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The Experimental Compiling System 

The Experimental Compiling System (ECS) described here represents a new compiler construction methodology that uses 
a compiler base which can be augmented to create a compiler for any one of a wide class of source languages. The 
resulting compiler permits the user to select code quality ranging from highly optimized to interpretive. The investigation 
is concentrating on eo.vy expression and efficient implementation of language semantics; syntax analysis is ignored. 

1. Introduction 
The Experimental Compiling System (ECS) uses a new 
compiler construction methodology [1] the fundamental 
goal of which is to provide a system on which customized 
compilers for a variety of source languages and a variety 
of target machines can be developed. The compilers are 
intended to be easy to build, modify, and maintain and to 
produce optimized object code if desired. In our investi-
gation we assume the existence of a general parsing sys-
tem, which is therefore not considered. Instead, we con-
centrate on the design and development of a system 
which permits easy expression of language semantics in a 
form amenable to analysis and optimization. 

The meanings of most of the constructs in a language 
are given in a collection of procedures, which are essen-
tially identical to user procedures and can thus be sub-
jected to the same analyses and optimizations. In this way 
specific characteristics of the source language can be de-
duced by the system. Modifying or extending the lan-
guage involves changing or augmenting the collection of 
procedures defining it. 

The basic system is designed to minimize the con-
straints imposed on languages. This increases the range of 
possible constructs which can be supported when the sys-
tem is customized to compile a given language. The pri-

mary interface between the basic system, the procedures 
defining a language, and the programs written in it is the 
internal language in which the procedures and their char-
acteristics are expressed. The basic system provides a 
schema for this language and understands its semantics. 
The meaning of a given language is built on this schema. 

These ideas (the internal language schema, semantic 
definition by procedures, and procedure characteristics 
derived by analysis, as well as the mechanism for code 
expansion and selection) are fundamental to the Experi-
mental Compiling System approach and significant depar-
tures from conventional approaches to compiler design. 

The internal language (IL) schema is a framework for 
expressing various languages. One of two unique aspects 
of the schema is that attributes, including information nor-
mally provided by data declarations, are variables. ECS 
has no a priori knowledge about attributes, their possible 
values, or when such values are bound to attributes. Fur-
thermore, the usual dictionary in which such source-spe-
cific information is directly encoded for use during the 
compilation process does not exist in ECS. 

The other unique feature of the schema is that all opera-
tions are references to procedures which implicitly define 
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and elaborate the meaning of the operation. The proce-
dure reference mechanism is used to express declarative 
information as well as the executable statements in a 
given source language. Unlike conventional programming 
languages in which, a syntax and semantics are specified, 
the IL schema provides a form but only limited semantics; 
it does not attach meaning to most of the operations. 

The collection of procedures (called defining proce-
dures) which elaborate the operations of a language must 
eventually reference primitive operations. These opera-
tions are defined by degenerate proc'(?c/M/-e.v—procedures 
with no elaborating text—and are abstractions of the tar-
get machine. 

The term dialect is used to refer to a language—includ-
ing its semantics—expressed in the form provided by the 
IL schema. The notation IL/X is used to refer to the dialect 
of IL supporting the language X. The terms IL/S and IL/P 
are used to refer to the particular source and primitive 
dialects employed in an ECS compiler. Because, in our 
experimental work, we use PL/I as the source language 
and the IBM System/370 as the target machine, the output 
of the PL/i translator is called the IL/PLI dialect, and the 
primitive language is called the iL/370 dialect. 

The defining procedures for nonprimitive operators are 
written in an external syntax of IL called DP. Although it 
would be most convenient to use the same IL language for 
elaborating the operators of a source language as is used 
for the source language itself, this does not work in gen-
eral. Pivi does not, for example, permit the testing of pa-
rameter types, which is needed to select code alterna-
tives. 

When processing a program, it is necessary to get an-
swers to such questions as: Does this instruction branch? 
What variables are used by this instruction? What vari-
ables are defined? Normally such information about the 
operators of a language is built into a compiler. Further-
more, compilers generally make worst-case assumptions 
about an operation which refers to an external procedure. 
In order to answer such questions and mitigate worst-
case assumptions, ECS performs both intra- and inter-pro-
cedural analyses. Given a collection of procedures, cer-
tain control and data flow characteristics of each proce-
dure are found by an in-depth analysis of the procedure in 
the context of the collection. Externally interesting infor-
mation, such as how global variables or parameters are 
used, is summarized and retained with the procedure in a 
library. Since all operators are defined by procedures, 
most of the interesting operator characteristics are me-
chanically derived by the system. Certain characteristics 
must be given, however. Summary information for the 

degenerate procedures which define the primitive oper-
ators cannot be derived automatically, since the body of 
such a procedure does not exist. Such properties as oper-
and commutativity are also not deducible by our analysis. 
The system provides a mechanism whereby the summary 
information can be supplied or augmented by the definer 
of the procedure. 

Code expansion is accomplished by procedure in-
tegration. This contrasts with code generation in most 
compilers, which basically involves scanning an input 
text string and, depending on what is found there and in a 
dictionary, selecting and emitting code sequences to an 
output text string. In ECS code emission occurs before 
code selection and is usually accomplished by replacing a 
procedure reference with the procedure itself. It is similar 
to macro expansion: the actual arguments replace occur-
rences of parameters in the text, local names are distin-
guished, and external names are resolved. This transfor-
mation, therefore, can be used to replace the code emis-
sion function of the usual code generator. If desired, 
integration can be done selectively; for example, it can be 
made dependent on the projected frequency of execution 
of an operation instance. When a procedure reference is 
not replaced with the procedure itself, it becomes a CALL 
to the executable version of the procedure. A single defi-
nition of an operation thus suffices for use in systems hav-
ing quite disparate optimization goals. 

When global program analyses and optimizations are 
applied to the text after procedure integration, a general 
procedure frequently becomes tailored to the particular 
reference, ECS exploits this idea to effect the code selec-
tion usually accomplished by emitting code sequences af-
ter interrogating contextual and dictionary information. 

An analyze-optimize-integrate cycle reduces an IL/S 
program to an iL/p program consisting of primitive opera-
tions. These operations reflect the functions of the target 
machine but not its resource constraints. Thus storage is 
not mapped and registers are not allocated. The system 
provides a table-driven mechanism to perform machine-
tailoring functions. 

Given the basic ECS system, a particularization to sup-
port a given target machine P can be constructed by first 
defining IL/P. Then the register requirements and alterna-
tive code skeletons for the IL/P operations are defined and 
a storage mapper written. 

A compiler for a particular source language s can be 
constructed from this particularization by defining IL/S. A 
translator is then written which translates s programs into 
IL/S. The defining procedures for all the nonprimitive IL/S 
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operations are written next. (These are written in DP, the 
defining procedure language.) The defining procedures 
are compiled and the compiling process augments the IL 
library of procedures with these new defining procedures. 
(The procedures in the IL library contain summary infor-
mation and are optimized.) The compilation also gener-
ates optimized object modules for these procedures and 
augments the object library. 

The resulting compiling system can compile an s pro-
gram in any of several modes. A complete optimization 
can be requested in which all or most procedure refer-
ences are expanded in line, and the analyze-optimize-in-
tegrate cycle is performed as often as necessary to 
achieve full optimization. Less optimization and faster 
compilation is achieved by decreasing the number of iter-
ations through the cycle. If no iterations are performed, 
the result is a program in which every instruction be-
comes a reference to the compiled form of the defining 
procedure. 

In order to realistically evaluate the approach we are, 
as already indicated, using PL/I as the source language and 
the 370 as the target machine. The run-time environment 
of the IBM PL/i Optimizing Compiler [2] and its run-time 
library are being used. This not only obviates the need to 
develop a new environment and library but allows more 
accurate comparative evaluations to be made regarding 
the relative efficiency of the code produced by the PL/I 
Optimizer and by ECS. 

In the next section of this paper, we discuss the IL 
schema on which various dialects can be constructed to 
express source and target language constructs and their 
semantic interpretation. Section 3 describes the organiza-
tion of the ECS compiler which is being constructed to 
evaluate the methodology as it applies to PL/I. Section 4 
gives an example of a (hand-simulated) application of the 
approach to string concatenation. Although this appli-
cation has been reported elsewhere [3], it is repeated here 
to provide a specific basis for evaluating the approach. 
The last section includes some observations regarding the 
relevance of the ECS approach in extensible language sys-
tems, program development systems, program mainte-
nance, and data isolation. An Appendix elaborates some 
of the technical mechanisms developed to support the Ecs 
approach. 

2. IL schema and its dialects 
In this section the objectives and the constructs and con-
cepts of the intermediate language schema are given. Fol-
lowing that the two dialects of IL (ruPLi and !U370) and the 
IL external form (DP) being used in the current ECS imple-
mentation are discussed. 

• Objectives 
The IL schema [4] is designed to support a class of lan-
guages which includes PUI, FORTRAN, COBOL, ALGOL-60 

and 68, as well as low-level languages close to the assem-
bly language level. While the IL schema is capable of sup-
porting APL, the rest of the system would require addi-
tional analysis and transformation components to ef-
fectively compile that language. 

The number of built-in IL constructs is small. Since the 
schema (and ECS) is independent of any particular source 
language, a minimal schema both avoids precluding con-
structs in source languages and avoids including con-
structs in the base system which are not required for a 
given language. 

Since the notion of procedures, their definition, in-
vocation, and integration is central to ECS, the IL schema 
necessarily supports a wide class of definitional and in-
vocational mechanisms, including all the usual call-by-
reference, call-by-value, and call-by-name argument-pa-
rameter association forms. Furthermore the schema lets 
the ECS procedure integrator be a mechanical, language-
independent transformer which can preserve the seman-
tics of an invocation. 

