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Comment on ‘“Decomposition of a Data
Base and the Theory of Boolean Switching
Functions”

Two of the authors of this letter have presented a theo-
rem {Appendix C of [1], hereinafter called “Theorem
C”) relating Codd’s third normal form for a data collec-
tion [2] to the minimum cover for an associated Boo-
lean function. Actually this theorem is incorrect as
stated. The third author (Bernstein) in his dissertation
[3] has produced a counterexample to the theorem and
has developed techniques for decomposing a data base
into third normal form under general conditions.

The major results of [1] concerned the mathematical
similarity between functional dependencies in a data
base and a class of Boolean functions. These results are
unaffected by the correction given here. Indeed, the
fundamental equivalence has been redemonstrated in a
different manner by Armstrong [4] and by Fagin [5].
Theorem C actually concerns a property somewhat
stronger than Third Normal Form, since the latter allows

Figure 1 A counterexample. The FR’s given in [2], and a
graphical representation of them, are shown. Data base attri-
butes are represented by circles, the given functional relations
by boxes, and connecting arrows denote the left and right sides
of the respective FR’s. The existence of a circuit in the graph is
indicated by shading.
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a transitive dependency 4 — B — C to exist in a relation
R if attribute C belongs to a minimal key for R.

Bernstein’s work may also be used to correct Theo-
rem C. If his Property P is included in the hypothesis,
then the theorem becomes true. Here we present an al-
ternative way of correcting it.

Bernstein’s counterexample and a graphical represen-
tation of his functional relations (FR’s) are shown in
Fig. 1 (see [1] for the definition of terms such as “func-
tional relation”). The graph of the counterexample is
seen to contain a cycle along the path R,-X-R,-C-R,-B-
R,. This occurrence is related to the failure of Theorem C
of [1], as is evidenced by the proof we have included at
the end of this letter. If one adds to the hypothesis of the
original Theorem C the condition that the graph of the
minimum cover be acyclic, then the theorem is true. The
property of acyclicity is a stronger condition for third
normal form than Bernstein’s Property P, although the
former is probably easier to check algorithmically for a
given set of FR’s.

Theorem If MC is a minimum cover of a set F of func-
tional relations, and if the graph of MC is acyclic, then
there is no attribute X # ¢ such that the following state-
ments are true:

S:A4,—>XeF;
$,4,X—>CEF;
S$;:A4A4,>CeMC,

where A,, A,, and C are attributes (or attribute sets)
such that

A NA,=¢;
XNA,=¢.
Proof Assume the contrary, i.e., there is such an X. We
shall show that S, S,, S, then imply either that the graph
contains a cycle or else that MC is not a minimum

cover. This constitutes proof by contradiction.
The following four cases are examined:

1. §,8,€ MC;

2. 5,€ MC, S, € MC,

3. §,€ MC, §,Z MC,

4. 5,8, MC.

Case I As developed in [1] the FR’s §-S, are not inde-
pendent. That is, S, and S, imply S,. Thus all three can-

not belong to the same minimum cover, so this case
leads to an immediate contradiction.

Case 2 Since S, belongs to F, it must be derivable from
the FR’s of the minimum cover:
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S, =fV, V-~ V,), where V, € MC.

Let the symbol @ represent the pseudotransitivity oper-
ation as defined in [1]. That is, if we have three func-
tional relations R,, R,, and R, such that

R:E—F,

R, F,G — H,
R:.E G— H,
then we shall write
R, ®R,=R,

It is important to note that the closure of a given set of
FR’s (i.e., the set of all FR’s derivable from them) can
be obtained by successive application of @ to members
of the given set. The function f defined above is an in-
stance of such an application.

From the definition of @ it follows that

S, =85, ®S,.

Suppose that S, # V, for any i. Then

S,=fV, V5 V,) DS,

which shows that S, can be derived from members of

MC and thus cannot belong to MC itself, a contradic-
tion.

On the other hand, consider S, = V, for some i. Since
S, € MC, there is a path from X to C in the graph of
MC. But since

Sl =f( Vls Vzv' " Vi_la S;p V‘+1,. ) V")’

1

then there is a path from C to X, i.e., a cycle, contradict-
ing our hypothesis. Cases 3 and 4 are proved the same
way.
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