[32] G. Campa, Y. Gu, B. Seanor, M. R. Napolitano, L. Pollini, and
M. L. Fravolini, “Design and flight testing of nonlinear formation con-
trol laws,” Control Eng. Pract., vol. 15, no. 9, pp. 1077–1092, 2007.

[33] Symbolic Math ToolboxTM, User’s Guide, 1993–2010, MathWorks Inc.,
Natick, MA.

Marco Mammarella was born in Milan, Italy. He received the M.S. degree in
automation and robotic engineering in 2005 from the University of Pisa, Italy,
and the Ph.D. degree in aerospace engineering from West Virginia University,
Morgantown, in 2008.

He is currently Project Manager at GMV Aerospace and Defense in the
Space System Business Unit and specifically in the GNC Division. His research
interests include machine vision navigation system for UAVs and space mis-
sions, particularly, in entry descent and landing scenarios. Furthermore, Marco
research interests are related with trajectory design and spacecraft control, sen-
sors fusion, nonlinear and hybrid control systems, neural networks, and real-time
embedded computing.

Giampiero Campa (M’99) was born in Taranto, Italy. He received both the
“Laurea” degree in electrical engineering and the Ph.D. degree in robotics
and automation from the University of Pisa, Pisa, Italy, in 1996 and 2000,
respectively.

In 1995, he was with the Industrial Control Centre, Strathclyde University,
U.K., and in 1999, he was with the Department of Aerospace Engineering,
Georgia Institute of Technology, Atlanta. From 2000 to 2008, he has served as
a faculty with the Flight Control Group, Department of Aerospace Engineer-
ing, West Virginia University (WVU), Morgantown. His research interests at
WVU include adaptive and nonlinear control, system identification, fault tol-
erant systems, sensor fusion, and machine vision, with UAVs being the typical
application. Since January 2009, he was with MathWorks, Torrance, CA, as the
Technical Evangelist for southern CA.

1762 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 42, NO. 6, NOVEMBER 2012

Mario L. Fravolini was born in Perugia, Italy. He received the Ph.D. degree in
electronic engineering from the University of Perugia, Perugia, in 2000.

He is currently a Research Assistant with the Department of Electronics
and Information Engineering, University of Perugia. In 1999, he was with the
Control Group, School of Aerospace Engineering, Georgia Institute of Tech-
nology, Atlanta. He has been a Visiting Research Assistant Professor with the
Department of Mechanical and Aerospace Engineering, West Virginia Univer-
sity, Morgantown, for several years. He teaches courses in the area of feedback
control systems at Perugia and Terni University. His research interests include
fault diagnosis, intelligent and adaptive control, predictive control, optical feed-
back, active control of structures, and feedback control of type-1 diabetes.

Marcello R. Napolitano was born in Pomigliano d’Arco, Italy. He received the
M.S. degree from the University of Naples, Naples, Italy, and the Ph.D. degree
from Oklahoma University, Norman, in 1985 and 1989, respectively, both in
aeronautical engineering.

In 1990, he joined the Department of Mechanical and Aerospace Engineering,
West Virginia University, Morgantown, where he is currently a Full Professor
and Director of the Flight Control Systems Laboratory. He is the author of
the textbook titled Aircraft Dynamics: From Modeling to Simulation (Wiley).
His current research interests include flight control systems, unmanned aerial
vehicles, and fault tolerant systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