In addition to these objectives, which are central in de-
termining the form of the IL schema, several practical 
considerations are factored in. The most important one is 
the need to collect and retain storage mapping and alias-
ing information. The actual representation of IL within the 
system is also very much dictated by practical, primarily 
efficiency, considerations. 

• Constructs and concepts 
The objectives of the IL schema are supported through a 
number of constructs and assumptions regarding the ex-
pression of a language, S, in IL. These represent our con-
clusions as to what constitutes a practical, "lowest com-
mon denominator" schema on which a class of languages 
can be expressed. 

Variables 

Most source languages explicitly or implicitly associate 
with each variable rules governing attributes, storage 
mapping, aliases, name scope, and legal usage. The IL 
schema contains mechanisms for the expression of these 
rules but does not imbed them in the schema. 

Attributes As mentioned earlier, attributes are treated 
as variables, and no assumptions are made regarding 
kinds of attributes, their values, or when values are 
bound to attributes. The attributes of a source program 
are expressed as additional qualifiers to names. Thus the 
PL/1 structure component B in 697 
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DECLARE 1 A, 
2 B CHAR (2) VARyiNG. 
2 C FIXED BIN (15); 

might result in such IL/PLI variables as A.B.FORM, 

A.B.TYPE, and A.B.VARY. These might take on such values 
as 

MOVE (A.B.FORM = STRING') 

MOVE (A.B.TYPE = 'CHAR') 

MOVE (A.B.VARY = TRUE') 

(Here and throughout most of the paper we use the ex-
terna! form of IL: the operation, i.e., the procedure refer-
enced, followed by the operands, separated by such de-
limiters as == -I- * ( ). All such delimiters are equivalent to 
a comma or a blank and have no semantic implication.) 
Since these are truly variables—not reserved symbols— 
the IL schema contains no restrictions as to when they 
can be tested, changed, or initialized. A representational 
expedient has been introduced internally, however. 
When translating a program in S into IL/S, invariant as-
signments such as MOVE (A.B.FORM = 'STRING') may be ex-
pressed in a "constants dictionary" rather than directly 
in text. This is done to save processing time. The diction-
ary does not, however, have the usual form in which spe-
cific bits and fields hold specific attribute values, but is 
used in this context to associate variables with their pro-
gram-invariant constant values. 

Storage mapping information The size, alignment, and 
storage class (e.g., static, controlled, etc.) are used in the 
machine tailoring component of ECS. Most of this infor-
mation is not used by the IL but is "passed through" and 
is not normally referenced until storage is mapped. It is 
expressed in a language-dependent table. 

Aliasing information The process of deducing relation-
ships in a program and transforming the program based 
on such information requires complete knowledge of the 
aliasing relationships in the program to avoid making very 
pessimistic and limiting assumptions. There are various 
types of aliases ranging from the static sharing of storage, 
exemplified by the FORTRAN EQUIVALENCE statement, to 
the dynamic sharing, which can occur by using PUI 
POINTER variables. Some of the aliasing information is 
best gleaned or at least refined by analyzing the program; 
other forms are explicit in the source program and must 
be expressed in the IL dialect of the source language. A 
table describes the static storage relationships which may 
exist between variables. Another table is used to hold the 
more dynamic aliasing possibilities by expressing the po-
tential values of language-dependent variables such as 
pointers, entry variables, and label variables. 

Name scoping In order to support block structured lan-
guages and to do procedure integration, it is expedient to 

incorporate a "weak" form of name scoping in the IL 
schema. This form assumes that all names are resolved so 
that identical names in different blocks are identical in IL 
if and only if they are the same object; otherwise, the 
names are different. Consider the example given in Fig. 1. 

If the procedure integrator replaces the reference to IN-
NER by the body of the procedure, it must adjust the 
names within INNER. Since A in this case belongs to 
OUTER, it should not be changed; however, if A were de-
clared in INNER, it would have to be given a new name to 
prevent conflict with other copies of INNER. 

Operand.'^ 
Each IL operand is a single variable or constant and, with 
the exception of their use in built-in operations, each is 
actually an argument in a procedure reference. The vari-
ables can be qualified (e.g., A.TYPE) or indicate a location 
(e.g., addr A). If an operand is an address of a variable, 
then the operand contains a level of indirection to the var-
iable. Constants can be labels, entries, the value con-
stants of the source language, or symbolic constants. 
Symbolic constants are items which do not change but 
whose actual constant representation is irrelevant. 
•FALSE; 'FLOAT,' 'SCALAR' are examples. 

Instructions 
All instructions have a uniform structure: the name of the 
procedure to be invoked followed by the list of argu-
ments. (The external syntax used for printing or program-
ming purposes may be more elaborate, of course.) 

BIND built-in operation 
The iL schema has four built-in operations. The meaning 
of these operations is known to the system; they are not 
specified as defining procedures, BIND is one of them and 
has the form 

BIND (X, P) 

which is read "bind (associate) the address of x to be the 
value of P." Jn other words the variable X now has as its 
address the value of P. 

Suppose A were a string of characters declared in PL/i 
by 

DECLARE A CHAR (50); 

Now suppose the value of variable c, a single character, 
were assigned to the tenth position in A. This can be done 
by first calculating the address of the character to be 
changed, then setting the value at that address to c. How 
long is the item at the tenth position in A? The reader 
knows it is a single character, but the compiling system 
must be told that fact. To do this a BIND is used to explic-
itly name the tenth position in A. The total calculation is 
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ADD (P = addrA + 9) 
BIND (X, P) 
MOVE (X = C) 
The attributes associated with x{e.g., x.LENGTH = i) are 
ascribed to the storage at the tenth byte of A. (Later in 
this section the use of BIND in supporting various PL/I con-
structs is shown.) 

BUY built-in operation 
BUY is used to obtain storage for variable-sized tempo-
raries. It is built into the schema so that the allocation can 
be easily removed from the execution string and aggre-
gated with other variables if the size of the temporary be-
comes known during compilation. 

LABEL and ENTRY built-in operations 
These two built-in operations are simply syntactic mark-
ers in the text. They are needed for control flow analysis. 
Their operands are the label or entry symbols associated 
with that text point. 

Parameter passing 
The IL schema must support procedure integration and a 
variety of argument-parameter association conventions. 
When a procedure is integrated, one of the changes made 
to the integrated procedure involves substituting actual 
arguments for parameters. Thus the IL schema has a call-
by-name convention. However, parameter passing is re-
stricted so that there is no difference between call-by-
name and call-by-reference. A source language translator 
must generate the IL appropriate to the language conven-
tion. Consider the source program fragments given in Fig. 
2. 

PL/I 
OUTER -.PROC; 

DCL A• • • 

CALL INNER; 

INNERrPROC; 

= A- • • 

END INNER; 
END OUTER; 

Figure 1 PL/I procedure showing name scoping. 

I = 2; 
CALL R (I, A (I)); 

R: PROC (X,Y); 
X = 5; 
Y = 10; 

END; 

Figure 2 PL/I call with related arguments. 

MOVE (I = 2) 
INDEX (P, A, I) 
BIND (T, P) 
R (I,T) 

R:PROC (X,Y) 
MOVE (X = 5) 
MOVE (Y = 10) 

END 

Figure 3 IL/PLI form of the procedures in Fig. 2. 

If the source language uses a call-by-reference conven-
tion (as does PL/I), then the desired result of the CALL is 
I = 5 and A(2) = 10. Figure 3 shows an IL expression of the 
source language which supports this convention. The IN-
DEX defining procedure puts the location of A(i) in the 
locator variable P. 

Figure 4 shows the result of integrating the two proce-
dures. If the source language has a call-by-name parame-
ter passing mechanism (a la ALGOL-60), then the source 
translator will create procedures to compute dynamically 
the location of arguments when referenced in the called 
procedure. The names of these procedures are passed in-
stead of the actual arguments. 

• //. dialects 

The IL dialects used in the current ECS development effort 
include the DP language, IL/PLI, and iL/370. 

DP language 
The defining procedures for a given source language can 
be written in any convenient language for which a trans-

MOVE (1 = 2) 
INDEX (P, A, I) 
BIND (T, P) 
MOVE (I = 5) 
MOVE (T = 10) 

Figure 4 Result of integrating the procedures in Fig. 3. 

lator to IL exists. However, most users would find the 
constraints of such languages as PL/I too restrictive. For 
example, PL/I does not provide direct mechanisms for set-
ting and interrogating the attributes of variables. There-
fore, it is necessary to allow defining procedures to be 
written in IL. For this purpose, an external representation 
of IL programs, called DP, has been developed. Two im-
portant guidelines were applied in its design. In order to 
keep the underlying form accessible and transparent to 
the writer of a defining procedure, there should generally 
be a direct, one-for-one correspondence between external 699 
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and internal text. (A few statements, notably the control 
statements, are exceptions.) The number of language con-
structs actually needed in writing a defining procedure is 
quite small. Only those considered necessary to elaborate 
a definition or highly desirable for expressibility are in-
cluded. 

ILIPLI 

The decision to use PL/I as the language for testing the 
feasibility of the ECS approach was made for several rea-
sons, the most important being the richness of the PL/i 
language. By establishing the technology required to 
handle such constructs as pointer variables, ON condi-
tions, etc., ECS will be able to support similar facilities 
occurring in many other languages. 

In choosing PL/I we were able to take advantage of an 
available translator: the "front end" of the IBM PL/I 
Checkout Compiler [5]. This translates PL/I into an inter-
nal form called HTEXT, which is actually a text and dic-
tionary suitable for interpretation. It is this form that is 
transformed into IL/PLJ. 

In the discussion of the IL schema several PL/i-related 
examples were used to illustrate schema constructs. The 
PL/r features now discussed are some examples of the 
strategy used to express interesting PL/I constructs in IL. 

ON condition enablement The PUI ON conditions which 
are enabled at any time are established by their lexical 
scopes. A defining procedure for an operation may need 
to find out what conditions are enabled. This information 
is passed to the procedure as an explicit argument which 
has been established by the translator. 

ON units The PL/I program units used to define the ac-
tions to be taken when an enabled condition occurs in the 
executing program are treated as procedures. The ON 
condition name itself is treated as a local entry variable. 

Procedures In multiple-entry procedures the relation 
between parameters and their order or existence in a pa-
rameter list can vary between entries: 

A; PROC (X, Y): 
X=l; 

B: ENTRY (Y, 2): 

Y=2; 

END; 

To avoid making parameter operands entry-dependent, 
an alternate solution to the PL/I method of renaming pa-
rameters at different entries was chosen. When a mul-
tiple-entry procedure is encountered whose entry lists 
specify different parameters, the procedure is modified so 

that each parameter is assigned a fixed position in a ca-
nonical list to be used at all entry points. All entry points 
are altered to accept this canonical list. A series of 
dummy procedures is then created at the same lexical 
level as the procedure being modified. Each of these 
dummy procedures reorders the arguments to the canoni-
cal form and invokes the corresponding entry point in the 
modified procedure. Thus the above PL/I procedure be-
comes the equivalent of 

A: PROC (XX, YY); 
CALL AA (XX, YY, 0); 
END; 

B: PROC (YY, ZZ); 
CALL BB (0, YY, ZZ); 
END: 

AA: PROC (X, Y, Z); 
X=l; 

BB: ENTRY (X, Y, Z); 

Y=2; 

END; 

The procedure integration optimization can generally re-
move the introduced CALL. 

The procedure statement In addition to the parameters 
expressed in the PL/I procedure statement, the IL/PLI form 
indicates the PL/I procedure statement options (e.g., re-
cursion) and contains the number of parameters, the ON-
condition enablement parameter, the return variable, and 
the label of the initialization block. Initialization includes 
space acquisition, variable initialization, and the usual 
procedure prelude. It is separated as a procedure and ref-
erenced from each entry point of the original procedure. 
Again procedure integration will embed it in-line if there 
is only one reference or when otherwise feasible. 

Computed references Addressing of the components of 
structures, arrays, and based variables is handled using 
the BIND built-in operation. A reference to P ^ A becomes 
BIND (A,P) followed by a reference to A. 

An example of addressing is given in Fig. 5. (Note that 
in PL/I on the 370 the current length of a varying-length 
character string is stored in the two bytes preceding the 
characters.) 

IU370 

The primitive dialect of IL in the current ECS is iL/370. 
While providing access to the 370 constructs, it differs 
from the machine instructions in several ways: 

1. Registers are not visible. 
2. Load and store instructions are not included in the rep-

ertory of IL/370 instructions. 
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3. Operands are IL variables and constants; they are not 
in base-index-displacement form. Since storage has 
not been mapped, addresses relative to, for example, 
the beginning of the dynamic storage area are not 
known. 

4. The instructions generally have three addresses. The 
target operand need not be one of the source oper-
ands. However, all instructions which will not use reg-
isters in their realization {e.g., the decimal instruc-
tions) have two addresses. 

5. Operand lengths are those of the 370 and are encoded 
in the operation code if the instruction can be realized 
by the use of registers. 

6. The raising of exceptions is modeled as a call on an 
external variable. 

7. Condition codes and program masks are modeled as 
external variables. 

An example of the description of an ii7370 instruction fol-
lows. (The summary information to be associated with 
the degenerate defining procedure is contained in the ECS 
library.) 

F I X E D _ A D D „ i j k ( X , Y, Z) 

This performs the fixed point addition x = Y + z, 
where the lengths of x, Y, and z are given by i, j , and 
k, respectively. Here i, j , and k may each be either 
2 or 4. 

Implementation: Load, Add, Store, with "Half-
word" on any of the instructions if appropriate. If 
either x or Y is in a register, then the Load can be 
omitted. 

Summary information: x and the condition code are 
defined; Y and z and the program mask are used and 
preserved. A Fixed-Point Overflow exception will be 
raised if the appropriate bit in the program mask bit is 
on and a4-byte overflow occurs. 

Y and z commute if you also switch the operand 
lengths, i.e., FiXED_ADD_ijk {X, Y, Z) is the same as 
F I X E D _ A D D ^ i k j (X, Z , Y ) . 

IL/PLI 
MOVE (Y.FORM = 'STRING') 
MOVE (Y.TYPE = CHAR VAR) 
MOVE (Y.MAXLENGTH = 5) 

MOVE (P = addr X) 

BIND(Y.LENGTH, P) 
ADD {PI = P+2) 
BIND (T, PI) 
MOVE (Y.LENGTH = 2) 
MOVE (T = ZZ') 

Figure 5 Example of the use of BIND when translating a store 
into a PL/I varying-Iength character string. 

PL/I 
DCL Y CHAR (5) VAR 

BASED; 

P = ADDR(X); 

P-» Y = ZZ'; 

PL/ I DP 

Translator 

(PLI Checker) 

and transformer 

T: 

Translator 

/PLI • t I L / D P 

Library 

, . I L 

Flow-free analyzer 

y-*- Flow-dependent analyzer 

Optimizer 

Integrator 

IL /370 

Storage mapper 

Instruction aggregator 

r R L 

Register allocator 

Final assembly 

370 module 

Figure 6 ECS compiler organization for PL/I on the 370. 

3. ECS compiler organization 
In this section we describe the structure of the Experi-
mental Compiling System currently being developed. Fig-
ure 6 depicts its structure. 

• Translators 
Two different translators exist: one for PL/i and one for 
the defining procedure language, DP. The translator for 
the DP language uses a general LALR(1) parser which pro-
vides a convenient tool for translating other languages to 

IL. The translator for pui is the translator used by the PUI 
Checkout Compiler [5] to produce HTEXT (the internal 
form of PL/i which is interpreted by the back end of that 
system) followed by a transformer to change HTEXT into 

l U P L I . 

One of the functions of a source language translator is 
to determine packets: all data objects which have a lan- 701 
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guage-dictated storage relationship to each other are 
mapped into the same packet; otherwise data objects are 
in unique packets. (The relationship of objects in the 
same storage class but in separate packets is not resolved 
until later in the compilation.) Associated with each vari-
able is its packet number and enough mapping informa-
tion to resolve to the bit level the mapping of a variable 
and its components. With this level of information partial 
overlay can be distinguished—a fact which is of interest 
to those components of the system doing alias analysis. 
Of particular importance in PL/I is the ability to note sub-
structure independence. For example, changes to any of 
the 10 B'S do not affect the c's in the structure: 

DECLARE 1 A (10). 

2 B FIXED BIN (15), 

2 C FIXED BIN (15); 

• Library 
The library is a repository of analyzed and unanalyzed IL 
procedures, including both user and system procedures. 
In the current implementation the library contains iii370 
degenerate procedures, IL procedures which establish the 
meaning of the IL/PLI operations, and Plii user procedures 
translated to IUPLI. The procedures may have just been 
produced by the translator or they may have been re-
tained from earlier compilations. The fact that procedures 
can be created during the translation of a program and can 
be subsequently analyzed, optimized, and integrated 
makes the handling of a number of source language con-
structs relatively easy. For example, a procedure can be 
created by the translator when array or structure initial-
ization is requested. 

The existence of this library has interesting implica-
tions for the flow of information through the compiler and 
on the relationship of the compiler to its environment. 

1. All procedures associated with a problem solution and 
submitted for compilation at the same time are trans-
lated and placed in the library before the rest of the 
compilation proceeds. (Most compilers independently 
compile each external procedure. Furthermore, the in-
termediate form is usually very transient.) 

2. After a procedure has been analyzed and summary in-
formation (see Appendix) has been accumulated, the 
augmented procedure replaces the original procedure 
in the library. This may happen more than once as ad-
ditional knowledge is acquired about the entire collec-
tion of procedures associated with a problem solution. 

3. During the analysis and optimization of a procedure, 
summary information for a referenced procedure may 
be used if it is available. With this additional informa-
tion optimizations across CALLS and of CALLS can be 
done. For example, expressions involving global vari-

ables might be removed from loops containing CALLS 

if it is known that the CALLS cannot change the values 
of these variables. A CALL itself might be removed un-
der the right circumstances. 

• Flow-free analysis 
In order to establish an analysis order [6] on the collection 
of procedures, a CALL graph—possibly disconnected-
must be built. Also, since various language constructs, 
like CASE statements and subscripting operations, are not 
built into the compiler but are realized by the defining 
procedures, the compiler must be prepared to produce 
good code for procedures that manipulate labels and ad-
dresses as variables. For these and other reasons flow-
free analysis [7] must be performed before flow-depen-
dent analysis. Flow-free analysis determines the possible 
values of variables used to reference procedures, desig-
nate procedures and branch targets, and contain ad-
dresses. Instruction execution order is not considered. 
The values obtained by the analysis are used by the flow-
dependent analyzer to obtain more precise control and 
data-dependent relationships. The Appendix contains ad-
ditional material on flow-free analysis. 

The call graph built by the flow-fi-ee analyzer is used to 
determine the order in which the subsequent analyses and 
optimizations will be appUed to the collection of proce-
dures. Basically it is inverse invocation order: a proce-
dure is analyzed and optimized after all procedure refer-
ences have been analyzed. This is not, however, the loop 
depicted in Fig. 6. Before describing the components of 
that loop—the flow-dependent analyzer, the optimizer, 
and the procedure integrator—we discuss the purpose of 
the loop. 

ECS is designed to permit multiple applications of pro-
gram analysis and transformation. This is possible be-
cause the programs which perform these functions are in-
sensitive to the text levels so can be applied to multiple 
levels, and because the IL schema, which is the only lan-
guage the basic system knows about, has no built-in as-
sumptions about text levels or binding times for informa-
tion. 

The primary reason for the loop is the way operations 
are defined. The operation-defining procedures elaborate 
the high-level operations in terms of other operations. By 
successive elaborations, every IL/S instruction is reduced 
to a sequence of IL/P instructions. Thus an iL/s program is 
processed by the compiler until all instructions are IL/P 
instructions. This can occur in three ways: 

1. iL/s can be IL/P. If s is very close to the target language, 
the parser for s may not generate any higher-level in-
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structions. Most IL/S's will probably contain some lUP 
instructions. 

2. As a result of integrating procedures and thereby 
elaborating the high-level IL/S instructions to lUP. 

3. As a result of transforming IL/S instructions into a se-
quence of II7P statements calling the IL/S defining pro-
cedure or user-supplied procedure. 

The choice of when to replace a high-level instruction 
with a procedure and when to replace it with a calling 
sequence depends on many factors: the goals of the sys-
tem and/or of this particular run, and the space/time 
tradeoffs of making a particular replacement. 

Since the defining procedures are compilable, they are 
available for use at run time. By transforming references 
to these procedures into run time calls, a program is 
created which is executed in the object environment de-
fined by these procedures. In this way we can get an inter-
preter. Furthermore, if during the optimization process 
all of the input operands of an operation become known, 
the operation can be performed at compile time using a 
compiled version of a defining procedure. 

We now consider analyses and transformations applied 
to a procedure during a single iteration of the loop. 

• Flow-dependent analysis 
Using the aliasing and summary information provided by 
the flow-free analyzer and the packet mapper, control and 
data flow analyses are performed on a procedure. Control 
flow analysis builds the control flow graph of the proce-
dure and performs a variant of the interval analysis de-
scribed in [8]. The purpose of interval analysis is to codify 
the control flow relationships {e.g., loops and loop nests), 
so that other analyses and transformations can be done 
more rapidly. The interval analysis variant is based on 
[9]. 

Data flow analysis finds all "def-use" relationships: all 
definitions which may afl'ect a given use (and all uses 
which may be affected by a given definition) are found by 
the bit-vectoring methods described in [8]. In order to 
limit the sizes of the bit vectors and to retain the results of 
data flow analysis when procedures are integrated, the 
analysis is performed and retained within "data-flow do-
mains." This program partition and its uses are described 
in the Appendix. 

• Optimization 
The collection of optimizing transformations is quite 
open-ended and subject to change. The initial collection 
includes some "classical" transformations as well as 
some new ones. 

DCL A(IOO) INT; 
DO I = 1 TO 10; 

END; 
A(I) 

1 = 1 
GO TO TEST 

LOOP: 

CK[1 s I £ 100] 
= A(I) 

1 = 1+1 
TEST: 

IF I £ 10 GOTO LOOP 

Figure 7 Subscript range check generated during translation. 

Redundant expression elimination This includes both 
code motion and common subexpression elimination. 

Constant propagation Instructions are executed at 
compile time if the operands which are used are constant. 
The ECS methodology allows the system to provide di-
rectly executable constant propagators for all opera-
tions—whether user- or system-defined. The Appendix 
describes this optimization in more detail. 

Dead code elimination Unreachable code is eliminated. 
Performing this transformation after propagating con-
stants through procedures which have been integrated 
has the effect of tailoring the general procedure to its spe-
cific instance of use. This transformation also eliminates 
useless instructions and instructions of the form A = A. 

Strength reduction This is primarily aimed at changing 
subscript calculations to increment instructions [10]. 

Range analysis In [11] a method is given for determin-
ing the bounds on the ranges of values assumed by certain 
variables at various points in the program. Such range 
information is used to eliminate redundant tests and to 
expose dead code. A particularly interesting application 
for this analysis is in reducing the costs of checking for 
subscripts that are out of range. Figure 7 shows a frag-
ment of a PI7I program on the left and on the right a 
schematized internal form in which a check on the range 
of subscript I has been expressed. 

The range analyzer acquires range information from 
definition and test points and propagates it to use points. 
When applied to this example, it will find that the value of 
I at the point of the check is 1 s i < 10. The check state-
ment is unnecessary and is eliminated. By explicitly ex-
pressing such checks as instructions in the text string, 
they are also subject to other forms of optimization: they 
will frequently be redundant and can be eliminated or 
moved out of loops. 

Variable propagation The variable propagation trans-
formation changes an occurrence of a variable name in a 
program to a different name which has the same value: 703 
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X = Y 

use of (X) becomes 
X = Y 

use of (Y) 

This may allow the elimination of the trivial assignment x 
= Y as dead code. Its most important applications in the 
ECS context are in removing levels of indirect addressing, 
particularly after procedure integration. 

Renaming Renaming is a transformation in which one 
variable is replaced by another. The motivation is to 
reuse variables in order to reduce the number of tempo-
raries required and the number of moves. There are two 
forms as shown in Fig. 8. In Section 4 an example is given 
using this transformation. 

• Procedure integration 
References to procedures are replaced by the procedures 
or by their calling sequences when procedure integration 
is performed. The Appendix discusses this transforma-
tion in greater detail. 

4. Machine tailoring 
Not ail functions a compiler must perform fit naturally 
into a procedurally based specification and elaboration. 
Storage mapping in particular does not entirely fit into 
this approach. 

The fundamental function of storage mapping is to 
change the underlying model of storage used by the pro-
gram. All of the variables required by a procedure are 
examined and relative locations assigned to each. Since 
ECS does not distinguish temporary, compiler-generated 
variables from other variables and since it generates a 
new such variable whenever one is required, ECS overlays 
storage [12-14J. This decreases user storage as well as 
making temporary management unnecessary. 

When storage is mapped, the references to that storage 
must also be changed. This transformation is accom-
plished by instruction aggregation which constructs the 
more complicated 370 base-index or base-index-dis-
placement (BXD) operands from the simpler iL operands 
and the results of storage mapping. 

In ECS, storage mapping and instruction aggregation are 
part of the target machine tailoring function. Another ma-
jor function performed by the machine tailoring function 

is register allocation. Its input is an augmented form of IL, 
called RL for Register Language, which is the output of 
instruction aggregation. The machine tailoring functions 
of the compiler are now considered. 

• Storage mapping 
Storage mapping in ECS involves collecting packets be-
longing to the same storage class into larger packets. This 
includes overlaying storage—determining which sets of 
packets in the same storage class can be assigned over-
lapping storage so that the overall object storage require-
ment is reduced. It also includes generating the instruc-
tions required to allocate and reference a packet and the 
objects in it. 

The first task, integrating and overlaying the primitive 
packets into larger packets within storage classes, could 
be done by defining procedures which are referenced at 
appropriate points in the text string and provided with the 
necessary information by the usual analysis techniques. 
For several reasons, however, it is desirable to treat this 
function in a special way. 

1. The target environment as well as the source language 
influences the organization of the larger packets. 

2. The information required for packet construction is 
not that normally collected by the analysis processes. 
It might be necessary to make a special analysis to 
derive such information. 

3. The integration of packets should happen after other 
optimizations and procedure integration. At that time 
the "dead variables" which need no storage will have 
been identified, and the coalescing of storage class 
membership for the integrated procedures will have 
occurred. 

4. Since storage mapping changes the storage model from 
that of the source language to that of the target ma-
chine, the reference forms must also be changed. This 
involves, for example, transforming references to a 
variable x in the PL/I automatic storage class to refer-
ences to an offset (ofiF) to the base of the appropriate 
dynamic storage area (DSA). 

For these reasons our current implementation performs 
packet integration as part of the machine tailoring com-
ponent of the system. The storage overlay aspect of 
packet integration is discussed in the Appendix, 
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Figure 8 Effects of the renaming transformation. 

Original 
T = op (A, X) 

B = op' (T, Y) 

becomes 
B = op (A, X) 

B = op' (B, Y) 

or 
A = op (A, X) 

B = op' (A, Y) 

• Instruction aggregation 
The instruction aggregation component of ECS augments 
the IL instructions to include the storage mapping infor-
mation. The additions explicit in the IL prior to aggrega-
tion are implicit in an RL operand. Thus, the aggregator 
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synthesizes the complex machine operands out of the op-
erands of several IL expressions. It is described in greater 
detail in the Appendix. 

RL, the annotated IL instructions produced by instruc-
tion aggregation, can be characterized as follows: opera-
tions are identical with IL/370; operands are annotated to 
include the 370 base + index + displacement (BXD) form. 

• Register allocation 
The register allocation component of ECS not only allo-
cates and assigns registers but makes the final code selec-
tions. Any optimizing compiler for the IBM 370 (or any 
computer with multiple ways of performing the same 
function) is faced with the dilemma caused by the fact 
that the selection of the instruction sequence depends on 
register availability and the assignment of registers de-
pends on the instruction sequence. 

If there were only one possible sequence for every 
higher-level operation, then the problem would be some-
what easier, though by no means trivial. The ECS register 
allocation component tries to select the best sequence of 
instructions subject to register availability and an esti-
mate of the relative execution frequencies of various 
areas of the program. 

The organization of the ECS register allocator is given in 
the Appendix. 

• Final assembly 
The last component of ECS generates the actual code and 
creates the load module. 

5. An example 
The example given in this section is taken from [3]. The 
study reported in that paper was designed to evaluate (by 
a hand simulation) the effectiveness of the ECS approach 
in producing good code for a hard problem. The problem 
chosen was the PL/I string concatenation operation: A = 
B||C. 

A code generator has to be aware of numerous possi-
bilities when generating code for this operation: 

1. The operands may be varying or fixed-length strings. 
2. The result may need to be padded or truncated. 
3. One or both of the operands may alias the target vari-

able. For example, if C is aliased with A, then moving 
B into A will destroy the original c. If B and A start at 
the same memory address, then we might be able to 
save a move operation. 

4. Different instruction sequences are required for oper-
ands of different lengths. These can range from a 
simple load-store sequence to loops for long strings. 

M= 
T 

MOVEl = B.LEN 
EXTRA = M-C.LEN 
IF EXTRA > 0 

A.MAXLEN-B.LEN 
IFM > 0 

F 

M0VE2 

MOVEl = A.MAXLEN 
MOVE2 = 0 
EXTRA = 0 

MOVE2 
C.LEN EXTRA 

M 
0 

TOTAL = MOVEl + M0VE2 
BUY Tl (MOVEl BYTES) 
BUY T2 (MOVE2 BYTES) 
PI = addr A + MOVEl 
BIND Al, PI 
Tl = B (MOVEl BYTES) 
T2 = C (MOVE2 BYTES) 
A = Tl (MOVEl BYTES) 
Al = T2 (MOVE2 BYTES) 

IF A.VARY = 'TRUE' 

A.LEN = TOTAL P2 = addr A + TOTAL 
BIND A2, P2 
PAD A2 (EXTRA) 

RETURN 

Figure 9 Defining procedure for concatenate. 

5. The context of the concatenate operation may greatly 
affect the kind of code that should be generated. The 
quintessential example of this is LENGTH (A||B) in 
which the actual concatenation is unnecessary since 
the desired result is the sum of the lengths of the two 
operands. 

The conventional strategy for producing good code for 
such an operation is to build into the code generators an 
extensive selection process which distinguishes the "spe-
cial cases." 

The ECS strategy is to write the defining procedure in as 
straightforward a way as possible and use the existing 
analysis and optimization techniques to produce good 
code. The next few figures elaborate the application of 
this strategy to a specific instance of concatenation. Fig-
ure 9 shows in schematic form most of the defining proce-
dure for the concatenation A = B||C. Note that the overlay 
problem is handled by moving each input string into a 
temporary. (The notation used in this example differs 
from our usual notation, but we hope it is both clear and 
concise.) 

Now consider the PL/I program in Fig. 10 which refer-
ences the defining procedure for concatenate. The declare 705 
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DCL (B,C) CHAR (10); 
DCL A CHAR (50); 

A=B||C; 

Figure 10 A reference to the concatenate denning procedure. 

-M = 40 
MOVEl = 10' 
EXTRA = 30 MOVEl = 50 

M0VE2 = 0 
EXTRA = 0 

MOVE2 = 10 
MOVE2 
EXTRA 

40 
0 

TOTAL = MOVEl + MOVE2 
BUY Tl (MOVEl BYTES) 
BUY T2 (MOVE2 BYTES) 
PI = addr A + MOVEl 
BIND Al, PI 
Tl = B (MOVEl BYTES) 
T2 = C (MOVE2 BYTES) 
A = Tl (MOVEl BYTES) 
Al = T2 (MOVE2 BYTES) 

A.LEN = TOTAL P2 = addr A + TOTAL 
BIND A2, P2 
PAD A2 (EXTRA BYTES) 
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Continue 

Figure 11 After integrating the concatenate defining proce-
dure. 

BUY Tl (10 BYTES) 
BUY T2 (10 BYTES) 
PI = addr A + 10 
BIND Al, PI 
Tl = B (10 BYTES) 
T2 = C (10 BYTES) 
A = Tl (10 BYTES) 
Al = T2 (10 BYTES) 
P2 = addr A + 20 
BIND A2, P2 
PAD A2 (30 BYTES) 

Figure 12 After applying constant propagation and dead code 
elimination. 

statements are translated into IL statements which assign 
values to a number of variables, including A.LEN, 
A.MAXLEN, A.VARY, etc. The PL/I Concatenate statement 
is translated into a reference to the concatenate proce-
dure. After procedure integration has replaced the refer-

ence to concatenate by the defining procedure, constants 
can be propagated. We now get the program shown in 
Fig. 11. (In this example arguments and parameters have 
the same names—this is not usually the case, of course.) 

Figure 11 shows several instructions which cannot be 
executed. Dead code elimination removes them. The con-
stants assigned to the remaining MOVEI, MOVE2, and EX-
TRA can then be propagated to their uses. Having done 
the constant propagation, the assignments of the con-
stants to these variables are dead and can be eliminated. 
The program in Fig. 12 is left. The program now has Ti = 
B and A = Tl. Since it can be established that A, B, and Ti 
are not aliases, variable propagation can transform the 
latter statement to A = B. This causes r i = B to become 
dead, so it can be eliminated. This, in turn, makes the 
BUY of Tl dead. Similar analyses and transformations af-
fect T2 and C. The result is shown in Fig. 13. 

When the operations in Fig. 13 are replaced by their 
defining procedures, the lL/370 version of the program 
fragment is obtained. After more optimization, the result 
is the code of Fig. 14. (The number of bytes expressed in 
a 370 move instruction is one less than the number of 
bytes to be moved by the instruction.) 

Storage is now mapped. A, B, and c are in automatic 
storage so are mapped relative to the beginning of the dy-
namic storage area {i.e., the DSA) at constant offsets: OSFA, 
offB, and ofFc. The result of the storage mapping is shown 
in Fig. 15. (In the implementation the text is not actually 
expanded with the instructions for accessing the data, but 
the accessing information is held in a table associated 
with the instructions.) Only the address computations 
needed to address A are shown. 

The IL to RL conversion is performed. The addressing 
computations are collected into the base-index-dis-
placement operands of the 370. In this example, we are 
assuming that the offsets are < 4096. In conjunction with 
the formation of BXD operands, other constant com-
ponents of the address computation are also collected 
into the displacement if possible. The result is shown in 
Fig. 16. The register allocator generates the result shown 
in Fig. 17. 

Thus, the original, very general defining procedure for 
concatenate has been reduced by general transformations 
to four instructions for this particular case. What about 
other cases? A number of cases were considered and the 
results compared with the PL/I Optimizer, which contains 
a very large, special-case code generator. 

1. For A = A||C, A will not be moved by either ECS or the 
Optimizer. 
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2. For LENGTH (B||C), the concatenation wiR not be done 
by ECS; it is done by the Optimizer. 

3. In ECS, A = B||C||D will use the renaming optimization 
to avoid unnecessary moves to and from temporaries. 
The Optimizer also avoids unnecessary moves. 

4. If concatenation is done on parameters of unknown 
length, as in 

P: PROC (A, B, C); 
DCL (A, B, C) CHAR (*); 
A = B||C; 

then the ECS code will be longer but faster in com-
parison with the Optimizer. 

6. Conclusions 
A compiler construction methodology has been described 
which provides a language-independent compiler frame-
work on which language-specific compilers can be built. 
The approach is based upon the use of 

1. An intermediate language (IL) schema to express lan-
guages. 

2. Procedures to specify ("elaborate") the semantics of 
the language. 

3. Analysis to derive the characteristics of operations. 
4. Procedure integration to expand high-level code into 

lower-level code. 
5. Analysis and optimization to tailor code to its particu-

lar context. 

As a consequence of the approach, the system features 

1. Interprocedural analysis and optimization, including 
in-line expansion ("integration") of user procedures. 

2. Both interpretation and compilation within the same 
system and from a single semantic definition. The 
compiled object code can optionally be highly opti-
mized. Interpretive code (in the form of references to 
the generalized procedures for each operator) and op-
timized code can be mixed in the same routine. 

3. An e xtensi ve collection of optimizing transformations. 
4. Variable binding times. Most systems expect to bind 

information at fixed times: attributes to variables at 
compile time, relative addresses at load time or execu-
tion time. The Experimental Compiling System binds 
information when it is known. 

The approach is being validated by implementing the 
basic system and testing its applicability to PL/I on the 
370. 

In addition to providing a compiling system which 
should significantly reduce the cost and complexity of 
creating a compiler, while increasing the reliability and 
code quality of the programs compiled by it, the ECS ap-
proach has other advantages [15]. 

PI = addr A + 10 
BIND Al, PI 
A = B (10 BYTES) 
Al = C (10 BYTES) 
P2 = addr A + 20 
BIND A2, P2 
PAD A2 (30 BYTES) 

Figure 13 After variable propagation and other optimizations. 

ADDRESS _ ADD 
BIND 
MOVE 
MOVE 
ADDRESS ADD 
BIND 
MOVE 
EXTEND 

PI = A + 10 
A1,P1 
A, B, 9 bytes 
Al, C, 9 bytes 
P2 = A + 20 
A2, P2 
A 2 , ' _ ' , 0 bytes /*insert pad char */ 
A2, 28 bytes /'* pad end of A*/ 

Figure 14 IL/370 version of the program. 

ADDRESS^ADD LA = DSA + offA 
/*EST. LOC. OF A*/ 

BIND A,LA 
• • • /* SIMILAR INSTS FOR B AND C. */ 
ADDRESS_ADD PI = A + 10 
BIND Al, PI 
MOVE A, B, 9 bytes 
MOVE A1,C, 9bytes 
ADDRESS^ADD P2 = A + 20 
BIND A2, P2 
MOVE A2, ' .^ ' ,0 bytes 
EXTEND A2, 28 bytes 

Figure 15 After storage mapping. 

MOVE A[DSA + offA], 
MOVE Al[DSA + (oflfA+10)], 
MOVE A2[DSA+(ofifA+20)], 
MOVE A2[DSA+(offA+21)], 

B[DSA + oflfB], 9 
C[DSA+ofFC], 9 
'_'[SI+ofF.^.], 0 
A2[DSA+(offA+20)], 28 

Figure 16 After instruction aggregation. 

MVC offA (9,DSA), offB(DSA) 
MVC offA+10 (9,DSA), offC(DSA) 
MVI oflFA+20, C'-_ ' 
MVC offA+21 (28,DSA), offA+20(DSA) 

Figure 17 After register allocation. 

Good programming style is supported. The program-
mer can freely organize a problem into a functionally 
related, highly structured collection of procedures. The 
system deduces the data flow through the collection and 
can open procedures in line. This latter transformation 
not only eliminates the overhead of a call but, when fol- 707 
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lowed by optimization, tailors a general procedure to a 
specific instance. A particularly interesting use of this is 
in isolating data representations. A(1,J) can be treated as a 
reference to a function A which, using arguments i and J, 
returns a value or a pointer to a value. 

Program management functions are supported, ECS can 
be used to check the consistency of a collection of proce-
dures and, when one is changed, to determine the prolif-
eration of the effects. Ideally an ECS compiler is a com-
ponent of a larger system which can both use and supply 
information regarding the status of an entire collection of 
procedures. A component of this could be a design speci-
fication subsystem in which the functions of the com-
ponents of a system being designed are specified. The 
components can be checked for consistency and as each 
component is developed a check made to ensure that the 
specified interface has been correctly implemented. 

Interesting diagnostic and maintenance material is 
available. As a result of the extensive and intensive analy-
sis of a collection of procedures, a great deal of informa-
tion about the entire collection is available. Comments 
can be automatically added to a program listing at proce-
dure call and definition points which summarize the ef-
fects of the procedure call or definition. Because of the 
volume of information made available by the system, an 
interactive mode of communicating to the user is desir-
able. 

Extensive error checking is supported by the system. 
The usual overhead of in-line checks on subscript ranges, 
argument-parameter compatibility, variable types, etc., 
will largely disappear as a result of compile time analysis 
and optimization. 

Language extensibility is supported via the procedure 
mechanisms. 
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Appendix: Specific techniques 
Several techniques which are new and/or basic to the ECS 
approach are discussed in this Appendix; flow-free analy-
sis, summaries, procedure integration, data flow do-
mains, constant propagation, storage overlay, and in-
struction aggregation. 

• Flow-free analysis 
Data flow analysis in ECS is complicated by the presence 
of procedure, label, and pointer variables. Procedure 
variables make it impossible to determine, from a simple 
scan of the program, which procedures may be called by 
each call statement. Label variables similarly make it im-
possible to determine which labels may be the targets of 
each goto statement. Thus a call graph and a control flow 
graph cannot be constructed after a simple scan of the 
program. Further complications occur when aliasing 
among variables in a program is possible. This can result 
from mechanisms such as pointers and call-by-reference 
parameter passing, both of which we must be able to 
handle. As an example of the problems which aliasing can 
cause, a call on a procedure variable using call-by-refer-
ence could have the effect, depending on the value of the 
procedure variable at the time of the call, of assigning a 
procedure value to one of the parameters of the call. This 
fact must be taken into account in constructing the call 
graph, for if a procedure A contains a call on procedure 
variable x, the call graph must contain arcs from the node 
for procedure A to the nodes for each procedure which x 
can have as its value. To determine the necessary infor-
mation, a program analysis which is flow-free (in the 
sense that the call graph and control flow graph are not 
yet available) is required. 

Given a collection of procedures, the flow-free analyzer 

1. Computes range information {i.e., lists of possible val-
ues) for procedure variables, thereby generating a call 
graph, 

2. Computes aliasing patterns and range information for 
pointers while computing (1), since procedure vari-
ables can acquire values as a result of aliasing, 

3. Computes range information for label variables for use 
when determining the control flow graph, and 

4. Finds argument-parameter relationships. 

Flow-free analysis also generates summaries for proce-
dures, which is necessary in the case of recursive calls. 
This is considered in a subsequent section. 

Unfortunately, the problem of determining completely 
precise information (precise up to symbolic evaluation 
[16]) is inherently difficult. The algorithm suggested here, 
though not precise in all cases, is safe and has a running 
time which is approximately bounded by the product of 
the number of alias relationships in the program and the 
number of variables and constants of pointer, procedure, 
or label type. 

The method used extends the work of Barth [16], Ban-
ning [17], and Allen [6] to the cases we wish to handle. It 
is described by Weihl in [7] and is similar to that given in 
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[18]. In general outl ine, the method involves manipulating 

relations over a set of variables and values of interest. 

The code must be scanned to initialize the relat ions, and 

then a closure operat ion is performed on the relat ions. 

We illustrate the method by considering several ex-

amples , starting with the simplest case , a single proce-

dure with no aliasing, and gradually considering reference 

pa ramete r s , pointers , and calls on procedure variables. 

Let us first consider the case of a single procedure with 

no aliasing and no procedure calls. We first create a rela-

tion MODVAL such that 

(X,A) in MODVAL means x is assigned value A. 

Suppose our procedure consis ts of two assignments 

B = C; 

A = B; 

Then , scanning the code , we put the pairs (B,C), (A,B) in 

MODVAL. We then create the relation PVALto be such that 

(X,A) in PVAL means x has possible value A. 

If we take PVAL = ( M O D V A L ) + (where + is the non-

reflexive transitive closure) , then we get (A,C) in P V A L . In 

this limited case , the above formula is both correct and as 

precise as possible. 

Nex t , let us consider the case of multiple procedures 

with procedure calls and no aliasing, where operands are 

passed to procedures in the collection by value. Suppose 

the body of one of the procedures contains the following 

code: 

Call P(A); 

B = C: 

A = B; 

where P is a procedure in the collection with a single for-

mal parameter x . We first define a relation A F F E C T to be 

such that 

(X,A) in AFFECT 

means x may be aliased to A and to every other variable 

which may be aliased to A. A F F E C T is the set of all for-

mal-actual parameter pairs which result from calls to pro-

cedures in the collection, and so in our example (X,A) is in 

A F F E C T . We then take 

PVAL = (AFFECT U MODVAL)-!-. 

This accounts for the t ransmission of values from actual 

parameters to formal pa ramete r s . In our example we then 

obtain, among other pairs , (x,c) and (x,A) in PVAL. 

As a further extension, let us now allow parameters to 

procedures in the collection to be passed by reference. 

This means that when a value Y is copied into a variable 

X, there is an implied copy of Y into each alias of x. Fol-

lowing Barth [16], the ALIAS relation, which indicates 

possible aliasing relat ionships among variables, can be 

computed by 

ALIAS = (AFFECT*) ° (AFFECT*)T 

(where T is the t ranspose , * is reflexive transit ive clo-

sure , and o is composi t ion) . As an example , suppose our 

collection consists of two procedures P and Q, as follows: 

P(X,Y) Q 

X = B ; Call P(A,A); 

Then we initialize our relations as follows: 

(X,B) in MODVAL 

(X,A), (Y,A) in AFFECT. 

We then obtain (X.A), (Y,A), and (X,Y) in A L I A S . We use the 

following to compute P V A L : 

PVAL = ((ALIAS = MODVAL) U AFFECT)-l-

We note the information is correct in this case , but not 

completely precise. See Weihl [7] for further details . 

In the case of pointer variables and procedure vari-

ables , no closed form formulas for computing PVAL can 

be obtained. The algorithm used to handle the case of ref-

erence parameters is not sufficiently general to handle 

pointers . The difference with pointers is that the variables 

which contain addresses can be aliased as well, and so 

assignments to a pointer variable must be propagated to 

all of the aliases of the variable. The method used to solve 

this problem is to incremental ly i terate. Fo r each modifi-

cation t o a variable, the aliasing relat ionships implied by 

that modification are added , and we iterate to see if this 

produces any more modifications. See Weihl [7] for de-

tails of the algorithm, which is both precise and correct in 

the case of pointers , given the assumption that no control 

flow information is available. 

We next consider calls on procedure var iables . The 

basic problem is that at the time the call is encountered in 

scanning the program, the possible values for the vari-

able, and hence the actual procedures which might be 

called by the s ta tement , are unknown. Therefore, it is not 

possible to immediately associa te the actual parameters 

of the call with the formal parameters of the procedure 

being called. To avoid rescanning the program several 

t imes, we need a mechanism to keep track of the actual 

parameters of calls on procedure variables. When a value 

is determined for a procedure variable, we can then asso-

ciate the actual parameters of the calls on the variable 

with the formal parameters of the value. The mechanism 

used to accomplish this is to crea te , for each procedure 709 

IBM J. RES. DEVELOP. • VOL. 24 • NO. 6 • NOVEMBER 1980 F. E. ALLEN ET AL. 



710 

PL/I Source: CALL R(LA(I), B + C,2); 
at IL level: INDEX (P, A, I) 

BIND (Tl, P) 
ADD (T2 = B + C) 
MOVE (T3=2) 
Ra ,T l , T2, T3) 

Figure 18 The IL/PLI form of a call. 

variable, dummy formal parameters. The algorithm in this 
case, like the one for pointers, involves incremental itera-
tion. 

• Summaries 
The summary for a procedure delineates the effects of 
calling the procedure on all nonlocal (to the procedure) 
variables mentioned in the procedure and all formal pa-
rameters to the procedure. The effects to be summarized 
for a variable include whether it is used or modified in the 
procedure, whether data accessible through the variable 
is used or modified, and whether the variable is called and 
in what manner. The summary also includes what copies 
(i.e., assignments) between variables take place as a re-
sult of executing the procedure and information about the 
nature of the copy (e.g., whether it is actually the storage 
accessible through the given variable, and not the vari-
able itself, being assigned). 

The use and modify information is necessary anytime 
we want to examine the effects of an operand, e.g., for 
data flow analysis. In data flow analysis, summaries are 
examined per instruction in the program, and bit vectors 
are formed based on this summary information. The infor-
mation about copies is needed for flow-free analysis to 
propagate procedure, label, and pointer values. 

The information for summaries is first collected by a 
flow-free analysis and then by a flow-dependent analysis. 
In broad outline, the flow-free collection of this informa-
tion requires initializing relations and then performing a 
closure operation. The flow-dependent counterpart is 
computed as a data flow analysis problem. 

We present an example to illustrate summaries as well 
as the differences in flow-free and flow-dependent sum-
mary generation. Consider the following procedure P: 

P: PROC(X); 

IF A > X THEN A = X; 

ELSE A = D ; 

END; 

Collecting information in a flow-free manner, the sum-
mary would be 

A may be modified 
A may be used 
X may be used 
D may be used 
X may be copied into A 
D may be copied into A 

Collected in a flow-dependent manner, the summary 
would be 

A must be modified 
A may be used 
X may be used 
D may be used 
X may be copied into A 
D may be copied into A 

i.e., the additional information that A must be modified is 
detected. Reference [19] has a discussion of the dif-
ferences between "may" and "must." 

• Procedure integration 
In general the term procedure integration can be used to 
apply to a range of transformations designed to bind call-
ing and called procedures more intimately prior to execu-
tion. We restrict our use of the term here to mean in-line 
opening. By that we mean replacing a reference to a pro-
cedure with the procedure itself. There are three central 
considerations in this: the conditions under which it is 
reasonable, the order in which to perform possible se-
quences of such transformations, and the "mechanics" of 
the actual integration as related to maintaining the correct 
semantics for the source language. 

We consider this last issue first. Here, as in all of the 
discussion related to the ECS transformations, it is impor-
tant to remember that integration occurs after the pro-
gram has been translated from its external form. Sym-
bolic names have been replaced by numbers (referring to 
symbol table entries), and all name qualifications, scoping 
conventions, implicit definitions, etc., have been re-
solved. Thus variables local to an internal procedure 
have already been distinguished from other variables hav-
ing the same name. The following adjustments must be 
made when replacing a reference to a procedure with the 
procedure itself: 

1. The argument-parameter associations must be made. 
Different languages have a wide variety of different 
possible associations. The ECS procedure integration 
transformation replaces all occurrences of parameters 
in the text with the corresponding arguments. It is as-
sumed that the source language translator has re-
placed the actual arguments given in the source pro-
gram with references to actual or dummy arguments if 
this is appropriate. Consider the example for PUl given 
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in Fig. 18. Occurrences of the parameters in the text of 
procedure R are replaced with the arguments i, Ti, T2, 
and T3 if R is integrated. The result is correct according 
to PL/i semantics. 
Variables local to the called procedure must be kept 
distinct from those in the calling procedure; variables 
which are the same must be given the same identifica-
tion. Since it is assumed that the translator will have 
resolved all names in internal procedures, name (i.e., 
number) adjustments are made only on integrating an 
external procedure. Static variables must get the same 
identifications across all copies of a procedure. 
Members of storage classes which require the dynamic 
acquisition of storage when a procedure is referenced 
are merged with similar storage classes in the calling 
procedure. 

Statically inherited environments must be carried 
over. As an interesting case of this, consider the ex-
ample in Fig. 19. If procedure C, which inherits A'S 
static environment, is opened up at its reference point 
in procedure B, then we must ensure that c continues 
to inherit A'S static environment. 

A: PROC 
B: PROC 

CALLC 
C: PROC 

Figure 19 The static environment of C and its call are different. 

ORIGINAL PL/I PROCEDURES 
PROC (A); Q: PROC (X,Y); 
B=5; X=X*Y; 
C=A*B; 
CALL Q (A,B); END; 
RETURN (C); 
END; 

After integration 
P: PROC(A); 

B=5; 
C=A*B; 
A=A*B; 
RETURN(C); 
END; 

After optimization 

P: PROC(A); 
A=A*5; 
RETURN(A); 
END; 

Figure 20 Example showing the integration and optimization of 
two Drocedures. two procedures. 

We now turn to another of the three considerations in-
volved in procedure integration as we are discussing it 
here: the conditions under which it is permitted and prof-
itable. Surprisingly, it is nearly always permissible to in-
tegrate one procedure into another. Even if the procedure 
is recursive, either directly (containing a reference to it-
self) or indirectly, it can be integrated. (Of course, the 
integrator must be careful not to get into an infinite loop 
of integrations.) 

Determining the profitability of an integration is diffi-
cult in general. Procedure size and the projected number 
of times a reference is executed are clearly factors. An-
other factor is the tailoring effect that will occur on an 
integrated procedure when it is optimized in the calling 
context. An algorithm for predicting the tailoring effects 
is given in [20]. In [21] it is shown that in certain contexts 
it is almost always profitable. Figure 20 gives an example 
of two procedures which are integrated and the result op-
timized. 

It would be desirable to be able to predict at least some 
of the improvements to be gained by integrating a proce-
dure and then optimizing the result. It is probable that the 
dramatic effects obtained in the example in Fig. 20 could 
not be predicted, but certain simpler cases seem promis-
ing. A particularly promising and profitable case exists 
when an argument is a constant and the corresponding 
parameter in the procedure is tested against another con-
stant. This is often done to determine which of several 
alternate paths to take through a generalized procedure. 

CALL B 

CALL C 

CALL C 

Figure 21 System of procedures. 

Unused alternatives should disappear. Since we have 
found that 24% of the arguments passed in a large sample 
of actual programs are constants, this may be a particu-
larly important prediction basis. In fact, it is likely that 
references to defining procedures will involve an even 
larger percentage of constants. 

The third consideration related to integrating proce-
dures is the order in which to perform the integrations. 
Assuming it is profitable to do a complete integration, the 
order in which the integration is performed can pro-
foundly affect the optimality of the resulting code. This 
occurs because the optimizations which are performed af-
ter an integration work best when transforming (moving, 
eliminating, modifying) single expressions. A CALL is a 
single expression; a procedure is not. It may be possible 
to move a CALL out of a loop or eliminate it, but it is 
difficult to effect the same transformation on the ex-
panded form. This is particularly true if the expanded 
form contains any control flow. Consider the little system 
of procedures A, B, and C given in Fig. 21. 711 
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Figure 22 Controlflow graph ofa program partitioned into data 
flow domains. 

Now consider applying a strategy to this system which 
results in integrating B into A first, A would now contain 
two calls to C. As a result of optimization, the second call 
to c might possibly be recognized as being redundant. If, 
however, C had been integrated into B before B was in-
tegrated into A, the possible redundancy would probably 
be obscured. 

• Data flow domains 
Before they are integrated, procedures have been ana-
lyzed and their internal control and data flow relation-
ships are known. We would like to avoid redoing the en-
tire analysis after integration. Furthermore, many of the 
def-use and live relationships would not be changed (pa-
rameters, global variables, and shared scopes create the 
exceptions), but the bit vectors would be much expanded 
and even sparser than before. Even within a procedure, 
the bit vectors could become very large, since there is one 
bit for every definition of interest in the program. 

These and other considerations have led to domain par-
titioned dataflow analysis. By this method a control flow 
subgraph is encapsulated and the data flow analysis com-
pleted within the subgraph. Collections of such subgraphs 
or data flow domains can be further encapsulated into 

larger data flow domains. Each subgraph becomes a node 
in its containing subgraph. Multiple definitions or uses in 
a data flow domain are treated as a single definition or use 
in the representative node. 

Figure 22 shows a control flow graph consisting of basic 
nodes 1, 2, 3, • • % 9. Each of these may be a single in-
struction (('.e., a procedure reference), a basic block, a 
subgraph, etc. There are definitions of x in nodes 3, 4, and 
7; uses in 8 and 9. The various definitions of a variable are 
distinguished by subscripting the variable name with the 
number of the node containing the definition. Thus x_.,, x_,, 
and X, appear in the example. Assume that subgraphs (2, 
3, 4, 5) = 10 and (6, 7, 8, 9) = II form data flow domains 
and further that (I, 10, 11) forms the all-encompassing 
data flow domain represented by node 12. x,̂ , then is a 
pseudo-definition representing all the definitions of x in 
node 10. Similarly we have a use and definition for node 

Within a data flow domain the def-use relationship is 
expressed directly. Thus the relationship between the 
definition in 7 and the uses in 8 and 9 are found directly [8] 
and expressed explicitly. The relationships which cross 
data flow domains go through one or more levels of in-
direction. These levels of indirection are encoded through 
the pseudo-definitions and uses. The data flow analysis of 
nodes 1, 10, and 11 finds that Xj(, can affect the use in 11. 
In order to find out, for example, what uses the definition 
in node 3 can affect, we look at the uses its representative 
pseudo-definition, Xĵ ,, can affect. Since Xĵ  has a def-use 
relationship with the pseudo-use for node 11, we can find 
the actual uses of x̂  by looking at the uses represented by 
that pseudo-use. 

The fact that domain-partitioned data flow analysis can 
be used to limit the lengths of the bit vectors used to do 
the analysis results from the fact that the number of defi-
nitions being considered at any one time can be limited. 
However, the number of levels of indirection needed to 
relate a definition and a use increases. This method is of 
interest in the context of integrating procedures which 
have been previously analyzed. The results of the analy-
sis can be easily integrated with existing results at the 
time procedure integration is done. 

Constant propagation 
Constant propagation is a more critical optimization in 
ECS than in most compilers, mainly due to a larger ex-
pected proportion of compile-time constants. This is be-
cause, in ECS, an integrated defining procedure, such as 
the one given in the example of Section 4, will typically 
contain a large number of constant-valued variable refer-
ences. For this reason, a rather ambitious approach to 
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constant propagation has been undertaken in ECS—an ap-
proach which is facilitated by the ECS methodology. 

Constant propagation involves the folding of compile-
time constant values into variable references. In many 
compilers, as in ECS, the def-use chains are used to deter-
mine ail the definition points reaching a given use when 
constants are propagated between basic blocks. Such 
propagation may, in turn, give rise to an expression all of 
whose operands are constant, and constant propagation 
can proceed if the expression can be evaluated and the 
target of the expression is addressable. 

Most constant propagators restrict the evaluation to in-
teger arithmetic involving simple variables or tempo-
raries. In ECS, the greatest possible latitude is provided. 

Any expression that can be evaluated at object time can 
also be evaluated by the constant propagator at compile 
time. This is achieved by associating with each IL primi-
tive a simulator that can be invoked by the ECS constant 
propagator to evaluate that IL operation when its oper-
ands are constant. Furthermore, any procedure whose ar-
guments are all constant can be invoked at compile time, 
thus supporting the propagation of constants through 
built-in functions, such as SINE, and type conversion rou-
tines. The simulator for such a nonprimitive procedure is 
the result of integrating the more primitive simulators, 
and is thus an automatic product of the ECS compiler. 

Propagation of constants "through storage" is sup-
ported in the ECS compiler. For example, suppose the 
program contains the statement 

A(i) = j ; 

If I and J are known to have constant values 2 and 3, re-
spectively, at this statement, then the value 3 can be 
propagated through A(2) to all program expressions A(K) 
where K is also known to be 2. The ECS BIND operation 
and aliasing information supports this function. The ad-
dress of a bindable variable is treated by the data flow 
functions as a variable in its own right: a reference to the 
bindable variable is a use of the address, and a BIND opera-
tion is a redefinition of the address. In this way, the def-
use chains are used to propagate constant "address val-
ues" as well as other values. 

These functions are provided in a completely machine-
independent manner. The constant propagator "knows 
nothing" about the storage characteristics of the object 
machine when it propagates constant addresses. Program 
variables, for the most part, are "typeiess" (i.e., bit 
strings) as far as the constant propagator itself is con-

cerned; the IL simulators provide the type interpretation. 
The exceptions here are values that have been ascer-
tained to be of pointer, label, or entry type. These values 
are represented in a stylized form that conveys informa-
tion about the variables or program points referenced by 
the value. This form supports the simulation of such func-
tions as indirect addressing and transfers to constant la-
bels. 

• Storage overlay 
In the ECS defining procedure approach, there is no dis-
tinction between program variables and generated tempo-
rary variables. In general, the storage requirement of an 
Ecs-compiled program before storage mapping will be 
considerably greater than the typical compiler's output. 
Furthermore, procedure integration produces enhanced 
opportunities for a storage overlay algorithm to determine 
storage-sharing opportunities for temporaries and pro-
gram variables alike, in a uniform, systematic manner. 
Such an algorithm is described in detail in [12-14]. 

To illustrate the storage overlay problem, consider the 
PL/i program in Fig. 23(a). 

Most compilers would produce the storage layout 
in Fig. 23(b). 

Improved storage utilization would result if the com-
piler could observe that the first reference to E follows the 
last use of A and the first reference to G follows the last 
uses of C and D, as shown in Fig. 23(c). 

An even better solution results [Fig. 23(d)} from the ob-
servation that B and G are not simultaneously live, nor are 
c and D. Thus, the overlay problem consists of finding 
sets of overlayable variables and juggling their sizes so 
that the total storage requirement is minimized. 

Briefly described, the key to the algorithm is the con-
cept of a conflict graph. The nodes of the conflict graph 
are the variables in a given storage class. An edge con-
nects a pair of variables X, Y if and only if there is some 
node in the program flow graph where x and Y are simul-
taneously live and, hence, may not share stor^e. The 
minimum assignment of overlapping storage to the vari-
ables in a storage class can be formulated as an extended 
coloring problem. This formulation suggests the use of a 
simple overlay heuristic. 

The nodes of the conflict graph (i.e., variables in a stor-
age class) are selected for extended coloring (i.e., storage 
assignment) according to a figure of merit which measures 
the relative urgency of each node. The extended color 
(storage interval) is chosen from the set of available col- 713 
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P: PROC; 
DCL A(IOO), B(IOO), C(50), D(50), E(IOO), G(IOO); 
GET LIST( B, C ); 

(a) A = Fl( B, C ): 
D = F2( A, B ); 
E = F3( B, D ); 
G = F4{ E ); 
PUT LIST( E, G ); 

ENDP; 

tion by expressing their functions as a set of simpler IL 
instructions related by data flow. For example, a pat-
tern for this BXD sequence would begin as 

A(IOO) B(IOO) C(50) D(50) 

Total: 500 cells 

A(IOO) 

E(IOO) 
Rnnni 

E(IOO) G(IOO) 

C(50) 1 D{50) 

G(IOO) 

Total: 300 cells 

A(IOO) 

E(IOO) 

B(IOO) 

G(IOO) 

C(50) 

D(50) 

714 

(d) 

Total; 250 ceUs 

figure 23 Effects of improved storage overlays. 

ors according to a storage selection strategy, such as first-
fit. 

• Instruction aggregation 
An important part of the machine tailoring phase is a pro-
cess for recognizing that certain groups of instructions 
compute a value which can be computed by a single in-
struction of higher complexity. Instructions to be aggre-
gated are related by their data flow—not by their physical 
proximity. In order to deal with the aggregation of in-
structions which are not immediately adjacent, the ma-
chine tailoring phase of the ECS compiler makes use of 
data flow analysis which has already been performed by 
the semantic elaboration phase. 

For example, most computers allow for operand ad-
dressing via some kind of base/index register arrangement 
in which an implicit add/subtract operation is used to de-
rive an effective address which points to the actual data to 
be manipulated. On the IBM Systeni/370, storage oper-
ands may be addressed by summing the value in a base 
register (B), the value in an index register (X), and a dis-
placement (D) which must be a compile-time constant. 

This information is expressed by writing apflffem. The 
pattern characterizes the real machine's complex instruc-

BXD pattern: ADD 
ADD 
BIND 

(Tl = B -1- D) 

(T2 = Tl 4- X) 

(T, T2) 

To match the patterns against the program, a pass is 
made through the program. Each instruction is matched 
against all pattern points {the simpler IL instructions ap-
pearing in the patterns) which are applicable to its opera-
tion code. 

For pattern points whose inputs come from other in-
structions in the pattern, determining the success of a 
match requires determining whether some other pattern-
point/instruction match is successful. This situation is 
dealt with recursively. A collection of "already-tried" 
flags is used to prevent repeated attempts. 

If the pattern point is successfully matched against the 
instruction, a resolution is constructed for use in sub-
stitution. The resolution is a map from the identifiers used 
in the pattern description to the actual variables used in 
the program fragment that matches the pattern. For pat-
tern points which have several alternatives, the "best" 
alternative is selected. 

Having determined the matches for all program points, 
instruction aggregation chooses which productions are to 
be executed. This choice can be accomplished by numer-
ous algorithms, the simplest of which is a bottom-up 
"greedy" algorithm. Code production requires that a 
value be assigned to each pattern point whose match 
causes code to be produced. Such pattern points are 
called terminal pattern points. The value measures the 
time or space saved by using the higher-complexity in-
struction to be generated instead of its expansion. In addi-
tion, each terminal pattern point must have a production 
rule, and each operation code must have a default produc-
tion rule. These are used to form the replacement for 
matched and unmatched pattern points, respectively. 

• Register allocation 
The ECS register allocator is based on the approach given 
in [22]. It consists of Ave phases: 

1. The relative frequencies of program points (i.e., RL in-
structions) are estimated. In the absence of real fre-
quencies, this is necessarily determined by such con-
trol flow patterns as nested strongly connected re-
gions. 

2. The displacement priorities of the variables at each 
point are established. These priorities are based on a 
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frequency-weighted measure of the distance to the 
next use. These priorities are used when determining 
which variable to displace when the allocation phase 
finds that it is out of registers. 

3. Variables are allocated to registers in that a decision is 
made as to which variables at each program point are 
contenders for registers. The actual decision as to 
which symbolic register they will get is made in the 
next phase. In this phase we note when the value of a 
potential register contender is also "home," i.e., the 
current value for the variable also exists in storage. 

4. Registers are assigned symbolically and the skeletal 
code sequences are determined. This does not desig-
nate the absolute register. An infinite supply of sym-
bolic registers is assumed overall, but no more than 
the actual number of registers may be in use at any 
point. 

5. The symbolic registers are given absolute designa-
tions. 

By separating the allocation of variables to symbolic 
registers from the assignment of variables to actual regis-
ters, we can permute the allocations to decrease mis-
matches and the consequent register moves. 

Having selected the absolute registers, the code skele-
tons chosen earlier can be finalized. 
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